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Abstract: Phenology response to climatic variables is a vital indicator for understanding 

changes in biosphere processes as related to possible climate change. We investigated 

global phenology relationships to precipitation and land surface temperature (LST) at high 

spatial and temporal resolution for calendar years 2008–2011. We used cross-correlation 

between MODIS Enhanced Vegetation Index (EVI), MODIS LST and Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN) gridded rainfall to map phenology relationships at 1-km spatial resolution 

and weekly temporal resolution. We show these data to be rich in spatiotemporal 

information, illustrating distinct phenology patterns as a result of complex overlapping 

gradients of climate, ecosystem and land use/land cover. The data are consistent with 

broad-scale, coarse-resolution modeled ecosystem limitations to moisture, temperature and 

irradiance. We suggest that high-resolution phenology data are useful as both an input and 

complement to land use/land cover classifiers and for understanding climate change 

vulnerability in natural and anthropogenic landscapes. 
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1. Introduction 

Understanding the interconnection of biological and climatic processes is essential for predicting the 

effects of climate change on the biosphere. Vegetation phenology is a key indicator of climate-biosphere 

interactions. While it is feasible to model the interactions, models offer discrepant predictions  

of vegetation response to climate [1]. This indicates the need for better understanding of coupled 

vegetation-climate processes at a global scale. Although coarse-scale modeling may provide a synoptic 

picture of global phenology controls [1–3], observational data at high spatial and temporal resolution 

illustrate substantial local variations. Timings of phenology events have been associated with 

temperature [4,5] and precipitation [6] at continental aggregation scales to implicate climate trends in 

phenology shifts. However, the practice of associating shifts in arbitrarily defined events with climate 

indices can obfuscate complex interactions taking place over the entire growing season [7]. 

Plant growth has a strong, positive, though community-specific, correlation to precipitation events  

in arid regions [8,9], temperate regions [10–12] and water-limited ecosystems of Africa [13,14] and 

Australia [15]. In tropical ecosystems, some studies have shown low or negative correlation to 

precipitation [16,17], possibly as a result of light limitation, though other studies have questioned this 

supposition [18], and recent drought conditions in the Amazon have been associated with decreased 

greenness [19]. In contrast, temperature has a positive, strong association with vegetation in Northern, 

mid- to high latitudes [20–23]. In temperate grasslands that are not water limited, long-term vegetation 

production was linked to average growing season temperature [10]. Vegetation is also associated with 

air temperature at short time lags within the growing season [11,12]. This association is strong at the 

onset of the growth season, resulting in a correlation “wave” that moves north with time [22]. 

Previous studies have examined long-term relationships and anomalies between vegetation indices (VIs) 

and climate at a global scale [22], though with temporal (monthly) and spatial (one degree) aggregation 

that does not capture the local-scale diversity of phenological processes. These large spatio-temporal 

aggregations may not adequately or even correctly represent localized atmosphere-biosphere  

interactions [24]. The response to both temperature and precipitation varies spatio-temporally, 

according to the unique mixture of climatic and ecological processes operating at multiple  

scales [3,24,25]. The degree of spatial variability of the temporal response is not known. In areas of 

high biodiversity, such as the tropics, there may be substantial local variability due to changes in species 

composition [26]. Previous studies have not computed phenology response with sufficient spatio-temporal 

resolution to determine the usefulness of temporal information for global-scale mapping efforts. 

The purpose of this study was a global characterization of observed (rather than modeled) vegetation 

response to observed climatic factors at fine temporal and spatial resolution. To achieve this, we 

avoided the use of thresholds on vegetation index, climatic factors or time and avoided the construction 

of timing events in the time series, which may or may not correspond well to phenological events on 

the ground [27,28]. We used lagged correlation (or cross-correlation) as a simple indicator of dominant 

land surface interactions with local climate [29,30]. We computed the lagged correlation of the 

Enhanced Vegetation Index (EVI) to cumulative Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN) gridded rainfall [31] and land surface 

temperature (LST), between −60 to 60 degrees latitude at ~4.4-kilometer and 1-kilometer resolution, 

respectively. We used only one threshold, EVI > 0, in the computation of correlations. The idea was to 
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treat the data as a series, with the strength of relationship determined by both the magnitude and 

duration of temporally-matched events. 

