
Remote Sens. 2014, 6, 8541-8564; doi:10.3390/rs6098541 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

How Reliable is the MODIS Land Cover Product for  
Crop Mapping Sub-Saharan Agricultural Landscapes? 

Louise Leroux 1,*, Audrey Jolivot 1, Agnès Bégué 1, Danny Lo Seen 1 and Bernardin Zoungrana 2 

1 CIRAD—UMR TETIS (Centre de Coopération International en Recherche Agronomique pour le 

Développement), 500 rue JF Breton, 34093 Montpellier, France;  

E-Mails: audrey.jolivot@cirad.fr (A.J.); agnes.begue@cirad.fr (A.B.);  

danny.lo_seen@cirad.fr (D.L.S) 
2 AGRHYMET (AGRiculture, Hydrology and METeorology), Centre Régional Agrhymet, BP 11011 

Niamey, Niger; E-Mail: b.zoungrana@agrhymet.ne  

* Author to whom correspondence should be addressed; E-Mail: louise.leroux@cirad.fr;  

Tel.: +33-467-558-615. 

Received: 25 June 2014; in revised form: 27 August 2014 / Accepted: 4 September 2014 /  

Published: 11 September 2014 

 

Abstract: Accurate cropland maps at the global and local scales are crucial for scientists, 

government and nongovernment agencies, farmers and other stakeholders, particularly in 

food-insecure regions, such as Sub-Saharan Africa. In this study, we aim to qualify the 

crop classes of the MODIS Land Cover Product (LCP) in Sub-Saharan Africa using FAO 

(Food and Agricultural Organisation) and AGRHYMET (AGRiculture, Hydrology and 

METeorology) statistical data of agriculture and a sample of 55 very-high-resolution 

images. In terms of cropland acreage and dynamics, we found that the correlation between 

the statistical data and MODIS LCP decreases when we localize the spatial scale (from  

R2 = 0.86 *** at the national scale to R2 = 0.26 *** at two levels below the national scale). 

In terms of the cropland spatial distribution, our findings indicate a strong relationship 

between the user accuracy and the fragmentation of the agricultural landscape, as measured 

by the MODIS LCP; the accuracy decreases as the crop fraction increases. In addition, 

thanks to the Pareto boundary method, we were able to isolate and quantify the part of the 

MODIS classification error that could be directly linked to the performance of the adopted 

classification algorithm. Finally, based on these results, (i) a regional map of the MODIS 

LCP user accuracy estimates for cropland classes was produced for the entire Sub-Saharan 

region; this map presents a better accuracy in the western part of the region (43%–70%) 

compared to the eastern part (17%–43%); (ii) Theoretical user and producer accuracies for 
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a given set of spatial resolutions were provided; the simulated future Sentinel-2 system 

would provide theoretical 99% user and producer accuracies given the landscape pattern of 

the region. 

Keywords: MODIS land cover; agricultural statistics; cropland; Africa; classification 

accuracy; landscape metrics 

 

1. Introduction 

When addressing food security issues, accurate mapping of cropland at both global and local scales is 

crucial for scientists, government and nongovernment agencies, farmers and other stakeholders [1–6]. 

However, in many food-insecure regions, such as in Sub-Saharan Africa, understanding and 

characterizing agricultural production remain a major challenge [7]. With the introduction of 

spaceborne remote sensing data in the 1970s, mapping land cover and land use and monitoring 

changes on a regional to global scale have become feasible [8]. The location and extent of agricultural 

land are used as baseline information for crop production monitoring, regardless of the scale [9]. 

Moreover, such crop area maps would be particularly helpful in regions where reliable information on 

agriculture is inconsistent over time due to the limited extent of agricultural surveys or to the unsafe 

access to terrain as a result of political instability or wars [10,11]. Timely crop extent maps may 

provide objective information and prove to be a useful tool for decision making in cropland 

management and in early warning systems (e.g., GIEWS, FEWS NET) [10–12]. 

Land cover characterization and mapping at the global scale have significantly improved over the 

last 30 years in terms of spatial, temporal and thematic resolutions [4]. Currently, several Global  

Land Cover Products have been produced (GLCC [13]; GLC2000 [14]; MODIS LCP (Land Cover 

Product) [15,16]; GlobCover [17]; EcoClimap II [18] and GLC-SHARE [19]); these products 

contribute to our improved understanding of the extent and distribution of the major land cover  

types [8,20,21]. However, to assess the quality and suitability of land cover maps for particular 

applications, information on the accuracy of specific classes is necessary. Various methods could be 

employed for this purpose. 

First, at a global [3,20–23] or regional scale [24–26], cross-comparisons between Global Land 

Cover Products are used to mainly assess (i) the accuracy of thematic classes and (ii) the spatial 

agreement among existing maps. For example, the study of Herold et al. [20] showed a strong 

agreement between four Global Land Cover Products (i.e., IGBP DISCover, UMD, MODIS LCP and 

GLC2000) for large homogeneous ecosystems, such as tropical rain forests, drylands or the Greenland 

ice sheet, whereas large discrepancies were found for transition zones between major ecosystems.  

Ran et al. [27] also found good agreement between the same four global land cover products for 

cropland areas but high disagreement in grassland and shrubland areas in China. However, few studies 

have focused on cropland classes, and they reveal discrepancies in the extent and spatial distribution of 

cultivated areas among various products. Wu et al. [8] performed a pixel-by-pixel comparison in  

China and found complete agreement between four datasets across major agricultural plains with 

extensive homogeneous croplands, while they found discrepancies in more heterogeneous agricultural 
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landscapes. Fritz et al. [7] and Hannerz et al. [11] also found large disagreements in Africa, 

particularly in the Sahelian belt where the cropping density is lower. In Sub-Saharan African 

landscapes, crops are particularly difficult to discriminate due to the parcel sizes, which are often 

smaller than the pixel size [10,11], and landscape fragmentation [7,28]. In addition, depending on the 

environmental (e.g., climate or topography), historical, political, social and technological contexts, the 

spatial extent of croplands and cropping systems are highly variable between and within countries. 

