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Abstract: Two critical limitations of very high resolution imagery interpretations for  

time-series analysis are higher imagery variances and large data sizes. Although object-based 

analyses with a multi-scale framework for diverse object sizes are one potential solution, 

more data requirements and large amounts of testing at high costs are required. In this 

study, I applied a three-level hierarchical vegetation framework for reducing those costs, 

and a three-step procedure was used to evaluate its effects on a digital orthophoto quadrangles 

with 1 m spatial resolution. Step one and step two were for image segmentation optimized 

for delineation of tree density, which involved global Otsu’s method followed by the 

random walker algorithm. Step three was for detailed species delineations, which were 

derived from multiresolution segmentation, in two test areas. Step one and step two were 

able to delineating tree density segments and label species association robustly, compared 

to previous hierarchical frameworks. However, step three was limited by less image 

information to produce detailed, reasonable image objects with optimal scale parameters 

for species labeling. This hierarchical vegetation framework has potential to develop 

baseline data for evaluating climate change impacts on vegetation at lower cost using 

widely available data and a personal laptop. 

Keywords: object-based image analysis; image segmentation optimized for delineation of 

tree density; very high resolution imagery; species association labeling; the Z values of 

Moran’s I 
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1. Introduction 

1.1. Motivation 

Vegetation mapping is required for biological conservation and forest inventory; especially time 

series mapping is commonly used to detect transformations of species or suitable habitats (e.g., [1–3]) 

and evaluate impacts of climate change on species (e.g., [4,5]). Species distribution models (SDMs, 

also called habitat suitability models), which correlate environment variables with species sampling 

data to map species occurrences [6], have been used for vegetation mapping. However, the field-based 

approach is cost and labor-consuming, while pure remote sensing imagery interpretations are lacking 

in ability to detect individual species [7]. SDMs are viewed as static and equilibrium models capturing 

species-environment relations at large scales, but ignoring dynamic biological interactions, such as 

dispersal, migration, facilitation, competition, mutualism, and predation at local scales [8].  

Mapping species directly using very high resolution imagery (1 to 2 m), and tracking vegetation 

transformations over time through repeated mapping provided the potential for building more dynamic 

vegetation mapping.  

With advances of sensors, spatial resolutions of remotely sensed data have been improved to 

centimeter levels and provide more spatial information on species distributions. For example, 

WorldView-1, which was launched on 18 September 2007, collects panchromatic imagery at 0.5 m, 

and WorldView-2, which was launched on 8 October 2007, collects panchromatic imagery at 0.46 m 

and multispectral imagery at 1.84 m. GeoEye-1, which was launched on 6 September 2008, collects 

panchromatic imagery at 0.41 m and multispectral imagery at 1.65 m. As Nagendra and Rocchini [9] 

indicated, very high resolution imagery, which spatial resolution is fewer than 5 m, but only with  

four to eight bands or less bands, provides more accurate locations of tree canopies. The ability is 

better than hyperspectral imagery, which has a series of continuous spectral bands (over 100 bands), 

but coarser spatial resolution (20–30 at best). However, higher spatial resolutions may not have higher 

classification accuracies, due to higher variances within classes [10] (also called H-resolution problem, 

which occurs when land cover elements are larger than pixel sizes [11]). In addition, more pixels in 

very high resolution imagery result in large data sizes, and increase loadings of computer hardware 

requirements (i.e., segmentation procedures have very high memory and CPU requirements), so most 

studies only test in small areas, because of memory limitations of personal computers and long 

processing times. Object-based analysis can improve salt and pepper effects and increase classification 

accuracies over pixel-based image classifications, which ignore similarity of near pixels [12–18].  

In addition, imagery can be stratified into smaller subsets [19] within the processing capabilities of  

personal computers.  

Object-based image classification includes a two-step procedure, image segmentation and image 

classification. Image segmentation gathers several similar neighbor pixels together as objects, and 

image classification categorizes or labels objects as land cover types. In theory, image objects have 

equal internal variances at a common scale [20], and very high resolution imagery is helpful to derive 

correct locations. However, each class with varying sizes needs different scales to define appropriate 

objects [14,20,21], and multispectral bands are helpful to labeling or classification procedures.  



Remote Sens. 2014, 6 7278 

 

 

The appropriate scale for identifying objects can be found by an iterative workflow [22] using 

hierarchical semantic models or knowledge [23]. In other words, there is no single optimal scale 

parameter, but a spatially-nested (multi-scale) structure [20–24] can be used to identify objects with 

different sizes and describe the object traits, especially in imagery without many spectral bands. For 

example, Yu et al., [18] pointed out vegetation alliances, which are more general than species types, 

are also critical to define tree species segmentation, and the similarity of near objects may decrease 

classification accuracies. Kim et al., [25] indicated that multiscale image classification involving  

both spectral and texture traits can increase classification accuracies. Nevertheless, those  

hierarchical-segmentation applications in very high resolution imagery are still limited to classify 

primary land cover categories [25] or estimate forest parameters [26–28] in small test areas, and there 

is lacking in a general framework for specific species in large areas.  

Previous vegetation mapping frameworks have taken two approaches, the data-based orientation 

and vegetation-type orientation. In the data-based approach, integrating multiple remote sensing data 

layers can increase interpretations of vegetation traits [25,26,28,29]. In one example, Xie et al., [29] 

used this approach to identify exotic Australian pine with three-level segmentations: NDVI to 

distinguish vegetation from non-vegetation, tree heights, derived from LIDAR, to distinguish trees 

from short trees (lower than 3 m), shrubs and grasses, which did not belong to Australian Pine, and 

image traits using shape/color and smooth/compactness weighting parameters for target objects. 

However, higher data requirements raise costs, and may not be extensively adapted to other regions. In 

the vegetation-type approach, vegetation nested structures from tree, stands, forest types (e.g., pine, 

oak and red fir) and vegetation types (e.g., wetland, forest and grassland) are another solution [20]. 