The maximum correlation, lag time to maximum and summation period for the maximum illustrate 

fine-grained evidence of ecosystem function. While much research has focused on land structure, in 

terms of land cover, biomass, etc., very little has focused on mapping land function. This project aims 

to partially fill that research gap. 

2. Methods and Data 

We used all available high quality data in calendar years 2008 to 2011 for the following data 

products. For EVI data, we used the Moderate Resolution Imaging Spectroradiometer (MODIS, on the 

Terra satellite) vegetation index product, MOD13A2 [32]. These data are 1-km spatial resolution in 

16-day composites (https://lpdaac.usgs.gov/products/modis_products_table/mod13a2). For every land 

pixel, we performed a quality control as described by [33], discarding pixels flagged as having low 

quality, shadows, clouds, adjacent clouds or high aerosols. For LST data, we used the MODIS (on the 

Aqua satellite) MYD11A2 thermal product. The LST data are 1-km spatial resolution in 8-day 

composites (https://lpdaac.usgs.gov/products/modis_products_table/myd11a2). We used all pixels with 

an error <1 K according to the QA data, discarding pixels with larger uncertainty. For precipitation data, 

we used PERSIANN-Cloud Classification System (CCS) [31] daily rainfall, gridded at 0.04-degree 

(~4.4 km at the Equator) resolution. PERSIANN no-data was indicated by a fill value. The extent of 

the PERSIANN data is nominally −60 to 60 degrees latitude, though we found a reduction in data 

density at high latitudes. 

For each 1-kilometer EVI pixel, we extracted the covariate from under its centroid and computed 

cross correlation according to Equation (1): 
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In Equation (1), cov is the covariance function, computed according to methods described in [34],  

SD is the standard deviation, C is the covariate (either PERSIANN precipitation or MODIS LST), l is 

lag in days, t is the time in days (relative to 1 January 2008) of each EVI data point in a pixel, S is the 

summation period, s is a daily time step and ρl,S is the correlation between the EVI and the covariate  

at lag l, summed over S. The SD and covariance were evaluated over the set of all t for which data at 

both EVIt and ƩCt-l-s existed. We computed the l and S at which the highest correlation occurs, where  

l was tested in weekly steps up to 168 days, for a maximum lag of 24 weeks, or 6 months, and S was 

tested in weekly time steps up to 84 days, for a maximum summation period of 12 weeks, or 3 months. 

Thus, correlations were evaluated between EVI and temperature or rainfall conditions as much as  

168 + 84 days, or 9 months, prior to the observed EVI value. If the highest correlation was positive,  

it was returned along with the l and S at which the maximum occurred. If the highest correlation was 

negative, the lowest (most negative) correlation was returned along with l and S. We created maps of 

the correlation, l and S at which the maximum (or minimum) correlation occurred, as shown below. 
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We estimated the uncertainty of the correlation using the p-value of the correlation coefficient. 

Assuming that EVI and C are distributed according to a bivariate normal distribution and uncorrelated 

(true ρl,S = 0), 
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has the t-distribution with n − 1 degrees of freedom [35]. In Equation (2), n is the number of data 

points t at which both EVIt and ƩCt-l-s existed. We computed the p-value using a one-tailed test of this 

hypothesis in every pixel and mapped the p-values, as shown below. 

The code to implement this procedure in parallel is open source and available at [36]. 

We summarized correlation and lag globally by eco-region and biome according to the World 

Wildlife Fund (WWF) bioregional vector data [37] and the percentage of irrigated area [38]. The 

percentage of irrigated area is a global dataset representing the percent of area in 5 arc-minute pixels 

equipped for irrigation (http://www.fao.org/nr/water/aquastat/irrigationmap/index10.stm). All available 

pixel data were used in these summaries, regardless of the p-value. 