Another way to assess the accuracy of Global Land Cover Products or a specific land cover is the  

use of high-resolution images or ground-truth data (measured or interpreted). For example,  

high-resolution land cover maps (30 m) based on Landsat images were used by Gonsamo et al. [29]  

and Latifovic et al. [30] in Canada and by Pflugmacher et al. [2] in Eurasia to validate global land 

products. Cohen et al. [31] employed both Ikonos and Landsat images at several sites in the Western 

Hemisphere. Similarly, Vintrou et al. [32] resorted to SPOT images (2.5 m) in Mali to estimate the 

accuracy of various global land products for mapping cultivated areas. Because of the internet, 

participatory projects, such as GeoWiki [33], are emerging. These projects allow for the validation of 

MODIS, GLC2000 and GlobCover products using GoogleEarth© imagery and the local knowledge  

of participants. Recently, Vancutsem et al. [28] employed the GeoWiki tool to identify cropland  

areas in Africa. 

These methods provide an assessment of the global accuracy of an entire map, rather than  

an assessment of the local accuracy. However, classification errors are not evenly distributed across 

space [34]. Because Global Land Cover Products are often used for local applications, validation of 

such products at the local scale is necessary. 

Among the Global Land Products currently available, the MODIS LCP has a high spatial (500 m) 

and temporal resolution (yearly); it is based on high-quality earth observation data, and it uses a 

consistent methodology over time and across the globe. Moreover, the global data, training data  

and classification algorithms are regularly revised (tentatively every 6 months) [15,16]. Finally,  

Vintrou et al. [32] found that for crop area mapping, the MODIS LCP performed better than the other 

existing products. 

In this study, our objective is to assess the quality and reliability of the MODIS LCP in estimating 

and locating crop areas in Sub-Saharan Africa in terms of (i) cropland acreage and dynamics, where 

the consistency between the MODIS LCP and agricultural statistics databases is analyzed at regional, 

national and subnational scales; and (ii) cropland spatial distribution, where the MODIS LCP cropland 

map is compared to a sample of cropland maps derived from high-resolution images and analyzed 

using landscape fragmentation metrics. 

2. Study Area and Data 

2.1. Study Area 

The study area spans 18°W to 50°E and 0°S to 18°N (Figure 1). It encompasses 29 countries from 

the Sahelian belt to the Equator. The region is characterized by a broad north–south climatic gradient 

that is mainly controlled by the dynamics of the Intertropical Convergence Zone. An east-west climatic 

contrast is also observed. Specifically, the Horn of Africa is characterized by a desert climate, whereas 
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the West is mainly characterized by a semi-arid to tropical climate. These two climatic classifications 

are separated by the Ethiopian Highlands, which are characterized by a more temperate climate [35]. 

Over much of this region (i.e., the Sahelian, East and Horn regions), where the staple foods rely on 

rainfed agriculture, food shortages frequently occur in the aftermath of severe drought events. 

Figure 1. (a) Distribution of the averaged Croplands and the Cropland/Natural Vegetation 

Mosaic domains between 2001 and 2011; (b) Study area with the major farming systems, 

as defined in [36]. The points refer to the locations of the 55 cropland maps from  

high-resolution images, and they are used as reference data to assess the MODIS  

LCP accuracy. 

(a) 

(b) 

2.2. The MODIS Land Cover Product (MCD12Q1) 

The MODIS Land Cover Product (MCD12Q1, version 51, “Land Cover Type Yearly L3 Global 

500 m SIN Grid”) is used to extract the cropland domain. The MODIS LCP is produced by Boston 

University and it provides data that characterizes five global land cover classification systems on a 

calendar-year basis and at a 500 m spatial resolution. The product uses data from the MODIS 

instrument, such as spectral and temporal information from channels 1–7, the vegetation index and land 
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surface temperature. The MODIS land cover classification is based on a supervised approach with a 

multitemporal decision tree algorithm [15,16]. The MODIS land cover data were acquired for each year 

from 2001–2011. Two cropland classes were used (Figure 1a). The following definitions are from [37]: 

• The Croplands (class 12): “Land cover with temporary crops followed by harvest and bare 

soil period (e.g., single and multiple cropping systems. Note that perennial woody crops will 

be classified as the appropriate forest or shrub land cover type”. 

• The Cropland/Natural Vegetation Mosaic (class 14): “Land with a mosaic of croplands, 

forest, shrublands, and grasslands in which no one component comprises more than 60% of 

the landscape.” 

Training data for the MCD12Q1 v51 product include 313 sites distributed across Africa, 59 of 

which are croplands (29 are classified as Cropland and 30 are classified as Cropland/Natural 

Vegetation Mosaic). The overall accuracy of the MCD12Q1 product across all classes is ~75% [16]. 

2.3. Reference Datasets 

The MODIS LCP cropland domain was compared with reference datasets derived from 

(i) agricultural statistics and (ii) a set of high-resolution image classifications. 

2.3.1. Agricultural Statistics Data 

• FAOSTAT: This database [37] is accessible online. In this study, cropped cultivated areas and 

cultivated area fractions at the national scale were derived from “arable land” data.  

The FAO database defines arable land as “the land under temporary agricultural crops 

(multiple-cropped areas are counted only once), temporary meadows for mowing or pasture, 

land under market and kitchen gardens and land temporarily fallow (less than five years). The 

abandoned land resulting from shifting cultivation is not included in this category” [37]. 

• AGRHYMET: Surface-harvested data from ground surveys of major staple crops in Burkina 

Faso were used. These ground surveys are conducted every year by AGRHYMET at the 

provincial scale (two levels below the national scale). The number of surveyed villages per 

province is proportional to the size of the province. Five households within each village are 

surveyed. Burkina Faso was chosen because it is the only country for which data at  

two subnational scales (regional and provincial scales) are available for 2001–2011. 

2.3.2. High-Resolution Images 

Based on a recent study by Tsendbazar et al. [38], which assessed global land cover reference 

datasets, none of the numerous datasets that currently exist were considered appropriate in our study. 

Specifically, these datasets inherently have the same uncertain accuracy problems as the previous 

global land cover maps. A specific validation dataset was therefore created. It is composed of  

55 cropland maps that each covers an area of 5 × 5 km (100 MODIS pixels). The 55 sample locations 

were chosen to represent the study area in terms of agricultural landscapes based on the Farming 

Systems Maps for Sub-Saharan Africa from the FAO (Figure 1b). At least three sample locations for 

each farming system were used. In addition, the number of sample locations per farming system was 
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consistent with the size of the farming system within the area. Forty-nine cropland maps were obtained 

by photo-interpretation of high-resolution images from GoogleEarth© and were classified as either 

crop or non-crop. GoogleEarth© images across Sub-Saharan Africa are mainly from Digital Globe  

(<10 m resolution) and were acquired between 2007 and 2013. This dataset was completed with  

six available crop maps that were also obtained from high-resolution images: 

• Four cropland maps from multispectral SPOT images at a 2.5 m resolution for 2007 in South 

Mali. The images were classified using an object-based supervised classification method and 

validated with ground data [32]. 