This framework, incorporating object-based image segmentation [20] and labeling procedures [30], 

can be used to identify more general vegetation life form or land-cover types (e.g., conifer forest, 

hardwood forest, chaparral, soft chaparral) and within them, more specific vegetation types. As an 

example, the level of Associations (e.g., Jeffrey pine, black oak and coast live oak) is nested under the 

US National Vegetation Classification Systems (http://usnvc.org). However, the labeling procedures 

for each individual species type, based on multispectral classification and image interpretation, may 

not all reach equally high accuracies (e.g., accuracies for conifer types ranged from 23% to 100% in 

Franklin et al., [30], but ecological studies may need to focus on certain species with lower accuracies). 

1.2. Problem Statement and Literature Review 

The goal of this study was to implement a hierarchical framework for segmenting specific tree 

species using three bands derived from 1 m digital orthophoto quadrangles (DOQ) and an evaluative 

framework to assess the segment results. For the purpose of time-series image processing, imagery, 

which governments started to conduct aerial surveys for, with only one single black/white band is the 

most widely available historical (long-term) sources. Thus, this study focused on the approach, which 

better used spatial information, rather than spectral analyses, as DOQ, which has very high spatial 

resolution, but the digital number may not be real. A further goal was to evaluate methods that can be 

implemented on personal computers (with conventional amounts of memory). Although identifying 

individual species can be demonstrated by machine learning methods (e.g., [31]), the hyperspectral 

and/or very high resolution imagery (less than 0.5 m) that these methods relied on is not always 
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available. Thus, the hierarchical framework, which was built on widely available data and computing 

capabilities, and incorporated ecological knowledge of the study area, provided the ability to label 

segments within specific species association or species types, even if imagery data were not able to 

support species identifications.  

Partitioning the image based on tree density was a key part of the natural vegetation framework 

used in this study (Figure 1). Previous studies emphasized intensive data requirements [25,26,28–30] 

and repetitive testing on the applications of vegetation mapping, but those approaches may not form 

robust procedures toward long-term image processing with uncertain data sources (i.e., validation 

points) and the lack of multiple attributes. Moreover, segmentation studies (reviewed by [32–37]) have 

not been extensively applied to natural vegetation using a robust approach. Among those segmentation 

methods, which were classified by Fu and Mui [32], edge-based algorithms were the most vulnerable 

to noise (i.e., heterogeneous pixels with higher variances, especially in sparse tree stands) [32], and 

threshold-based algorithms cannot deal with imagery complexities, even using local threshold 

approaches [38,39]. In contrast, region-based algorithms were widely incorporated with other 

algorithms, including the Woodcock and Harward [20] region growing algorithm, eCognition’s 

imagery merging and fractal net evolution approach [21,23,24], and multiscale object-specific 

segmentation (MOSS) using size constrained region merging [21,40]. Those algorithms could better 

deal with noise and avoid over-segmentation on vegetation mapping, compared to other algorithms, 

such as the watershed algorithm and the region growing algorithm [34,37,41]. However, two-step 

labeling procedures [30] or repetitive testing on parameters (e.g., scale, compact and shape parameters 

for multiresolution segmentation in eCognition) to construct hierarchical frameworks [21–24] were 

still time-consuming and data-intensive. Therefore, a robust alternative using image segmentation 

optimized for delineation of tree density, which distinguishes a specific threshold for separating 

meaningful species association and selecting segmentation algorithm or parameter, was necessary for 

simplifying those procedures and data requirements in time-series image analysis. 

Furthermore, tree density was the main trait of the hierarchical vegetation framework for two 

reasons (Figure 1). Tree density distributions, which reflected specific ecological site factors, were 

more appropriate for occurrence of specific species association (e.g., shade-intolerant species and 

shade-tolerant species) [42–45]. In theory, shade-intolerant species tend to occur at sparse tree stands, 

while shade-tolerant species tend to occur at dense tree stands. Additionally, different tree density 

patterns were required to identify two kinds of image objects, tree species and vegetation stands, using 

two processing procedures. For identifying individual tree species, tree crown delineation algorithms 

and labeling classifiers using multispectral bands were widely used, especially for interpreting species 

counts and types, which can substitute for field-based surveys [46–50] to some extents. Those algorithms 

included valley-following, region growing and watershed segmentation [51–55]. Nevertheless, the 

fundamental assumptions were that tree crowns should be clearly separated in space (not overlap) and 

should be in regular shapes and similar sizes, according to algorithm functions [52,53]. Thus, no 

general rule in the literature to select algorithms is available [52,53]. Furthermore, this approach was 

less effective in heterogeneous and denser hardwood stands than conifer landscapes [51,56]. For 

vegetation stands, decomposing landscapes into smaller objects (vegetation stands, a group of trees) 

and labeling species by the majority classified pixels within segmentations [15], vegetation gradient 

model adding spectral mixture analysis [30] or non-parametric classifiers (e.g., [18,23]) were usually 



Remote Sens. 2014, 6 7280 

 

 

applied (e.g., [18,57–60]). Nevertheless, segmentations in sparse tree stands may not be partitioned 

well, due to effects of non-vegetation areas or shadows. In addition, precise vegetation boundaries 

were still challenging in denser tree stands, because region-based segmentation partitioned imagery, 

based on its variances, rather than true objects. To sum up, preferable algorithms in the literature for 

the two kinds of objects had their own problems, and no general solution was available. As a result, 

one of goals in this study was to test a flexible guideline for algorithm or parameter selections.  

Figure 1. Vegetation hierarchical framework. The text on the left indicates the vegetation 

hierarchies at each stage of stratification and segmentation. The text on the right side 

indicates the input data for operational procedures. Corresponding to those vegetation 

hierarchies, there are three-level operational procedures. At the first level, the global Otsu’s 

method and the random walker algorithm were used to partition nature vegetation into two 

image segmentation optimized for delineation of tree density, dense tree stands and sparse 

tree stands. At the second level, the two image segmentation optimized for delineation of 

tree density were tested by species association labeling for better threshold definition of 

tree density. At the final level, multiresolution segmentation was used to partition image 

segmentation optimized for delineation of tree density into smaller subsets for vegetation 

stands or individual species.  

 

Specifically, the hypotheses tested in this study were:  

1. Environmental stratification, which environmental variables were separated by the global Otsu’s 

method for strata, will reduce the image variation of digital number (DN) and texture. It is assumed 

that reducing variance in image DN and texture indices simplified species composition based on 

studies showing that texture indices (local variances and second order textures) have high correlations 

with forest structural parameters (e.g., standard deviation of diameters and basal area) [61,62] and can 

clearly distinguish different forest parameters (e.g., stand ages) [63].  