3. Results 

The association of EVI and PERSIANN precipitation is displayed in Figure 1. In Figure 1, ρl,S, l and 

S are displayed as an RGB composite, where green is set to correlation, blue is set to lag and red is set 

to summation period. As indicated in the legend, green areas indicate high correlation with a short lag  

and summation period; cyan areas indicate high correlation with a long lag; and yellow areas indicate 

high correlation and a long summation period and magenta or black areas indicating low to no 

correlation. This combination of temporal signals indicates herbaceous dominated ecosystems  

(the east-west band across sub-Saharan Africa and Eastern Brazil), water limited systems (Mexico) or 

rain-fed agriculture (India). Extreme northern and southern, as well as equatorial rainforest ecosystems 

have low correlation to precipitation at any lag or summation period. Negative correlations are 

extremely rare, though they are apparent in scattered maritime pixels on the west coast of South 

America and the Eastern Canadian Arctic. The p-values associated with the correlations are shown in 

Figure 2. Clearly, the majority of correlations are significant, though patches of low correlations may 

in fact be zero, as indicated by relatively high p-values. These patches are particularly evident in the 

Amazon, rain forest and boreal forest regions. 

The association of EVI and MODIS LST is shown in Figure 3 (the same legend and color scheme as 

Figure 1). It is apparent from comparing Figures 1 and 3 that ecosystem association with temperature is 

much more predominant than precipitation, though interactions between climatic gradients and ecosystem 

type at the bioregional level result in a complex mosaic of phenological response to precipitation and 

temperature. In general, high latitude areas are highly correlated with temperature, while temperate and 

subtropical areas are more correlated with precipitation. However, extensive areas show a strong 

association to both temperature and rainfall, though at differing lags and summation periods. For 

example, Western Mexico is shown to have a rapid, strong response to precipitation, though also a 

strong response to temperature at a longer lag. The Southern USA is shown to have a strong 

association with temperature at a relatively short lag, though also a strong association to rainfall over a 
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longer summation period. Unlike precipitation, extensive areas show a negative association to 

temperature (black in Figure 2), predominantly distributed in the tropics and Mediterranean climates. 

The p-values associated with the temperature correlations are shown in Figure 4. Due to the lower 

density of the data compared to the daily PERSIANN precipitation (reducing n in Equation (2)), there 

is a larger distribution of higher p-values (red), indicating possible zero correlation. Correlations close to 

zero also result in a high p-value. We found relatively high correlations in desert areas (e.g., North Africa 

and the Arabian Peninsula) derived from low variance, congruent seasonality in high LST and low EVI. 

Figure 1. Relationships between EVI and PERSIANN precipitation (1-km resolution, 

between approximately −50 and 60 latitude, based on data availability). The data are 

displayed as an RGB composite, where green (0000FF) is linearly scaled to correlation in 

[0, 1.0], blue (00FF00) is scaled to the lag in [0, 168] and red (FF0000) is scaled to the 

summation period in [0, 84]. No-data pixels are white. 

 

Figure 2. p-values associated with the precipitation correlations shown in Figure 1.  

1-km resolution. 
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Figure 3. Relationships between EVI and MODIS LST (1-km resolution, between −60 and 

60 latitude). The data are displayed as an RGB composite, where green (0000FF) is 

linearly scaled to correlation in [0, 1.0], blue (00FF00) is scaled to the lag in [0, 168] and 

red (FF0000) is scaled to the summation period in [0, 84]. Negative correlations are black, 

and no-data pixels are white. 

 

Figure 4. p-values associated with the temperature correlations shown in Figure 2.  

1-km resolution. 

 

The balance between precipitation and temperature correlation is illustrated in Figure 5, where  

green areas indicate high correlation to precipitation, red areas indicate high positive correlation to 

temperature, blue areas indicate high negative correlation to temperature, yellow areas indicate high 

correlation to both rainfall and temperature and cyan areas indicate high correlation to rainfall and 

negative correlation to temperature. High correlations to precipitation are seen to dominate in 

southwest North America, the Mediterranean and portions of Australia. Large areas have a strong 

positive association with both temperature and precipitation (yellow), though the temporal timing of 
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the correlations may differ. For example, Sub-Saharan Africa shows high correlation to precipitation at 

a short lag and summation period and also a high correlation to temperature at a long lag. 