• One cropland map from multispectral SPOT images at a 10 m resolution for 2010 in  

West Niger. A pixel-based supervised classification method was applied [39]. 

• One cropland map from Landsat images at a 30 m resolution for 2006 in North Cameroun. The 

images were classified by a pixel-based supervised classification method and were also 

validated with ground data [40]. 

3. Methods 

The methodology consists of first assessing the ability of the MODIS LCP to quantify crop areas by 

conducting comparisons with agricultural statistics datasets at various spatial scales. Then, the spatial 

accuracy of the MODIS LCP cropland domain was analyzed via comparisons with reference cropland 

maps from high-resolution images. 

3.1. Assessing Quantification of Crop Areas 

The MODIS LCP cropped areas were extracted for administrative units (at the country level for all 

countries and at the regional and provincial levels for Burkina Faso), and the mean between 2001 and 

2011 was computed. The same procedure was also applied to the agricultural statistics data.  

The MODIS LCP cropped areas were compared with FAOSTAT data at regional and national scales 

and with AGRHYMET Burkina Faso data at regional (level 1 below national—N1) and provincial 

(level 2 below national—N2) levels. For areal calculations of the MODIS dataset, the numbers of 

pixels classified as crops were multiplied by the area of each pixel. As in Vintrou et al. [32], a weight 

of 0.5 was applied to the mixed class to take into account the fraction of crops according to the FAO 

mixed class definition [41]. 

Then, the crop area dynamics of the statistical and MODIS LCP data were compared at different 

scales. Trends in crop areas were detected using ordinary least square regression (OLS) and were 

found statistically significant at the 10% threshold (p-value < 0.1). The slope coefficients of the trend 

lines were used to determine the signs and magnitudes of the trends, i.e., a measure of the increase or 

decrease in the crop areas over time. 

3.2. Assessing the Spatial Distribution Accuracy of Crop Areas 

Conventional methods of accuracy assessments, such as the overall accuracy or per-class accuracy, 

are global and provide an assessment of the quality of the entire map. However, as shown by  

Strahler et al. [34], errors are not evenly distributed across space. For this reason, we adopted a 
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spatially explicit assessment of map uncertainties where the MODIS LCP crop spatial distribution in 

2011 was compared with the 55 reference cropland maps using the following: 

(1) Error matrices, omission errors, commission errors and the FScore [42]. The crop class of the 

MODIS LCP is equal to class 12 and class 14 weighted by 0.5 (see Section 3.1). 

(2) The Pareto Boundary method. The Pareto Boundary is calculated using (i) a high-resolution 

reference map (crop/non-crop classification) and (ii) a low-resolution pixel size. The  

low-resolution grid is matched to the high-resolution reference map, and the percentage of a 

specific class (here, the crop class) is assigned to each low-resolution pixel. We determine a set 

of threshold values for the percentage of the crop class that is present within the low-resolution 

pixels; values above these thresholds are classified as crops. For each threshold, omission and 

commission errors are computed. Finally, a line joining this set of omission and commission 

error pairs is drawn to represent the Pareto Boundary (for more details, see [43]). In addition, 

by counting the number of reference pixels for a specific class (here, the crop class) within the 

global product pixels, the Pareto Boundary permits an analysis of the influence of the low 

spatial resolution on the accuracy of the final thematic product. The Pareto Boundary also 

presents the concept of the “optimal” accuracy (the point minimizing the user-producer errors) 

that could theoretically be attained and delimit a region of unattainable accuracy due to the 

low-resolution bias (Figure 2). In this study, the “optimal” accuracy was estimated for the 

MODIS LCP and the other sensors by simulating grids at 300 m, 30 m and 10 m spatial 

resolutions to assess the accuracy that could be attained given the sensor used. The distance 

between the “optimal” accuracy derived from the Pareto Boundary and the accuracy derived 

from a given thematic map represents an index of the performance of the classification algorithm. 

An advantage of the Pareto Boundary method is that aggregation of the fine-resolution reference 

map to the coarse resolution of the global product is not required [2]. 

3.3. Characterizing Landscape Patterns 

(1) Landscape fragmentation. The Pareto Boundary and, consequently, the map accuracy can be 

linked with landscape fragmentation. Landscape fragmentation is mainly caused by the spatial 

heterogeneity in biophysical conditions and the history of land occupation [44]. As stated 

previously by Mayaux and Lambin [45], the statistical distribution of patch sizes and shapes 

and their spatial distribution and connectivity are elements that are used to characterize landscape 

structures. Each spatial pattern can be described with several indicators. In this study, we used 

the Crop Fraction, the Matheron Index [45], the Compactness Index [46], the Mean Focal 

Diversity [20], the Crop Patch Density and the Crop Edge Density [47] to express the 

agricultural landscape fragmentation (Table 1). Each index was calculated based on the 

MODIS LCP product for 2011 and within a grid size of 5 km. 

(2) Analysis of the landscape metric. A normalized PCA (principal component analysis) was 

computed using the ADE-4 package [48] within R software. PCA reduces the size of the 

dataset and statistically verifies links between the three spatial accuracy indicators (omission, 

commission and Fscore) and the six fragmentation indices. Thus, PCA permits an analysis of 

the similarities between the 55 sites. In addition, according to their landscape fragmentation 
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and farming system similarities, the sites were partitioned into homogeneous classes by  

K-Means clustering. Then, multiple linear regression was applied to the accuracy indicators 

(dependent variables) and the six fragmentation indicators (explanatory variables). A multiple 

linear regression model was fitted at the reference dataset scale. The model selection was 

conducted using the Bayesian Information Criterion (BIC) [49]. 

Figure 2. The Pareto Boundary, the dashed blue line, divides the space into two regions. 

The region under the Pareto Boundary (in orange) is the unattainable region due to the  

low-resolution product. The region above the Pareto Boundary (in light green) is the 

attainable region. The distance between 0 and B is the “optimal” accuracy linked to the 

spatial resolution of the maps. The distance between the “optimal” accuracy B and the 

accuracy of the product A is an indicator of the performance of the classification algorithm 

(adapted from [43] with authors’ permission). 