2. Identifying tree-density patterns will be used to simplify species association in a given area where 

there was no recent disturbance. This hypothesis was based on assumptions that shade tolerance was 

related to variations in tree architectural parameters, such as stem and crown dimensions [42–45], and 

species life history traits (e.g., different seedling time between oaks and pines) and environmental 

conditions (e.g., topographic and climatic conditions), which constrained species regenerations, 

resulting in different species dominances (pine dominance and oak-pine codominance) in stands with 

different tree densities [64,65].  
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3. Different tree density distributions will have different optimal scale parameters for image 

segmentation where the optimal scale parameter was that with the lowest segmentation variances and 

spatial autocorrelations [66–68]. The hypothesis was based on studies indicating that different image 

objects, such as sizes of tree crowns or clumps are a function of different spatial scales [10]. 

2. Methodology 

Step one and step two, which involved the global Otsu’s method using environmental variables and 

the random walker algorithm on the imagery, was used to identify two tree density patterns. Step three 

was the multiresolution segmentation for extracting species objects (Figure 1). Environmental variables, 

based on elevation, slope or aspect, were used to partition the whole image into smaller subsets. Large 

images needed to be subset in order to reduce processing time and variation partitioning can  

help to statistically characterize certain components by increased stationarity or homogeneity within 

strata [69,70]. A non-parametric test was used to see which terrain variable was most effective at 

reducing variation in local DN and texture measures within strata. The reasons for using one 

environmental variable, rather than all three, were that one of goals in this study was to build a 

parsimonious procedure for reducing computations, and stratification based on a single variable was 

simple to implement. Then, the random walker algorithm was applied within the environmental strata 

to partition imagery into smaller subsets based on tree density patterns. The segmentation was 

evaluated by independent vegetation maps (the Timber survey and CALVEG) for segmentation 

accuracies. The goal was to evaluate whether the segmentation distinguishes image regions associated 

with particular species or species associates (Figure 1). Finally, the segmentation of tree densities was 

further partitioned by multiresolution segmentation with different scale parameters for species or stand 

level segmentation. The segmentation efficiency was evaluated by whether the detailed species 

segmentation related to specific guidelines of scale parameters on identifying species objects  

(Figure 1). So as to minimize costs, this study mainly used open source python libraries, scikit-image 

and other free software, and free DOQ imagery, and reduced processing time in commercial software 

to achieve the above goals.  

2.1. Study Targets and Data Sources 

Tejon Ranch, which belongs to Tejon Ranch Company, is located in the convergence of four  

eco-regions: the Mojave Desert, the Central Valley, the Sierra Nevada, and the Transverse Ranges [71]. 

The research area is located in the Tehachapi Mountains, elevation ranging from 368 to 2360 m [72] 

(Figure 2). Based on the only climate station within Tejon Ranch, 434.3 m elevation, the average 

yearly temperature is 59.61 °C (1895–2011) and yearly rainfall is 11.29 inches (1899–2011) [73]. This 

area has a typical Mediterranean climate. The main rainfall season concentrates in the winter from 

October to March of the next year, while the dry season is in the summer from July to September. The 

main vegetation type is oak woodlands, including canyon live oak, interior live oak, blue oak, 

California black oak, scrub oak, and others along with ponderosa pine and gray pine.  

This study focused on two hardwood species, blue oak and California black oak, and two conifer 

species, ponderosa pine and grey pine. The four species are shade-intolerant [74], and tend to occur in 

sparse tree stands. Nevertheless, the shade tolerance of California black oak varies with age (higher 
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shade-tolerant in saplings and less shade tolerance up maturity), so it can sustain in denser tree  

stands [74]. More importantly, owing to the long-term fire disturbance history, tree density does not 

always achieve its maximum possible value, and local adaptations to microenvironments and 

regeneration played more important roles in determining tree density. For example, ponderosa pines in 

southwestern United States were often found in dense stands changing from a range of 49–124 trees 

ha-1 at the time of Euro-American settlement to a range of 1235–2470 trees ha-1 now [75–77], due to 

high density of seedlings and saplings and fast growth near burned areas [65]. To sum up, species 

successions were not clearly identified in previous literatures and records and any rules about 

determinants of tree densities were not extensively applied to regions [74], so it is assumed that species 

have similar tree density patterns within a given area.  

Figure 2. Elevation model of the study area showing the boundary of the Tejon Ranch in 

red, the Research Area (used in this study) as a blue rectangle and two test areas for the 

third-level segmentation in orange and light blue rectangles. 

 

Data sources included a one-meter DOQ, SRTM 30 m Digital Elevation Data v.4 and two archived 

vegetation type maps, referred to in this study as Timber survey and the CALVEG. The DOQ was 

imagery with three 8-bit bands, which was rectified by digital terrain models and ground position 

points to remove terrain relief and camera tilt [78] so every land element was in corrected ground 

position. The horizon geometric accuracy, which was evaluate by a root-mean-square-error (RMSE), is 

0.82 m [79]. The image was collected in 9 December 2009. This imagery is freely available from 

United States Department of Agriculture: Natural Resources Conservation Service Geospatial Data 

Gateway (http://datagateway.nrcs.usda.gov/GDGOrder.aspx) or United States Geological Survey: The 

National Map Viewer and Download Platform (http://viewer.nationalmap.gov/viewer/). However, 
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because the DOQ was produced by aerial photos, the radiometric ranges cannot reflect the real spectral 

digital numbers. The SRTM 30m Digital Elevation Data, which were produced by National 

Aeronautics and Space Administration (NASA), were created by collecting elevation points from 

SRTM3 and a series of auxiliary digital terrain models for the purpose of interpolating voids to create 

seamless topography [72]. The data provided not only elevation information in 30 m spatial resolution 

but also slope and aspect gradients by calculating the rates of maximum change and their directions. 

The Timber survey was a field-surveyed map generated in 1980 for distributions of oak woodlands on 

Tejon Ranch [80]. The CALVEG (Classification and Assessment with Landsat of Visible Ecological 

Groupings) was produced by the USDA Forest Service using Landsat Thematic Mapper to construct a 

vegetation database across California in 1990s, and redeveloped in 2009 through 2010 using Landsat 

Thematic Mapper and Spot 5 panchromatic images [30]. Although the time of existing vegetation 

maps cannot correspond to the DOQ’s, this study assumed that the vegetation did not change much 

since 1980. The assumption was based on the fact of poor regeneration of California oak specie [81].  