Figure 5. Correlation of EVI and precipitation (green), EVI and temperature (positive 

correlation in red and negative correlation in blue). 1-km resolution. 

 

Table 1. Summary of precipitation and temperature mean correlation (Corr.) to EVI, 

lag (days) and summation period (days) by the World Wildlife Fund (WWF) biomes. 

 
Precipitation Temperature 

Corr. Lag Sum Corr. Lag Sum 

Tropical and Subtropical Moist Broadleaf Forests 0.59 51 35 0.24 56 9 
Tropical and Subtropical Dry Broadleaf Forests 0.76 21 49 0.22 78 11 
Tropical and Subtropical Coniferous Forests 0.73 15 50 0.69 88 13 
Temperate Broadleaf and Mixed Forests 0.56 90 60 0.58 35 8 
Temperate Conifer Forests 0.56 98 56 0.62 30 10 
Boreal Forests/Taiga 0.51 112 52 0.63 39 2 
Tropical and Subtropical Grasslands, Savannas and Shrublands 0.75 15 45 0.48 93 10 
Temperate Grasslands, Savannas and Shrublands 0.57 81 55 0.50 48 6 
Flooded Grasslands and Savannas 0.62 47 48 0.51 70 10 
Montane Grasslands and Shrublands 0.68 71 57 0.61 60 9 
Tundra 0.61 123 52 0.59 38 2 
Mediterranean Forests, Woodlands and Scrub 0.54 64 54 0.26 90 10 
Deserts and Xeric Shrublands 0.59 60 56 0.44 64 11 
Mangroves 0.61 57 33 0.01 54 10 

Summarizing the results by biome elucidates the influence of climatic zones. Mean values by biome 

are shown in Table 1 and SDs are shown in Table 2. Specifically, the highest correlations to precipitation 

(and shortest lags and summation periods) occur in tropical and subtropical biomes. This suggests  

that tropical biomes are affected by precipitation occurring approximately two months prior to the 

vegetation response, with the summation accounting for about six weeks and a lag of about two weeks. 
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The lowest correlations to precipitation occur in boreal ecosystems, such as tundra and boreal forest. 

While these correlations are still relatively high (>0.5), the lags are very long (~3 months) with long 

summation periods (~50 days), indicating that antecedent moisture conditions may play a larger role 

than current season precipitation. By contrast, high latitude biomes have relatively high correlation to 

temperature, short lags (~1 month) and very short summation periods of only a few days (“Tundra” 

and “Boreal Forests/Taiga” in Table 1). While the high latitude biomes have the shortest summation 

periods, other coniferous (both tropical and temperate) biomes also have high correlation to temperature 

and relatively short summation periods. The Mediterranean biome showed relatively low correlation to 

both precipitation and temperature. Table 2 shows some biomes to have a greater spread of phenology 

associations to temperature and precipitation. Specifically, tropical biomes show a relatively low SD 

for the precipitation correlation, while boreal biomes show a low SD for the temperature correlation. 

Table 2. Summary of the precipitation and temperature SD of correlation (Corr.) to EVI, 

lag (days) and summation period (days) in WWF biomes. 

 
Precipitation Temperature 

Corr. Lag Sum Corr. Lag Sum 

Tropical and Subtropical Moist Broadleaf Forests 0.19 57 31 0.60 47 20 
Tropical and Subtropical Dry Broadleaf Forests 0.15 35 25 0.69 51 22 
Tropical and Subtropical Coniferous Forests 0.15 24 25 0.37 43 25 
Temperate Broadleaf and Mixed Forests 0.14 55 27 0.41 41 22 
Temperate Conifer Forests 0.16 57 29 0.37 36 23 
Boreal Forests/Taiga 0.17 55 31 0.40 44 12 
Tropical and Subtropical Grasslands, Savannas and Shrublands 0.14 27 24 0.49 48 22 
Temperate Grasslands, Savannas and Shrublands 0.16 56 29 0.43 43 19 
Flooded Grasslands and Savannas 0.19 55 29 0.47 49 23 
Montane Grasslands and Shrublands 0.18 55 28 0.38 47 22 
Tundra 0.18 41 29 0.47 50 11 
Mediterranean Forests, Woodlands and Scrub 0.16 55 31 0.53 61 23 
Deserts and Xeric Shrublands 0.18 51 30 0.42 53 25 
Mangroves 0.18 52 31 0.58 49 21 