 

Table 1. List of the landscape metrics used to describe the agricultural landscape 

fragmentation. Total area = 25 km2 (100 MODIS pixels). 

Landscape 
Metric Definition Reference 

Crop Fraction The sum of crop patch area divided by the total area  

Matheron Index Crop edge normalized by crop area and total area 
Mayaux and Lambin,  

1995 [45] 
Compactness 

Index 
Crop edge divided by the square root of crop area MacEachren, 1985 [46] 

Mean Focal 
Diversity 

Number of different thematic classes presented in a focal 
neighborhood within an area of 2.25 km2 (9 MODIS pixels) 

Herold et al. 2008 [20] 

Crop Patch 
Density 

Number of crop patches  
within the total area 

Plexida et al. 2014 [47] 

Crop Edge 
Density 

The sum of the crop patch  
perimeters divided by the total area 

Plexida et al. 2014 [47] 
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4. Results 

4.1. Comparison of the MODIS LCP and the Statistical Crop Area Data 

4.1.1. Comparison of the Crop Areas at Different Spatial Scales 

At sub-Saharan Africa scale, estimates of the total crop areas by the MODIS LCP are found to be 

close to those of FAO (13% of the total area for MODIS and 11% for FAO). At national scale, the 

MODIS LCP provide close estimates, with R2 equal to 0.86 (pvalue < 0.001), RRMSE equal to 0.21 

and a slight over-estimation compared to FAO estimates (Figure 3a). This is unlike in Fritz et al. [1] 

where MODIS provided lower estimates than FAO statistics for 10 countries of our study area. The 

difference may be partly explained by the use of a previous version of the MODIS LCP (MCD12Q1 

v4) in [1]. However, at the N1 or N2 levels in Burkina Faso (Figure 3b,c, respectively), the comparison  

shows high discrepancies between the crop area estimates. In both cases, R2 is below 40%, with a clear 

over-estimation by the MODIS LCP. This is in agreement with Hannerz and Lotsch [11], who found 

an inverse relationship between MODIS and AGRHYMET data for Burkina Faso. 

Figure 3. Crop area averages (2001–2011) calculated from the MODIS LCP data (y-axis) 

plotted against the FAOSTAT/AGRHYMET data (x-axis) for (a) the national level  

(29 countries), where the red dot represents Burkina Faso; (b) the 12 regions (N1: level 1 

below national) and (c) the 45 provinces (N2: level 2 below national) of Burkina Faso.  

The diagonal dashed lines represent the 1:1 lines. The MODIS LCP cropland area is equal 

to the sum of class 12 and class 14 with a weight of 0.5. 

 

4.1.2. Comparison of Cropland Area Dynamics 

A comparison between the MODIS LCP and statistical dynamics reveals discrepancies, depending 

on the scale considered (Figure 4). At the national scale, the same positive trend (overall increase in 

cropland area) can be observed in West Africa with, however, opposite dynamics for Liberia and Niger 

Figure 4 1a,1b). In East Africa, FAO shows a positive trend, whereas no significant trends are detected 

in the MODIS LCP. This can partly be explained by the fact that in this part of Africa, many 

agricultural systems are based on agroforestry or pastoralism and are therefore not included in the crop 

classes of the MODIS LCP. At the N1 scale in Burkina Faso, both the MODIS LCP and AGRHYMET 
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data show positive dynamics of crop areas in the West but differences in the eastern part of the 

country. There, no significant dynamics are found with AGRHYMET, whereas the MODIS LCP 

shows positive dynamics (Figures 2a,b and 4). A similar situation is observed at the N2 scale but with 

higher discrepancies between the two datasets and opposite dynamics for the provinces of Oudalan and 

Namentenga (Figures 3a,b and 4). 

Figure 4. Comparison of FAOSTAT/AGRHYMET dynamics (a) and the MODIS LCP 

dynamics (b) of crop areas between 2001 and 2011 for (1) the national level (29 countries 

of Sub-Saharan Africa); (2) the 12 regions (level 1 below national) and (3) the 45 

provinces (level 2 below national) of Burkina Faso. Positive dynamics are in green colors, 

negative dynamics are in red/pink colors and no significant dynamics are in grey. “O” and 

“N” represent the Oudalan and Namentenga provinces. 

(1) 

  

(2) 

(3) 

 (a) (b) 

4.2. Spatial Accuracy of Crop Area Distribution: MODIS LCP vs. High-Resolution Classifications 

Error matrices between the MODIS LCP and high-resolution classifications were calculated for the 

55 validation sites (Table 2). There is considerable variability in the accuracy of the MODIS LCP 

across the different sites. The average omission error for all sites is equal to 0.56, the average 

commission error is equal to 0.46, and 35 out of the 55 sites have an FScore lower than 0.50; thus, 

overall, the MODIS LCP exhibits a moderate accuracy in the crop area distribution. 
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Table 2. Accuracy matrices between the MODIS LCP and high-resolution classifications  

for crops and the 55 validation sites ranked by farming systems. The observed  

accuracy represents the actual accuracy, and the “optimal” accuracy extracted from the  

Pareto Boundary represents the potential accuracy that could be attained by the MODIS LCP 

given the low-resolution bias. The sites underlined and in italics are the two sites shown in 

Figure 5. 

FARMING 
SYSTEMS 

SITE LAT/LON 
OBSERVED ACCURACY OPTIMAL ACCURACY OBSERVED/OPTIMAL 

DISTANCE Omission Commission FScore Omission Commission FScore 

A
gr

o-
pa

st
or

al
 M

il
le

t/
S

or
gh

um
 

1 16.4/−15.7 0.09 0.16 0.87 0.04 0.05 0.95 0.12 
4 11.8/25.7 0.91 0.92 0.08 0.18 0.43 0.67 0.89 
12 15.8/−3.0 0.35 0.29 0.68 0.06 0.07 0.94 0.36 
18 12.4/8.8 0.35 0.02 0.78 0.07 0.01 0.96 0.28 
20 13.8/−8.20 0.50 0.68 0.39 0.09 0.10 0.90 0.71 
25 12.9/−6.18 0.40 0.46 0.56 0.08 0.10 0.91 0.49 
26 13.11/−6.32 0.36 0.33 0.65 0.08 0.14 0.89 0.34 
27 14.2/−7.5 0.47 0.65 0.42 0.20 0.29 0.75 0.45 
28 14.0/−7.4 0.50 0.66 0.40 0.20 0.28 0.76 0.48 
31 13.5/2.6 0.59 0.17 0.55 0.07 0.15 0.89 0.52 
38 16.2/−4.0 0.21 0.14 0.82 0.03 0.04 0.96 0.20 
41 14.8/−2.8 1.00 0.00 0.00 0.00 0.00 1.00 1.00 