2.2. Environmental Stratification 

To create environmental stratifications, a global Otsu’s method was used to separate elevation, 

slope and aspect images into smaller areas using scikit-image. The scikit-image (http://scikit-image.org/), 

written by a community of volunteers, is one of python open-source peer-reviewed code libraries. The 

library is a collection of image processing algorithms in previous studies. The goal applying global 

Otsu's method was to find an optimal global threshold in image histogram (one-dimension intensity 

measurements) to partition imagery into two groups. The function was to maximize the intra-group 

variances and minimize within-group variances [82] in order to categorize objects from backgrounds, 

such as tree crowns from barren lands. Preliminary analyses determined optimal thresholds; the three 

stratifications were partitioned by thresholds of 1169 m for elevation, 41° for slope and 149° for aspect 

(Figure 3).  

The global Otsu’s method has been shown to be more effective than other binarization  

methods [35,39] with lower computational time. However, those binarization methods were not 

spatially separated [32,35]. The strata boundaries needed to be delineated by hand, depending on the 

spatial distributions of environmental variables beyond or below the thresholds. The manual 

boundaries of strata did show diverse patterns to reflect tree covers. Then, the random walker 

algorithm was implemented within each stratification for further partitions.  

2.3. Image Segmentation Optimized for Delineation of Tree Density 

The random walker algorithm was used for image segmentation. Segmentation was based on single 

first band. The goal of using a single band, instead of three bands, was to save computation time, if the 

single band can reach the goal to identify tree density. Additionally, DOQ may not represent the true 

spectral digital numbers. The random walker algorithm, which was proposed by Grady [83], was used 

to partition imagery into smaller subsets more robustly using scikit-image. The random walker 

algorithm originated from the graph theory to view the whole imagery as the combinations of vertexes 

(nodes) and edges (arcs), and the random walkers, which represented each individual pixel, were trying 

to formulate a path to their neighbors, according to certain probability distributions. The algorithm 
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started from defining the markers, a group of seeds as the sampling of desired imagery objects. Then, 

this algorithm would assign each unseeded pixel a probability and a weight. The probability was 

assigned by absolute distances from seeds to each individual image pixels (unseeded pixels), while the 

weight was converted by the image intensity. Finally, the algorithm would assign a seed class to those 

unseeded pixels for cuts, mainly according to the probability, and the cuts might be adjusted by the 

weights to avoid crossing sharp image intensities. For example, if three out of four neighbors belong to 

one class, then the focal pixel is assigned to this class. Thus, the random walker algorithm can keep 

locally consistent boundaries, regardless of spatial extents and attribute ranges.  

Figure 3. Spatial distributions of two-group separations by global Otsu’s method: the 

green regions represented the environmental layers were above the optimal thresholds.  

(To visualize clearly and eliminate some salt and pepper effects, the maps applied a 

smoothing (low pass) filter using focal statistics in ArcGIS 10.0) The orange lines showed 

manual strata of three environmental variables, and blue lines showed boundaries of the 

study area. Maps showed (a) Original imagery, (b) Aspect stratification, (c) Slope 

stratification, (d) Elevation stratification. 

(a) (b) 

(c) (d) 

However, how to define the markers was not described in details in the original paper, and few 

studies have used the random walker algorithm to identify vegetation types, because the random 



Remote Sens. 2014, 6 7285 

 

 

walker algorithm was under the assumptions (also called supervised segmentation algorithms) that a 

series of pixels for desired objects and backgrounds were known and nearby pixels between desired 

objects and backgrounds can evolve to desired boundaries. To handle this issue, the grey-level image 

DN, which was assumed to be a function of tree densities, was used in the marker designs. The image 

DN was higher, and the tree densities were sparser. Using natural break optimizing, the map 

classification was to reduce within-group variances, in three classes to derive the thresholds for desired 

objects and backgrounds. As a result, barren lands or individual trees over the highest threshold were 

viewed as the desired objects, and denser tree stands below the lowest threshold were treated as the 

background (Figure 4). Then, the random walker algorithm could separate desired objects from 

backgrounds. In the second segmentation, the same procedures were applied to separate lower tree 

density stands from higher tree density stands (Figure 4). Finally, barren lands or individual trees and 

lower tree density stands were combined as lower tree density stands for species association labeling 

(Figure 4).  

Figure 4. Tree density distributed patterns: (a) Barren lands and individual tree stands  

(b) Lower tree density stands (c) Higher tree density stands. 

(a) (b) (c) 

2.4. Species Segmentation 

Detailed vegetation objects were further partitioned following the image segmentation optimized 

for delineation of tree density using multiresolution in eCognition 8, which has been extensively used 

in studies of object-base image classification for vegetation inventories (e.g., [18,58,59]). The 

algorithm of multiresolution segmentation was demonstrated by optimization procedures to minimize 

heterogeneity for each individual merging [24]. Although many algorithms were developed to 

delineate tree crowns and open for free, those algorithms are scene-dependent and time-consuming to 

test them all in various operational system and computer languages. Thus, eCognition can be the 

simplest way to see the effects of the hierarchical framework on species segmentation. Segmentation 

was produced by 17 attributes or features: RGB; first-order textures: mean, standard deviation, 

kurtosis, mean Euclidean distance, skewness, variance; second-order textures: mean, variance, 

homogeneity, contrast, dissimilar, entropy, second moment, and correlation [84,85]. For the purpose of 

understanding which attributes can form better segmentation, several attribute combinations were 

tested, especially for the second-order textures, which literature pointed out high correlations with 

vegetation characteristics [61,62]. Nevertheless, multiresolution segmentation counted on classifiers to 

label after segmentation procedures. Therefore, as a prior framework, the multiresolution segmentation 

cannot be implemented with appropriate parameters or ruleset beforehand, and applied the same 

setting to other images directly. Optimal scale parameters were needed to be identified. The tested 
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scale parameters (without units, depending on image heterogeneity), which determined the object 

merges and object sizes for the purpose of reducing heterogeneity [24], included 0.5, 1, 1.5, 2, 2.5, 3, 

3.5, 4, 4.5, 5, and 5.5.  