While biome level averages indicate a synoptic phenology at the global scale, the spatial patterns of 

correlation, lag and summation period at landscape scales indicate substantial local variability. These 

spatial patterns derive entirely from temporal information, suggesting that the remote sensing process 

can inform the prediction and understanding of ecosystem structure. For example, Figures 6–8 show the 

association with precipitation and LST, respectively, for the Mediterranean climate of the State of 

California, USA. The ecosystem function along an orographic gradient is distinct, as illustrated by the 

numbered locations. Specifically, at Location 1, irrigated agriculture in the central valley of California 

results in low correlation to precipitation and relatively high correlation to LST as cropping cycles 

correspond to the warm, dry season. Location 2, however, consists of primarily exotic annual grassland, 

characterized by rapid germination and growth in response to winter precipitation. As a result, high 

correlation to rainfall (with a short lag) and relatively low correlation to temperature with a long lag 

are observed. Location 3 consists of savanna and shrubland in the foothills of the Sierra Nevada 

Mountains, with intermediate correlation to precipitation, relatively long lags and summation periods 
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and negative correlations to temperature in Sclerophyllous chaparral. At Location 4, the relatively 

high elevation mixed conifer forest experiences more abundant precipitation, thus a low correlation to 

rainfall and a high correlation to temperature. As this example illustrates, combinations of correlation and 

lag to precipitation and temperature are indicative of ecosystem form and function. While 

combinations of phenology response to precipitation and temperature coincide with land cover classes, 

transitions are far less abrupt, illustrating not only within-category variance of broad land cover types, 

but also ecotones that are difficult to represent though limited land cover categories. 

Figure 6. Precipitation correlation, lag and summation period illustrating land cover and 

ecosystem types in the State of California, USA. 1-km resolution. 

 

Figures 9–11 illustrate phenology differences in relation to precipitation and temperature in the 

Ganges River Delta area of Bangladesh. While the California example illustrates the correspondence 

of phenology response to land cover, Figures 9–11 illustrate substantially different phenology 

responses to climate variables within a category of land cover. At Location 1, a relatively high 

correlation to rainfall with a short lag and low or negative correlation to temperature indicates the 

cultivation of the transplanted Aman rice variety [39]. In contrast, Location 2 is characterized by low 

correlation to rainfall and high correlation to temperature, indicating cultivation of the transplanted 

Aus rice variety [39]. Location 3 experiences a high correlation to rainfall, though over an extended 

summation period, and a relatively high correlation to temperature, as well, indicating irrigated Rabi 

(hot, dry season) cropping. Location 4 is characterized by low correlation to rainfall and low to 

negative correlation to precipitation, indicating inundation and the susceptibility of crops to  
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flooding [39]. While the MODIS land cover classifies the vast majority of this area as “cropland”, with 

no distinction, the results show substantial variation in vegetation phenology. This indicates that  

high-resolution phenology data may be useful for distinguishing irrigation intensity, crop type or 

agricultural rotations. It also suggests that ecosystem process information is supplementary to 

ecosystem structural information. In other words, land cover classification is an incomplete 

characterization of the surface, in that it omits temporal dynamics. 

Figure 7. Temperature correlation, lag and summation period illustrating land cover and 

ecosystem types in the State of California, USA. 1-km resolution. 