C
er

ea
l-

ro
ot

 C
ro

p 
M

ix
ed

 

2 13.3/−14.8 0.50 0.55 0.47 0.15 0.21 0.82 0.49 
3 10.7/11.02 0.20 0.63 0.50 0.11 0.11 0.89 0.53 
11 11.8/0.2 0.50 0.71 0.37 0.21 0.26 0.76 0.53 
13 10.2/22.4 0.60 0.66 0.37 0.26 0.38 0.68 0.44 
15 12.7/−12.2 0.91 0.25 0.16 0.29 0.30 0.70 0.63 
16 12.5/−12.2 0.63 0.34 0.47 0.19 0.20 0.80 0.46 
21 10.74/−1.9 0.49 0.77 0.31 0.27 0.27 0.73 0.55 
29 12.5/−5.2 0.42 0.32 0.62 0.14 0.20 0.83 0.31 
30 11.4/−5.60 0.46 0.33 0.60 0.11 0.13 0.88 0.40 
32 10.6/14.4 0.45 0.80 0.29 0.26 0.45 0.63 0.40 
39 11.22/30.0 0.69 0.64 0.34 0.14 0.13 0.87 0.75 
40 13.5/35.7 0.02 0.40 0.74 0.07 0.06 0.93 0.34 
43 9.4/18.8 0.87 0.24 0.22 0.15 0.14 0.85 0.72 

C
oa

st
al

 
A

rt
is

an
al

 
F

is
hi

ng
 37 4.6/7.5 0.68 0.15 0.46 0.08 0.09 0.91 0.61 

49 6.25/1.4 0.49 0.23 0.61 0.06 0.06 0.94 0.46 
53 5.4/−0.5 0.51 0.44 0.52 0.07 0.10 0.91 0.56 

F
or

es
t 

B
as

ed
 10 3.1/20.5 0.75 0.14 0.38 0.07 0.08 0.93 0.69 

42 4.4/12.1 0.55 0.22 0.57 0.08 0.12 0.90 0.48 
54 1.41/30.3 0.61 0.88 0.18 0.29 0.47 0.60 0.52 

H
ig

hl
an

d 
P

er
en

ni
al

 

14 0.02/31.6 0.58 0.67 0.37 0.13 0.19 0.84 0.66 
47 6.7/38.8 0.65 0.54 0.40 0.09 0.14 0.89 0.69 
48 7.7/37.2 0.89 0.53 0.18 0.13 0.19 0.84 0.83 

H
ig

hl
an

d 
T

em
pe

ra
te

 
M

ix
ed

 6 10.4/38.1 0.59 0.40 0.49 0.07 0.09 0.92 0.60 
7 7.7/39.9 0.67 0.10 0.48 0.03 0.05 0.96 0.64 
19 14.8/38.8 0.60 0.29 0.52 0.09 0.13 0.89 0.53 
52 11/39.8 0.65 0.50 0.41 0.14 0.19 0.84 0.60 

Ir
ri

ga
te

d 9 0.9/43.2 0.69 0.98 0.03 0.30 0.59 0.51 0.55 
22 11.5/34.1 0.27 0.27 0.73 0.05 0.06 0.94 0.30 
46 11.9/7.9 0.03 0.13 0.92 0.04 0.07 0.94 0.06 

M
ai

ze
 

M
ix

ed
 17 9.01/41.8 0.84 0.53 0.23 0.09 0.11 0.90 0.86 

44 2.1/32.5 0.70 0.39 0.40 0.00 1.00 0.00 0.93 
45 0.02/38.06 0.98 0.77 0.04 0.10 0.14 0.88 1.08 

P
as

to
ra

l 5 14.2/30.2 0.90 0.99 0.01 0.17 0.92 0.15 0.73 
8 11.5/41.5 0.56 0.72 0.35 0.15 0.17 0.84 0.68 
23 12.6/34.2 0.08 0.77 0.37 0.21 0.20 0.79 0.59 
51 14.0/8.6 0.50 0.19 0.62 0.02 0.02 0.98 0.51 

R
oo

t C
ro

p 24 9.7/−5.7 0.93 0.30 0.12 0.17 0.22 0.81 0.77 
33 8.2/−4.3 0.88 0.57 0.19 0.16 0.23 0.80 0.80 
34 10.4/−13.2 0.85 0.42 0.23 0.08 0.09 0.92 0.84 
50 7.6/8.4 0.56 0.42 0.50 0.10 0.15 0.88 0.54 

T
re

e 
C

ro
p 35 5.9/−4.8 0.56 0.33 0.53 0.09 0.12 0.89 0.51 

36 6.12/6.62 0.51 0.65 0.41 0.10 0.12 0.89 0.68 
55 6.8/1.0 0.78 0.45 0.32 0.20 0.28 0.76 0.60 
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The best accuracy was observed for site 46 (0.03 omission error, 0.13 commission error and  

an FScore equal to 0.92), whereas the lowest accuracy was obtained for site 5 (0.90 omission error, 

0.99 commission error and an FScore equal to 0.01). The Pareto Boundary was also used and allowed 

to estimate the “optimal” accuracy that could be attained with the MODIS LCP. The Pareto Boundary 

enabled the computation of the observed/optimal distance as the Euclidean distance between the 

observed and “optimal” accuracies. This distance is an indicator of the MODIS LCP classification 

algorithm performance. As shown in Table 2, most of the sites have an observed/optimal distance larger 

than 0.50, indicating a moderate to poor performance of the MODIS LCP classification algorithm. 

Figure 5. Pareto Boundary calculated within a square of 5 km × 5 km for two sites  

(see Figure 1). The blue line represents the Pareto Boundary for a spatial resolution of  

500 m. The black dot is the observed MODIS LCP accuracy, and the black triangle is the 

“optimal” accuracy. For each site, the country, the major farming system and the landscape 

metrics are given. The histograms indicate the distribution of the observed FScore, and the 

vertical red line represents the position of each site. Google images© are also provided for 

the two sites, and the crop domain is delimited by the red line. 