2.5. Segmentation Evaluations 

To test the hierarchical vegetation framework and the three hypotheses, a series of evaluations were 

used. First, image local DN and texture, mean and standard deviation in the first band, were used. 

The local mean and standard deviation were calculated based on window sizes, 3 by 3, 5 by 5, 7 by 7, 

9 by 9, 15 by 15, 21 by 21 and 27 by 27. The goal was to see which terrain variable could be used to 

stratify the image most effectively, because image DN and texture correlates with forest structure 

parameters. A non-parametric test, Kruskal-Wallis test was applied using SPSS Statistics 20.0 to test 

whether variances (the local mean and standard deviation) were equal among groups (different 

environmental stratification).  

Second, four focal species were chose to examine the effectiveness of the random walker algorithm 

by determining whether the two tree density patterns, which were combined from three tree density 

types (Figure 4), reflected different species association distributions as determined by the archival 

vegetation maps (reference data). In other words, the CALVEG and the timber survey were used as 

reference data for sampling four focal species types. The species samples were combined into species 

association and used to compare with tree density distributions within the study area. Indices of map 

agreement, including the kappa value, overall accuracies, user’s accuracies and producer’s accuracies, 

are based on the values in a confusion matrix [30,86]. Sampling the maps in order to calculate those 

indices were based on a stratified random approach accomplished using a “plug-in” sampling design 

tool in ArcGIS 10.0 to allocate 100 points proportionally by class areas. The strata were based on the 

three image segmentation optimized for delineation of tree density (Figure 4), where larger segmentation 

areas had more sampling points. 

In order to evaluate the scale parameters used in the multiresolution segmentation, this study 

applied an objective (unsupervised) evaluation approach by using Moran’s I [67,68] as a measure of 

spatial autocorrelation to measure the similarity of segment-averaged attributes as a function of the 

distance between segments. There are several reasons to select the unsupervised evaluation approach. 

First, the approach could be applied in areas without abundant field data for supervised evaluations. 

The CALVEG was classified from SPOT (20 m) and Landsat TM (30 m), while the Timber survey 

was in coarser segmentation than the CALVEG. Also, the two reference maps were created at different 

scales [80], so it would not be possible to distinguish whether inaccuracies of vegetation segmentations 

were from boundary errors in maps made at other scales. In brief, it was questionable to sample points 

for validation of species distributions in 1-meter DOQ. Second, it is still challenging to evaluate results 

of object-based image analysis, compared to accuracy assessments in pixel-based image classifications, 

which applied sampling points to evaluate agreements [57,87,88]. Pixels within segmentations were 

not spectrally homogeneous [89], so the sampling points may not represent the whole objects. In 

addition, some of segmentation tools are proprietary software, such as Berkeley Image Segmentation 

(BIS) (http://www.berkenviro.com/berkeleyimgseg/) and eCognition (http://www.ecognition.com/). 
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Although they have been described in the literature (e.g., [22–24,90]), there was no way to evaluate the 

segmentation accuracies by algorithms.  

The basic idea of unsupervised evaluation was that attributes of optimal segmentations with clear 

boundaries (such as average spectral or texture values) should have low between-segment spatial 

autocorrelation, whereas over-segmentation (many small polygons), and under-segmentation (where 

the polygons are larger than the optimal segmentations), yielded segments whose attributes had higher 

between-segment spatial autocorrelation (Figure 5). Kim et al., [68] further pointed out that the 

segmentations in optimal scale parameters can contribute to better classification accuracies. Therefore, 

the segmentations based on different scale parameters were evaluated based on the Z values of 

Moran’s I in two test areas, sparse tree density stands and dense tree density stands (Figure 6). The 

goal was to see whether there were different optimal scale parameters for segmentation of two tree 

density patterns, because each has different sizes of individual trees and tree stands. This reason to use 

the Z values of Moran's I, instead of Moran’s I in Kim et al. (2008) and Kim et al. (2009) [67,68] was 

that image segmentations with different scale parameters resulted in different weight matrices among 

images. For comparisons for an appropriate scale parameter, Moran’s I is required to standardized as 

the Z values of Moran’s I. 

Figure 5. Examples for evaluations of segmentation results: the black circle represents the 

tree crown object, and the color regions represent the segmentation results. The values in 

the figures were assumed. Each individual value represented the average of each segmentation.  

 

Figure 6. Test areas with two tree densities for detailed vegetation segmentation. 
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3. Results 

3.1. Environmental Stratification 

The aspect stratification had the best performance in terms of increasing stationarity within strata. 

Both DN and texture, mean and standard deviation of first-band digital number (DN) for different 

window sizes, showed significantly reduced variance within strata based on aspect, and the slope strata 

had the second best performance (Figure 7). Visually, the aspect stratification was most effective in 

separating tree crowns from barren lands, and the slope stratification again had the second performance 

(Figure 3). The slope stratification could be used to identify parts of barren lands, which had less steep 

slopes, but the elevation stratification was not useful for distinguishing woodland cover strata in this 

study area. Therefore, the aspect and slope variables produced strata that reduced variance in local 

measures of DN and texture, supporting the first hypothesis.  

Figure 7. Local DN and texture evaluations for environmental stratifications showing the 

p-values of the K-W test as a function of window size. (a) mean image DN, and (b) standard 

deviation in DN, for each window size. 

(a) (b) 

3.2. Image Segmentation on Tree Density 

The two image segmentation optimized for delineation of tree density based on the random walker 

algorithm effectively separated the two species association. Ponderosa pines and California black oaks 

tended to occur in dense tree stands, while grey pines and blue oaks tended to occur in sparse tree 

stands within the study area. Agreement of species association with image segmentation optimized for 

delineation of tree density reached about 80% overall accuracies and 0.6 kappa values. In particular, 

using the aspect stratification for the thresholds of desired objects (firstly, for barren lands or 

individual tree stands and secondly for lower tree density stands) by natural break optimizing for the 

random walker algorithm did perform the best to produce image segmentation optimized for 

delineation of tree density (Table 1). Visually, step one and step two were effective to separate tree 

density patterns into three tree density categories, barren lands or individual trees, lower tree density 

stands and higher tree density stands, and the two selected regions of two tree densities had similar 

performances on separations of tree densities (Figure 8).  
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Table 1. Agreements Between Species Association And Image Segmentation Optimized 

For Delineation Of Tree Density, measured by comparing two existing vegetation maps 

(Timber Survey, CALVEG) with the segmentations using Kappa, overall accuracy (percent 

correct classification), user’s accuracy (1-commission error), and producer’s accuracy  

(1-omission error). 