 

The relationship of precipitation and temperature correlations to area equipped for irrigation 

globally is shown in Figure 12. Not surprisingly, correlation to rainfall generally decreases with increasing 

access to irrigation infrastructure, as a result of uncoupling from local hydrologic conditions, though 

the highest percentages show an increase in correlation. This may be due to spatial autocorrelation: 

nearby irrigation infrastructure is replenished by rainfall or through the cultivation of water-intensive 

crops in highly irrigated areas, crops for which available water is partially supplied by irrigation, but 

augmented by precipitation. Correlation to temperature is seen to increase with area equipped for 

irrigation, suggesting that irrigated crops are more limited by temperature than by moisture availability. 
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Figure 8. Combined correlations for precipitation (positive) and temperature (positive  

and negative) illustrating land cover and ecosystem types in the State of California State, 

USA. 1-km resolution. 

 

Figure 9. Precipitation correlation, lag and summation period illustrating different cropping 

systems in the Ganges River Delta, Bangladesh. 1-km resolution. 
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Figure 10. Temperature correlation, lag and summation period illustrating different cropping 

systems in the Ganges River Delta, Bangladesh. 1-km resolution. 

 

Figure 11. Combined correlations for precipitation (positive) and temperature (positive 

and negative) illustrating different cropping systems in the Ganges River Delta, 

Bangladesh. 1-km resolution. 
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Figure 12. Relationship of temperature and precipitation correlation to percent area equipped 

for irrigation in five-arc minute pixels globally. 

 

4. Discussion 

At macro-scale, our results are consistent with previous studies of global linkages between VIs and 

climatic factors [20,22]. Specifically, our results show that temperature is more influential at high 

latitudes [20] and that precipitation is limiting over broad regions of steppe, desert and 

grassland [10,12,21]. The correlation method is closely related to the Yearly Land Cover Dynamics 

(YLCD) method of [23] and shows similar results. However, the correlation method incorporates 

temporal information (lag and summation) and precipitation information not available from YLCD. 

Compared to process model estimated climatic controls on vegetation growth [1–3], it is apparent that 

the lagged association between observed vegetation and climate is roughly equivalent to model 

predicted limiting factors at broad spatial scales. However, our results represent observable evidence of 

global-scale ecosystem response to climate at a fine scale, as opposed to the output of models based on 

assumed processes. 

Controlled experiments have shown a significant response of VIs to both precipitation and 

temperature in Mediterranean shrublands [40]. Despite the fact that correlation does not indicate 

causality, the results clearly indicate ecosystems in which rainfall triggers a relatively rapid growth 

response (high correlation, short lag, short summation period), for example in Western USA ecosystems 

infested by invasive annual grasses [29]. The combination of correlation, lag and summation period 

also correctly identifies ecosystems, such as temperate conifer forests (which we found to have the 

shortest mean lag and a relatively short, ~1 week, summation period) previously shown to have a rapid 

response to surface temperature conditions [41]. Biomes such as Mediterranean ecosystems were less 

obviously characterized. 

The fine spatial resolution results illustrate substantial local variation, both temporally and spatially. 

Previously, spatial aggregation at 0.5 degrees or larger scales [24,30], temporal aggregation at monthly [30] 
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or seasonal [20] intervals or both spatial and temporal aggregation [42,43] have constrained phenology 

for informing land cover classifications or revealing local phenology variation. Our results suggest that 

higher resolution data can provide ecosystem process information at scales sufficient for local mapping 

of land use, cropping cycles, species composition or ecosystem function. For example, divergent 

community phenology signals have been shown to distinguish causes of deforestation [44] and 

invasive species infestation [29]. Compared to [45], relationships to precipitation and temperature in 

the Ganges River Delta reveal remarkably similar patterns. While [45] interpreted these patterns in 

terms of temporal endmembers (i.e., phenology as a mixture of periodic basis vectors), maximum 

cross-correlations contain different information (lag and summation period to both precipitation 

and temperature) and do not require a region of interest to be predefined (over which the spectral 

endmembers are valid). 

That the correlations with temperature should be higher over broader portions of the global land 

surface than precipitation is at least in part due to our use of LST, rather than air temperature 

interpolated from observation stations. LST is not only an indicator of the environmental growing 

conditions, such as soil temperature, it is also a direct measurement of leaf temperature, which is an 

indicator of the physiological activity in vegetation [46]. However, as indicated in Table 1, the highest 

mean correlations to precipitation (tropical and subtropical dry broadleaf forests, grasslands, savannas 

and shrublands) are higher than the highest mean temperature correlations. This suggests that 

precipitation is more limiting than temperature, particularly in dry tropical and subtropical regions. 