 

S ite 1, Senegal
Agro -Pastoral Millet/Sorghum

Cerea l-Roo t Crop Mixe d

Mather on

Compa ctness

1.03

1.45

Crop Fr action

Mean Fo cal Diversity

0.89

0.50

Crop E dge Densi ty

Crop P atch Density

0.98

0.04

Mather on

Compa ctness

1.64

2.30

Crop Fr action

Mean Fo cal Diversity

0.69

0.63

Crop E dge Densi ty

Crop P atch Density

1.36

0.12

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

O m ission error

C
o
m
m
is
s
io
n
 e
rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

O m ission error

C
o
m
m
is
si
o
n
 e
rr
o
r

M O D IS  LC P  A ccuracy
O ptim al A ccuracy

Site 21, Ghana

Google
Google



Remote Sens. 2014, 6 8553 

 

 

Figure 5 presents two examples of Pareto Boundaries. The previous commission and omission 

errors are used to obtain the Pareto Boundary. The Pareto Boundary is higher for the sites that are most 

fragmented and heterogeneous (site 21); it is between the 50% and 80% isoline. For the most 

homogeneous site (site 1), the Pareto Boundary is the lowest and close to the 10% isoline. Overall, the 

accuracy of the MODIS LCP is lower when fragmentation is high (high uncertainty in the localization 

of the cropland classes). The PCA summarizes our findings for all of the validation sites and provides 

links between the accuracy and fragmentation indicators (Figure 6a,b). In addition, it was possible to 

analyze the site similarities according to their farming system and landscape fragmentation using  

K-Means clustering (Figure 6b). The first two components of the PCA used for the accuracy and 

fragmentation indicators explain 71% of the total variance (Figure 6a). The first PCA axis tends to 

align Coastal Artisanal Fishing, Agro-Pastoral Millet/Sorghum and Cereal-Root Crop Mixed farming 

systems (class 1) against Highland Perennial, Maize Mixed, Highland Temperate Mixed and Root 

Crop farming systems (class 2) (Figure 6b). The other farming systems have a less clear pattern. 

Coastal Artisanal Fishing, Agro-Pastoral Millet/Sorghum and Cereal-Root Crop Mixed farming 

systems (class 1) are associated with a high crop fraction and a high FScore (Figure 6a,b). In contrast, 

Highland Perennial, Maize Mixed, Highland Temperate Mixed and Root Crop farming systems (class 2) 

are characterized by high omission errors. The PCA analysis also suggests that commission errors and 

landscape fragmentation are not correlated. 

Figure 6. Normalized principal components analysis (PCA) performed on the six indicators 

of agricultural landscape fragmentation and the three accuracy indicators. (a) Correlation 

circle of variables for the first two PCA components; (b) PCA factorial map presenting  

55 validation sites grouped into two classes as obtained from the K-Means clustering. 
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4.3. Spatial Heterogeneity and Fragmentation vs. Mapping Uncertainties 

The previous section showed that agricultural landscape fragmentation and spatial heterogeneity 

affect the accuracy, particularly the omission errors and FScores, of the MODIS LCP for crop areas. 

Figure 7 presents the results of multiple linear regressions computed for validation sites between the 

six indicators of landscape metric fragmentation (explanatory variables) and the accuracy indicators. 

Figure 7. Tables showing the landscape metrics computed for the MODIS LCP in each 

model for (a) omission errors and (b) FScores. The darker colors represent models that are 

more efficient. The BIC model selection statistic is optimum for the row at the top of the 

table. The resulting models and R2 values are given for N = 55 and p-value < 0.001. 

 

Figure 8. Map of user accuracy estimates for the MODIS LCP cropland classes. The user 

accuracy is defined as (1-omission errors) and is estimated from the crop fraction.  

The user accuracy is an indicator of uncertainties associated with the cropland classes of 

the MODIS LCP. The data were aggregated at a 20 km resolution for better visualization. 
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Table 3. Average omission error and average user accuracy estimated for major farming 

systems. The user accuracy is equal to 1—omission error. 

Farming Systems Omission Error User Accuracy 

Agro-pastoral Millet/Sorghum 0.48 0.52 
Cereal-root Crop Mixed 0.52 0.48 
Coastal Artisanal Fishing 0.56 0.44 
Forest Based 0.64 0.36 
Highland Perennial 0.70 0.30 
Highland Temperate Mixed 0.63 0.38 
Irrigated 0.33 0.67 
Maize Mixed 0.84 0.16 
Pastoral 0.51 0.49 
Root Crop 0.81 0.19 
Tree Crop 0.62 0.38 

Figure 9. Comparison of the “optimal” accuracy of the MODIS LCP (500 m) and the 

“optimal” accuracy obtained using the simulated data with 300 m, 30 m and 10 m spatial 

resolutions at the 55 validation sites for the cropland classes. The “optimal” accuracy was 

extracted from the Pareto Boundary; (a) omission errors and (b) commission errors. 

(a) (b) 

Figure 7a shows a strong relationship between the omission errors and the Crop Fraction in which 

62% of the omission error variability of the MODIS LCP is explained by the Crop Fraction.  

The relationships between the landscape metric fragmentation and the FScore are less clear (R2 = 0.41; 

Figure 7b). To illustrate how the MODIS LCP accuracy is spatially distributed, a map of user accuracy 

estimates for cropland classes was produced by applying the linear regression model previously 

developed by the BIC to the entire MODIS LCP dataset (Figure 8). The maximum user accuracy that 

could be attained given the agricultural landscape patterns is ~70%, with an omission error of at least 

30%. However, most pixels have a user accuracy of 0%–28%, indicating a high degree of uncertainty 

in the localization of the cropland domain. The user accuracy is better in the West than in the East and 

is mainly related to Agro-Pastoral Millet/Sorghum and Cereal-Root Crop Mixed farming systems  

(see Figure 1 and Table 3). Finally, an assessment of the “optimal” accuracy that could be attained 

with higher spatial resolution datasets (300 m, 30 m and 10 m) was performed (Figure 9). Regarding 
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the omission and commission errors, an improvement of the accuracy values was observed; the 

accuracy variability decreased between sites. The relative standard deviations of the omissions and 

commissions were equal to 7% and 19% at 500 m, respectively, 11% and 9% at 300 m, respectively, 

6% and 3% at 30 m, respectively, and less than 1% at 10 m. Thus, the use of a sensor with a higher 

spatial resolution, such as the future Sentinel-2 system, may lead to improved accuracy and spatial 

homogeneity of cropland maps. 