(a) Timber Survey 

Elevation Stratification Slope Stratification Aspect Stratification 

Kappa value 0.52 0.56 0.65 

Overall accuracies 0.76 0.78 0.83 

Users’ accuracies 

Barren land 0.72 0.8 0.88 

High density 0.81 0.76 0.76 

Producers’ accuracies 

Blue-oak and grey pine 0.82 0.8 0.81 

Black oak and ponderosa pine 0.71 0.76 0.84 

(b) CALVEG 

Elevation Stratification Slope Stratification Aspect Stratification 

Kappa value 0.61 0.64 0.65 

Overall accuracies 0.80 0.82 0.82 

Users’ accuracies 

Barren land 0.64 0.76 0.72 

High density 0.96 0.88 0.92 

Producers’ accuracies 

Blue-oak and grey pine 0.94 0.86 0.9 

Black oak and ponderosa pine 0.74 0.79 0.77 

Figure 8. Results of the random walker algorithm for subimages of two tree densities: Pink 

regions represented segmentations of barren lands or individual tree stands, and green 

regions represented segmentation of lower tree density stands. Other segmentations 

without colors showed higher tree density stands (appearing dark green as dense tree 

canopy appears in RGB imagery). (a) lower tree density area (b) higher tree density area.  

(a) (b) 
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3.3. Species Segmentation 

The evaluation of scale parameters suggested that multiresolution segmentation may not delineate 

appropriate detailed vegetation segmentation based on this imagery. Neither lower tree density stands 

nor higher tree density stands had an optimal scale parameter. The optimal scale parameter indicated 

that certain scale parameter would reach a minimum spatial autocorrelation, compared to its larger and 

smaller scale parameters. The Z values of Moran’s I continuously declined as the scale parameters 

increase, showing no local minimum (Figure 9). The difference between results for sparse tree density 

stands and dense tree density stands was the magnitude of Z values of Moran’s I in most attribute 

combinations. The sparse tree density stands had higher values, while the dense tree density stands had 

lower values (Figure 9). High variances of sparse tree stands, especially in large areas of barren lands, 

dominated the patterns of segmentations, while mixed species and overlapping tree crowns in dense 

tree stands resulted in similarity among segmentations. However, several segmentations, which were 

based on single second-order texture, especially homogeneity, dissimilarity and entropy, in both sparse 

tree density stands and dense tree density stands did not perform well (Figure 9).  

Visually, similar neighbor segmentation was the main problem in either denser tree density stands 

or sparse tree density stands, regardless of scale parameters. In the sparse tree density stands, although 

the main tree crowns could be identified, the boundaries of tree crowns were not precise. Concretely, 

near segmentations of barren lands confused with parts of tree crowns using smaller scale parameter 

(over segmentation), while tree species segmentations included parts of barren lands using larger scale 

parameter (under segmentation). Under the tested scale parameters, there was no optimal points to 

balance the over segmentation and under segmentation. In the dense tree stands, the similarity among 

segmentation was still high. Segmentations using smaller scale parameters resulted in very small, 

complex segmentation. Through spectral difference segmentation, original segmentations with larger 

scale parameters merged into very large segmentations (Figure 10). 

Figure 9. Unsupervised evaluation of object-based segmentations from multiresolution 

segmentation using the Z values of Moran’s I for each of attribute combinations, 17 features, 

RGB, second-order texture: mean, variance, homogeneity, contrast, dissimilar, entropy, 

second moment and correlation: (a) average Z values of Moran’s I for segmentation by 

different attribute combinations in sparse tree density stands (b) average Z values of 

Moran’s I for segmentation by different attribute combinations in dense tree density stands. 

(a) (b) 
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Figure 10. Segmentation examples using multiresolution segmentation, based on 17 feature 

combination: segmentations with smaller scale parameters were nested or overlapped under 

segmentations with larger scale parameters To visualize clearly, spectral difference 

segmentation also involved to merge the near similar segmentations. The parameter 

settings (maximum spectral differences) are 0.1 and 0.5 separately for dense tree stands 

and sparse tree stands. (a) larger scale parameters in dense tree stands (b) smaller scale 

parameter in dense tree stands (c) larger scale parameters in sparse tree stands (d) smaller 

scale parameter in sparse tree stands.  

(a) (b) 

(c) (d) 

4. Discussion 

4.1. Implications of Image Segmentation Optimized for Delineation of Tree Density 

Under the limitations of long-term available data and computation abilities of personal computers, 

image segmentation optimized for delineation of tree density demonstrated in this study provided an 

alternative framework for vegetation mapping, instead of data intensive analyses. The approach 

involved both the global Otsu’s method and the random walker algorithm using terrain variables and  

1 m very high resolution imagery with only three bands as limited inputs. Those procedures can be 

carried out in Window 7 64-bit operating system using Intel(R) Core(TM) i7-2860QM CPU with  

12 GB memory. The concrete goals were to add environmental variables, which were correlated with 

tree covers, and reduce variances within environmental strata and image segmentations. Specifically, 
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those segmentation results reflected the applications of ecological understandings, instead of intensive 

data requirements and repetitive tests on segmentation and labeling. For one thing, water availability, 

which west-side slopes, confronting the ocean, had more precipitations than east-side slopes, might be 

the reason for the best performances of the aspect stratification, although no high-density climate 

stations or climate mapping at high spatial resolution can be used to validate. For another thing, 

because species associations are correlated with forest density in the study area, image segmentation 

optimized for delineation of tree density could be labeled by specific species associations, even though 

the third-step procedure of detailed species segmentations did not work well at identifying individual 

species segmentation, due to coarse spatial resolutions and less attributes.  