While tropical ecosystems are also affected by temperature, both positively and negatively, a strong 

association at a short lag and summation period indicate that rapid germination and/or uptake strategies 

are essential for competitive advantage in moisture-limited ecosystems. This observation suggests that 

the potential effects of climate change need to be evaluated in terms of community-level composition, 

changing temperature and changing patterns of rainfall. Specifically, the increase of episodic events in 

areas of high correlation, a short lag and a short summation period (which we find to be primarily 

tropical and sub-tropical dry ecosystems) are likely to increase productivity and shift selective advantage. 

Noise and error in the input data result in uncertainty in the reliability of the output for estimating 

phenology processes. Missing data in any of the inputs reduces the number of points used to compute 

cross-correlation, affecting the confidence with which the maximum correlation is estimated and, 

consequently, the summation period and lag to the presumed maximum correlation. Despite the use of 

quality flags to exclude noisy data, radiometric, estimation and retrieval errors remain in the remotely 

sensed data, possibly degrading the temporal input signals. For example, [18,47] show that EVI exhibits 

temporal patterns in the Amazon are related more to sun-target-sensor geometry than phenology. The 

cross-correlation is therefore affected by multiple error sources. Given this error and uncertainty, these 

data should be considered on a relative rather than absolute basis, for example in classification 

algorithms or as a continuous bioregional characterization, and interpreted with caution over tropical 

forest ecosystems with possibly strong anisotropic reflectance. 

We anticipate several potential uses of these data in addition to land cover classifier inputs. One 

possibly beneficial application is in the validation of coupled biosphere-climate models. We suggest 

that biosphere-climate models should be able to simulate observed patterns as a first order check on 

appropriate coupling. If the coupled models are unable to reproduce the observed interaction, this is an 

indication of fundamental errors in the characterization of primary forcings on vegetative growth. 
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While coupled models may not produce estimates of EVI, the near linear relationship between EVI  

and simulated landscape characteristics, such as LAI [32], should produce very similar lags and 

correlations. Another possible use is in the identification of places where climate change is likely to 

exert evolutionary pressure through shifts in competitive advantage. Climate variability represents a 

potentially strong extrinsic force on community composition and evolutionary force on local 

populations [48]. Climate factors have been shown to induce rapid, possibly irreversible transitions in 

community composition [49]. The phenology data may therefore indicate the geographic distribution 

of susceptibility to different types of climate variation (e.g., precipitation and temperature). Strong 

gradients in correlation, lag and/or summation period represent places where climate change is likely 

to have differential effects on different sides of the gradient. These places represent ecotones or 

community transitions that are likely to change spatial location in response to climatic forcing. 

5. Conclusions 

Here we used a simple correlation model with a minimum of assumptions as a data-driven approach 

to elucidating multi-scale dependencies on climatic factors. Specifically, correlations between four years 

of EVI data with time series of precipitation and land surface temperature reveal the spatio-temporal 

details of phenology at approximately four kilometers resolution and near global scope. Large area 

aggregations indicate high correlation, short lag and summation period response to precipitation in dry 

biomes, and high correlation short lag and summation period response to temperature in cold biomes. 

However, mapped results of maximum correlation, summation period and lag to maximum reveal 

phenological process variability never before observed at such high spatio-temporal resolution and 

broad spatial area. While the data are consistent with previous studies at regional and global scale, 

validation of the results are difficult, and high uncertainty will likely constrain the utility of the data in 

some locations and for some purposes. Promising pathways for future research involve a. monitoring 

such data over multiple time periods to determine whether observable changes in phenology correspond 

to climate or other external drivers, b. testing the ability of the phenology data to inform land cover or 

land use classifiers, c. estimation of climate change vulnerability from overlays of phenology gradients 

and predicted climate anomalies, d. validation of coupled atmosphere-biosphere models. 
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