5. Discussion 

Assessing the quality and the reliability of Global Land Cover Products, such as the MODIS LCP, 

in both the localization and the estimation of crop areas in the fragmented agricultural landscape of 

Sub-Saharan Africa is essential for appropriately using these products. An original approach based on 

agricultural statistical databases and cultivated maps derived from high-resolution classifications were 

used in this study to assess the suitability of the MODIS LCP for crop area mapping. 

5.1. Comparison of the MODIS LCP and Statistical Data 

Regarding crop areal estimations and their dynamics, the results show that the correlation between 

statistical data and the MODIS LCP decreases when the spatial scale is localized. The differences 

observed at the national scale could be due to fallows. FAOSTAT data include fallows of less than five 

years, whereas such information is not given in the MODIS product. Thus, it is likely that older 

fallows were included in our estimates. Moreover, because of uncertainties in their accuracy, 

timelessness, and consistency over time across countries and crop types, official national FAO 

statistics are certainly subject to errors that can limit their ability to quantify the spatial extent of crop 

areas [7,9,11,50]. However, as mentioned recently by Vancutsem et al. [28], this dataset remains a 

helpful source of information for assessing the quality of Global Land Cover products, such as the 

MODIS LCP. At subnational scales, the differences could partly be explained by the fact that some 

discrepancies in crop areal estimations at fine spatial scales (e.g., the province level) are masked when 

aggregating to coarser scales. This has already been highlighted by Hannerz and Lotsch [11] for 

statistical data and by Mayaux and Lambin [45] in a study where they analyzed the effects of spatial 

aggregation of remote sensing data on the estimation of tropical forest areas; these studies concluded 

that information was lost in the process of scaling up. Another reason for these differences may be that 

AGRHYMET does not include fallows in their statistics, while fallows are most likely included in the 

MODIS LCP estimates. As mentioned previously by Wu et al. [5], fallow areas are often not reported 

in cropland products due to their temporal dynamics and confusion with other land cover types. 

5.2. Spatial Accuracy of the MODIS LCP 

At the global scale, human activities, such as agricultural practices, have shaped the landscape and 

landscape fragmentation and heterogeneity correspond to a higher unreachable region of the Pareto 

Boundary and a lower accuracy. At the global scale, Herold et al. [20] found an omission error equal to 

7.9% (user accuracy equal to 92.1%) and a commission error equal to 35.2% (producer accuracy equal 

to 64.8%) for the crop classes. These results are, on average, different from our results (our omission 
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error is equal to 56% and our commission error is equal to 42%, on average) and can be explained by 

three main factors: (1) the study was conducted at the global scale and included large homogeneous 

agricultural landscapes, such as the Great Plains, USA, whereas the agricultural landscapes of  

Sub-Saharan Africa are known to be highly fragmented; (2) the MODIS LCP used in [20] was a 

different version, with a 1 km resolution, and was less spatially accurate than the version in the present 

study; and (3) the 0.5 weight was not applied to class14. Yet, our results are not too different from 

those of Friedl et al. [16] and Ran et al. [27]; the former also used the MODIS LCP v5 at the global 

scale. Together, class12 and class14 (0.5 weight) produced an omission error of 46.7% and a 

commission error of 43.3% based on the training sites. Ran et al. found an overall accuracy of 65.09% 

for the cropland class (our overall accuracy is 51%, on average). Following the cropland class 

definition given in [40], we assumed that the crop proportion was fixed, and we applied a 0.5 weight to 

class14 and no weight to class12. However, in reality, the proportion may vary between ~0% and 50% 

for class14 and between 60% and 100% for class12. Consequently, we can assume that the accuracy 

obtained here may evolve, depending on the weight applied. 

5.3. Relationship between Spatial Accuracy, Landscape Fragmentation and Farming Systems 

Agricultural landscapes of smallholder farms, such as those in Sub-Saharan Africa, are characterized 

by small parcels (typically ≤ 2 ha) [51]. Consequently, in areas with low cropping intensities, high 

omission errors could be due to the inability of the MODIS LCP to capture crop patches that are often 

smaller than a pixel size (~25 ha). Furthermore, important commission errors could be a result of the 

large pixel size where non-crop areas that surround crop areas (mainly grassland or shrubland) could be 

mapped as cropland areas, as explained by Wardlow and Egbert [52] and recently by Vintrou et al. [32]. 

In addition, some studies have also highlighted the difficulties in mapping cultivated areas, mainly  

in the Sahel, due to the high degree of ambiguity of assigning a single class to a heterogeneous  

landscape composed of natural vegetation and croplands, which have spectral, textural and temporal 

similarities [10,11,23]. Consequently, the Cropland/Natural vegetation mosaic class of the MODIS 

LCP may group different classes together. This can have a significant impact on the final accuracy [2] 

and lead to an over- or under-estimation of crop areas [4,21]. 

The PCA clearly showed that spatial heterogeneity and fragmentation is a major driver of the 

accuracy, particularly the user accuracy, of the MODIS LCP in Sub-Saharan Africa. Our results are in 

agreement with prior studies of various regions of the world that show a strong relationship between 

landscape fragmentation and map accuracy at low spatial resolutions; specifically, the accuracy 

decreases as fragmentation and heterogeneity increases [26,30,42,53]. For example, in the study of 

Gao and Jia [24] on the tolerance of misclassification within the MODIS LCP in China, the authors 

found that misclassifications are higher in heterogeneous landscapes of southern China that are 

characterized by highly diverse and fragmented vegetation types. Although our results corroborate 

prior studies, the present work also provided a quantification of the intuitive relationship between 

landscape fragmentation and classification accuracy to establish a map of user accuracy estimates for 

cropland classes. The results showed that the user accuracy is lower for the eastern part of the study 

area, which mainly consists of Maize Mixed, Highland Perennial and Highland Temperate Mixed 

farming systems (class 2; Table 3). This finding can be explained by (1) the very small farm sizes 
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compared to other farming systems, in which more than 50% of the farms are smaller than 0.5 ha in 

Highland Perennial farming systems or in Maize Mixed farming systems [54] and (2) the Highland 

Temperate Mixed farming systems located at altitudes higher than 1800 m are associated with small 

farm sizes (~1.6 ha) [54] and greater fragmentation of the landscape due to slopes [54]. These results 

suggest that, to enhance the MODIS LCP crop area mapping, a primary challenge is to improve the 

mapping of heterogeneous landscapes. 