In this study area, although four target species are shade-intolerant, they do not all occur in  

early-successional or low density stands as expected for shade-intolerant species, because of their 

varying shade tolerance at different ages (i.e., California black oak) and the human management 

history (i.e., ponderosa pine). Ponderosa pines occur in dense tree stands as do California black oaks, 

while blue oaks and grey pines occur in sparse tree stands. The agreements between image 

segmentation optimized for delineation of tree density and species association reached about 80% 

(overall accuracy). Further testing of alternative species labeling strategies in different ecosystems is 

needed for general applications.  

Indices summarizing the confusion matrix were used to examine hypothesis 2, species association 

labeling. However, those common indices, especially the kappa value, have confronted harsh 

challenges in recent decades. The main criticism was that the kappa value was constructed by 

comparisons between the reference map and classification map, but the two maps may not be 

meaningfully comparable. Overall, the kappa value requires that both maps followed some 

assumptions, such as fitting normality and not being affected by other covariates, so adjustments on 

each map were the key, such as the weighted kappa coefficient [91]. In remote sensing cases, the 

kappa value was only a summary statistics through randomness sampling as a baseline, not a 

meaningful index to indicate quantity disagreement and location disagreement [92]. This study applied 

the kappa values and the overall accuracy as indices, because the stratified random approach using 

environmental variables, instead of wholly random sampling was effective to emphasize species 

locations (e.g., [93]), and tree density focused on whether species association labels were in specific 

image segmentation optimized for delineation of tree density, rather than improving detailed land use 

mapping or species mapping. Thus, simple indices were adequate for comparing the effects of 

environmental stratifications and assessing the correctness of species association locations.  

4.2. Implications of Species Segmentation 

The implications of species segmentation were to test the applications of the vegetation hierarchical 

framework, and whether the results related to specific guidelines of algorithm or parameter selections. 

The results employed an unsupervised evaluation (the Z values of Moran’s I under 999 permutations to 

evaluate whether the attributes of segmentations (average within segmentation) were significantly 

different from the neighbor segmentation. Although all showing decreases of the Z values of Moran’s I 

with increases of the scale parameters using different attribute combinations for segmentation  

(Figure 9), and image objects in two test areas both violated the object assumption with equal internal 



Remote Sens. 2014, 6 7293 

 

 

variances [20], the two tree density patterns did have fairly different reactions in most of attribute 

combinations on defining detailed species objects.  

The unsuccessful segmentation at the third level resulted from two aspects in object definitions. In 

dense tree density stands, individual tree crowns could not be delineated, since the 1 m spatial 

resolution imagery was still too coarse. The spatial resolution is larger than the tree crowns. The result 

was similar to the outcomes of Woodcock and Strahler [10], where the coarse spatial resolutions did 

not have an optimal peak to reflect tree crown sizes (30 m imagery presented an asymptote, which 

local variances decreased as spatial resolutions increased, while 0.75 m imagery showed a local peak). 

The Z values of Moran’s I also showed an asymptote, which the Z values of Moran’s I decreased as 

scale parameters increased. In addition, homogeneity throughout the whole image resulted in very 

complex segmentations, especially using smaller scale parameters. As a result, adding higher spatial  

resolution image data or ancillary data, especially for oak woodlands, which often have lower 

classification accuracies (e.g., [56]), and using larger scale parameters for homogeneous areas may be 

a better alternative.  

In the sparse tree density stands, the segmentations using multiresolution segmentation also could 

not derive correct tree crown objects, although individual tree crowns were clearly separated visually. 

The reason came from not enough information to delineate tree crown objects from the neighbor 

segmentation. Even if involving multiple texture features, segmentations were still limited to 

characterizing individual tree crowns. The segmentation may improve performances by implementing 

other segmentation algorithms, such as the watershed algorithm, as the example in Baatz et al., [22] or 

the valley-following algorithms and adding attributes, which can reflect vegetation characteristics  

(e.g., near-infrared band).  

Although the results showed that multiresolution segmentation cannot deal with detailed species 

segmentations based on the DOQ imagery, the third evaluation still provided guidelines. As Fu and  

Mui [32] pointed out, region-based algorithms may differ in segmentation results, according to the 

order of region-merging, even if region-based algorithms were widely used and had higher classification 

accuracies than pixel-based imagery classifications. As a result, applying global information as nested 

models within certain classes is necessary. In other words, a single algorithm may not apply to whole 

hierarchical frameworks, even with the multi-scale concept.  

4.3. Applications of Hierarchical Vegetation Framework 

The hierarchical vegetation framework, developed in this study, is more time- and cost-saving for 

species association labeling. For one thing, data can be collected and automatically processed at lower 

costs. Very high resolution imagery in the form of digital photography is widely available, and 

environmental variables help to improve imagery processing for broad-area investigations. For another 

thing, the approach can incorporate current imagery processing methods, and does not require 

repetitive testing, like procedures in eCognition, and was effective to reduce time on using eCognition.  

Concretely, aerial photos with single imagery DN are more available data sources for vegetation 

mapping, and sometimes, aerial photos with very high spatial resolution are in archives, either 

national-level imagery datasets (e.g., USDA: Natural Resources Conservation Service Geospatial Data 

Gateway or ASO Taiwan Image supplier and services System) or international-level imagery datasets 
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(e.g., EarthExplorer). For example, Corona Lanyard (1963) and Corona KH-4B (from 1967 to 1972) 

both provided 1.8 m imagery worldwide, and Corona imagery can be bought through EarthExplorer 

website (http://earthexplorer.usgs.gov/) with very small costs. Meanwhile, SRTM, a digital terrain 

dataset has worldwide coverage in 90 m spatial resolution, and can be used to assist image processing.  

In contrast, Landsat imagery with coarser spatial resolutions has been widely used in long-term land 

use/land cover mapping and monitoring [94], because of its long-term consistent platforms, since 1972 

and multiple bands, which reflect vegetation distributions (near-infrared) and temperature  

(thermal-infrared). Nevertheless, except in the United States, Landsat satellites may not offer enough 

imagery with continuous or regular time intervals and good imagery qualities, such as low cloud 

covers in wetter tropical areas. Furthermore, other detailed ancillary data, which were helpful to assist 

imagery interpretations, may be available at national-level datasets, such as U.S. National Elevation 

Dataset 10 Meter (http://datagateway.nrcs.usda.gov/GDGOrder.aspx), U.S. General Soil Map 

(STATSGO) (http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx), or LiDAR Topography 

Data (http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=datasets). However, those datasets cannot 

reflect temporal changes of species distributions and are limited in survey areas.  

This research provided a robust way for time-series image processing. The approach can be 

achieved by a single-band, very high resolution image at lower time, labor and facility costs. However, 

this approach still suffers several limitations. First, the global Otsu’s method applying to the aspect 

factor did not consider areas where the terrains mostly face north, since the situation (when  

360 deg. = 0 deg) was not included. As the aspect factor performed the best as the first step to reduce 

variances with ecological meaning (tree covers), the global Otsu's method is also the best way of fast 

computation. Second, species association labeling may only be effective in certain areas, as the kappa 

values only reached 0.6. Both disturbance frequencies and intensities may violate the second 

hypothesis. Especially, the approach cannot apply to areas suffering large, infrequent disturbances, 

which may result in more heterogeneous species distributions [95]. The goal of this study was not to 

provide an ultimate solution for general ecosystem labeling, but to propose an examined framework for 

an efficient approach on time-series images. Third, compared to commercial software, open-source 

solution cannot always provide equal functions, regardless of personal expertise. As open-source tools 

may be developed for usage in other fields (e.g. medical image processing, instead of vegetation 

mapping), and code quality is not certain among different libraries, it takes much time and effort for 

researchers to write their own codes or test the workable functions for research questions. For these 

limitations, there are several reasons to use the open-source tools as the solution. For one thing, this 

research selected a peer-reviewed image processing library, scikit-image, which reduced code 

uncertainty. For another thing, this research was not trying to fill the gap between commercial software 

and open-source tool, but provided the best way of using current available data and tools, especially 

for long-term image processing. To be brief, regardless of limited image information, this research 

intended to offer a starting point of using open-source solutions on time-series image processing. 

Future studies should focus on two aspects. One is finding a new method for species association 

labeling in different ecosystems. Ecological understanding and local knowledge should be applied to 

vegetation mapping. The other focus of future research should be the techniques themselves. 

Algorithms of tree crown delineations can be tested at sparse tree density stands and appropriate object 

definitions should be established for dense tree density stands. In particular, individual tree density 
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patterns reflect different biological interactions over times. For example, at the species spreading front, 

reduced intra-specific competition in dense populations may increase population growth rates and 

migrations, but sparse populations may suffer decreased migrations [96]. However, highly overlapping 

tree crowns make it difficult to detect changes in density of individual species (e.g., [97]), and tree 

crowns in sparse tree stands cannot be identified using multiresolution segmentation. Therefore, based 

on the hierarchical framework, two separate algorithms with more precise object definition are required. 

5. Conclusions  

Object-based analysis with a multiple scale framework is one of solutions toward time-series image 

processing. However, the data-based orientation approach required more data sources and the 

vegetation-type orientation approach was limited to improve classification accuracies of specific 

species types for ecological modeling. In particular, long-term image sources, which have less image 

information and are lacking in detailed validation data are still challenging to deal with. Also, large 

amounts of tests on labeling procedures and obtaining the best multiresolution framework are still 

required. As a result, a robust segmentation approach mainly using open-source tools with less data 

requirements (i.e., SRTM, digital orthophoto quadrangles with 1 m spatial resolution and existing 

vegetation maps as validation data) was proposed.  

The author applied a three-step procedure for the above issues. At the first level-segmentation, the 

global Otsu’s method was applied to characterize vegetation traits and reduce computation loads by 

gathering similar components together into strata on three environmental variables (i.e., slope, aspect 

and elevation). With the evaluation by the Kruskal-Wallis test, this step, especially the aspect factor 

was proved effective to reduce image variances in local DN and texture and more importantly, 

characterize similar components of tree covers within strata. At the second step, image segmentation 

optimized for delineation of tree density was used with the least computation requirements. Species 

association labeling for four target species, which were grouped into two species associations was 

tested for effectiveness, and indicated about 80% in overall accuracy and 0.6 in kappa values between 

image segmentation optimized for delineation of tree density and species associations, which were 

derived from two existing vegetation maps. In the third step, the image segmentation, optimized for 

delineation of tree density, was further tested for its applications on partitioning species segmentation 

using the Z values of Moran’s I. However, this step using multi-resolution segmentation did not bring 

an optimal scale parameter, due to limited information on a single-band imagery. More importantly, 

the results, which showed two reflections on the Z values of Moran’s I, indicated the suggestions for 

segmentation algorithm selections and developments.  

Although the image information is limited to identifying individual species, and the species 

association labeling for the evaluation of image segmentation optimized for delineation of tree density 

is area-based, the study still provides the following contributions to vegetation mapping. First, the 

hierarchical vegetation framework for image segmentation provided the possibility of long-term 

change detections, at least to compare certain ecological indices over time. For example, worldview-3 

or Geo-eye provide more opportunities to delineate species segmentation, while Landsat MSS, TM, 

ETM+ or Corona are unable to segment species, as compared to recent imagery. As more and more 

spatial-temporal modeling approaches are developed, long-term imagery change detections in object 
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(entity) forms provide the potentials to extend current models to the recent past (over 70 years)[98]. 

Second, the hierarchical vegetation framework with ecological meanings is effective to reduce 

computation loads and indicate the processing procedures. In the former two steps, the whole image 

dataset (22393 × 19458) was processed, while the third step was limited by the commercial software, 

which required extra facility, such as the eCognition server (http://www.ecognition.com/ 

products/ecognition-server) for big data processing. As more historical images are available on the 

Internet, this approach can provide solutions to process large amounts of image sources with diverse 

quality. Third, based on the current object definition, the limited image information was proven unable 

to produce detailed, reasonable image segmentation with an optimal scale parameter. As the Z values 

of Moran’s I are more proper to be used as the evaluation index for appropriate segmentations, the 

index was also used to evaluate the optimal segmentation level. In this study, the second level 

segmentation is optimal, since the near segmentations at the third level are similar. Although 

multiresolution segmentation can produce segmentations, those segmentations may not be meaningful, 

as spectral difference segmentation further aggregated all segmentations together. At this point, the 

open-source solution using threshold-based segmentation is helpful to deal with those kinds of images. 
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