5.4. “Optimal” Accuracy of Land Cover Products 

When assessing the accuracy of a coarse-resolution map, the resolution of the high-resolution 

validation dataset is often aggregated to match the resolution of the coarse-resolution map, and the 

dominant class is assigned to the new pixel [2,55]. The use of the Pareto Boundary allowed us to 

compare the MODIS LCP with high-resolution data without degrading the fine resolution of our 

validation datasets. This is a useful tool for estimating the “optimal” user and producer accuracies that 

could be attained by the MODIS LCP given the low-resolution bias and fragmentation. However, the 

Pareto Boundary is not based on the actual low-resolution map but rather on the low-resolution grid; 

consequently, uncertainty in the positioning of the low-resolution grid may affect the omission and 

commission errors. In a very highly fragmented area of Central Africa, Boschetti et al. [43] found that 

the uncertainty in the positioning of the low-resolution grid had a negligible effect on the positioning 

of the Pareto Boundary. Thus, misregistration effects on the Pareto Boundary were also neglected in 

our study. The MODIS LCP “optimal” accuracy at most of the sites is above 50%, which indicates a 

high degree of uncertainty. The majority of the sites in the Irrigated, Agro-Pastoral Millet/Sorghum 

and Cereal-Root Crop Mixed farming system zones tend to have minimal omission-commission errors. 

Therefore, for agricultural statistics, we suggest that areal estimates of other farming systems be used 

with caution. Moreover, regardless of the resolution, the performance of the classification algorithm 

can be identified by analyzing the distance between the “optimal” accuracy and the actual accuracy 

using the Pareto Boundary. For most of our sites, the classification algorithm performed poorly, i.e., 

the observed/optimal Euclidean distance was larger than 0.50. This may be due to the validation 

procedure of the MODIS LCP, as it is not based on statistically robust sampling and local experts do 

not perform the validation [1,20,21]. Finally, the “optimal” accuracy computed for the simulated data 

with a higher spatial resolution permitted us to evaluate the expected accuracies for other datasets in 

the case of a perfect algorithm. This highlights the need to strengthen initiatives for the creation of 

finer resolution land cover maps, such as the Chinese project that intends to map the global land cover 

based on Landsat imagery [56]. 

5.5. Validation Databases 

Given the lack of datasets at high spatial resolutions in Africa to validate Global Land  

Cover Products, the use of GoogleEarth© data as a reference dataset proved valuable in assessing the 

quality and accuracy of the MODIS LCP. Photo-interpretation of high-resolution images is more  

time-consuming than automatic classifications but much less time-consuming than ground surveys. 

Consequently, the approach represents a good trade-off for accuracy assessments. GoogleEarth©  

was already used for the validation of the GlobCover product [17] and in the recent study of 
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Vancutsem et al. [27]. In this study, 55 validation sites were used to assess the quality of the MODIS 

LCP, and given the extent of the area considered, we are aware that this is a small sample. However, 

we are foremost presenting a methodological approach, which should be reinforced with  

more validation sites. In this sense, new initiatives such as the Geo-Wiki project [32] or the ESA 

GOFC-OLD project [1] could be used. These projects aim to provide global validation databases for 

accuracy assessments of Global Land Cover Products through a web portal. 

5.6. Practical Recommendations 

Because two different maps may have the same overall accuracy but different spatial qualities, the 

need for assessing the spatial distribution of accuracy was highlighted in this paper. Based on our 

results, we provide some recommendations for practical applications of Global Land Cover Products. 

We suggest the use of high-resolution data to identify the relevance of a global product. For example, 

for early warnings, timely and objective information on crops is needed. In this particular context, 

especially when yields are modeled spatially, greater importance must be given to the user accuracy 

(or omission errors) because it signifies the probability that a pixel classified as crops represents crops 

on the ground and thus mitigates over-estimations of yields. Likewise, for crop acreage estimations,  

we recommend emphasizing the importance of user accuracy to avoid over-estimating crop areas. 

Conversely, in situ where information on land cover changes is required (such as in agricultural 

planning and decision support), we advise giving the same weight to both omission and commission 

errors. Thus, the key idea of this study is that it is necessary to estimate the accuracy of land  

cover products, anticipate product limitations and ensure an appropriate usage that corresponds to the 

user needs. 

6. Conclusions 

In this paper, we analyzed the reliability and ability of the MODIS Land Cover Product (LCP) to 

map crop areas in Sub-Saharan Africa.  

First, we compared the MODIS LCP and agricultural statistics to estimate the accuracy of the 

MODIS LCP for crop area estimations. We found the ability of the MODIS LCP to estimate crop areas 

and its dynamics to be satisfactory at regional and national scales (R2 = 0.86 ***), but precautions 

must be taken for crop acreage estimations at finer scales.  

Then, we assessed the spatial distribution accuracy of the MODIS LCP. Specifically, a  

high-resolution dataset was employed, and the confusion matrix and Pareto Boundary methods were 

applied. We found a strong relationship between the user accuracy and the fragmentation of the 

agricultural landscape with a R2 equal to 0.62 ***. Based on this finding, we produced a map of user 

accuracy estimates over the region. We found that the MODIS LCP user accuracy was superior for 

three farming systems: Agro-Pastoral Millet/Sorghum, Cereal-Root Crop Mixed and Irrigated farming 

systems. To our knowledge, this is the first attempt to map global land cover uncertainties for a 

specific class at such a scale. Because of the moderate resolution, the MODIS LCP has an inherent 

limitation in discriminating low cropping pixels due to the subpixel heterogeneity [11,29]. However,  

it represents a valuable approach for determining cropland areas from a consistent land cover map at a 

large scale. 
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Overall, mapping crop areas in fragmented landscapes from coarse-resolution data remains a 

difficult task and a significant challenge. However, initiatives such as the GEO-Global Agricultural 

Monitoring Project (GEO-GLAM Project) have started to work at improving global agriculture 

monitoring and crop production estimations [57]. In addition, the forthcoming Sentinel-2 satellites will 

routinely deliver high-resolution images (10 m resolution) and are expected to significantly contribute 

to the current efforts. With their high temporal resolution, agricultural land cover maps and 

information on agricultural land use practices (crop type, cropping intensities, irrigation, and crop 

rotation) could be provided regularly. However, for present and future agricultural monitoring, 

historical datasets will continue to be important for understanding the processes that shaped the 

agricultural landscapes. Thus, it is necessary to continue developing methods for handling past data. 
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