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Abstract: Cropland mapping relies heavily on field data for algorithm calibration, making
it, in many cases, applicable only at the field campaign scale. While the recently launched
Sentinel-2 satellite will be able to deliver time series over large regions, it will not really be
compatible with the current mapping approach or the available in situ data. This research
introduces a generic methodology for mapping annual cropland along the season at high
spatial resolution with the use of globally available baseline land cover and no need for field
data. The methodology is based on cropland-specific temporal features, which are able to
cope with the diversity of agricultural systems, prior information from which mislabeled
pixels have been removed and a cost-effective classifier. Thanks to the JECAM network,
eight sites across the world were selected for global cropland mapping benchmarking.
Accurate cropland maps were produced at the end of the season, showing an overall accuracy
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of more than 85%. Early cropland maps were also obtained at three-month intervals
after the beginning of the growing season, and these showed reasonable accuracy at the
three-month stage (>70% overall accuracy) and progressive improvement along the season.
The trimming-based method was found to be key for using spatially coarse baseline land
cover information and, thus, avoiding costly field campaigns for prior information retrieval.
The accuracy and timeliness of the proposed approach shows that it has substantial potential
for operational agriculture monitoring programs.

Keywords: agriculture monitoring; cropland; timeliness; high resolution time series;
Sen2Agri; Sentinel-2; SPOT 4 (Take 5); JECAM

1. Introduction

Agriculture monitoring systems are valuable decision making tools for forecasting production [1] and
assessing the impacts on food production of threats like droughts [2], floods [3], diseases [4] or civilian
conflicts [5]. In this regard, satellite remote sensing is a critical source of data for these systems, as it
offers timeliness, global coverage and objective observation [6–8].

At least two types of information are crucial in the delivery of crop production information for any
given year: cropland areas and yield estimation or the yield indicator [9]. The latter can be derived
from crop growth condition or status (plant stress, crop damage or vegetation condition, using, for
example, NDVI or fAPAR). Moreover, the timeliness of information delivery is key. The earlier the
estimation (ideally before the harvest), the more efficient the management and political responses [10].
To meet these agriculture monitoring requirements, remote sensing research has focused on yield
estimation [11,12], soil moisture estimation [13], biophysical variable retrieval [14] and cropland, or
crop type, classification [15–17].

A large range of cropland mapping strategies, operating on different scales and associated with
varying levels of accuracy, can be found in the literature. On the one hand, annual cropland mapping in
the USA [18] or in Canada [19] is operational through the use of early in situ information that mainly
comes from field campaigns or from farmers’ declarations. On the other, most studies tackle cropland
mapping at a local level, with one or several methodologies often relying on a single sensor. This leads
to a large number of local or regional monitoring capabilities, but very few global agricultural mapping
experiences [20,21]. Moreover, examples of multi-site assessments, which compare the performances
of the same classification method in different agrosystems are very scarce. The launch of Sentinel-2,
with its swath of 290 km, calls for the development of methods capable of covering large areas and of
being transferable from one agricultural region to another. From this perspective, the SPOT 4 Take 5
experiment provides a unique time-series of spatial and temporal resolution similar to that produced by
Sentinel-2. This enables us to face the challenges raised by the multi-sites approach, such as in situ data
dependence, common standard definition and methodological improvements.

The term “cropland” has not as yet been clearly defined in the literature. For instance, the U.S.
Department of Agriculture (USDA) includes in its cropland definition “all areas used for the production
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of adapted crops for harvest”, which covers both cultivated and non-cultivated areas [22]. In most
global land cover products, such as GLC2000 [23], GlobCover 2005/2009 [24,25], GLCShare [26],
MODIS Land Cover [27] and as recently documented in [28], croplands are partly combined in
mosaic or mixed classes (variously including meadows and pastures), making them difficult to use in
agricultural applications, either as agricultural masks or as a source for area estimates. Even the most
recent and more precise ESA Climate Change Initiative (CCI) Land Cover products, obtained from a
multi-year multi-sensor approach, still consider croplands as any other land cover class [25]. Within the
framework of GEO Global Agricultural Monitoring (GEOGLAM) [29,30], the Joint Experiment of Crop
Assessment and Monitoring (JECAM) [31] initiative develops a convergence of standards for monitoring
and reporting protocols, as well as best practice documents for a variety of remote sensing activities.
Based on the FAO study’s uses of the Land Cover Meta Language [32], the cropland class, defined
by JECAM and adopted for this study, consists of “a piece of land of minimum 0.25 ha (min. width
30 m) that is sowed/planted and harvestable at least once within the 12 months after the sowing/planting
date. The annual cropland produces an herbaceous cover and is sometimes combined with some tree or
woody vegetation”. There are however three known exceptions to this definition. The first concerns
the sugarcane plantation and cassava crop, which are included in the cropland class, although they
have a longer vegetation cycle and are not planted yearly. Second, taken individually, small plots,
such as legumes, do not meet the minimum size criteria of the cropland definition. However, when
considered as a continuous heterogeneous field, they should be included in the cropland. The third case
is the greenhouse crops that cannot be monitored by remote sensing and are thus excluded from the
definition [33].

Classification methods for generating cropland maps deal with in situ or prior knowledge availability.
This prior knowledge is required for labeling clusters in unsupervised approaches, as well as for
information used to derive inferred function for classifying new data. Managing this site-specific
information is key to allowing spatial extension to a multi-site or even a global approach [34,35].

Another aspect of the cropland mapping, independent of the classification algorithm, is related to
the spatial unit, whether this is the pixel or the object. Pixel-based classifications methods often fail to
determine the actual limits of agriculture parcels [36]. Spatial filters improve the accuracy by removing
the small inclusions of other classes within the dominant class [37]. Parcel-based approaches were found
to be more accurate than pixel-based approaches [15]. Field limits can be derived either from a digital
vector database [38] or by segmentation [39]. The accuracy of the results is also influenced by the
image processing unit (i.e., the pixel or field). For instance, in landscapes with mixed agriculture and
pastoral land cover classes (e.g., Sahelian countries), image segmentation methods seem to provide a
considerable advantage, since these land cover types are structurally fairly dissimilar while also being
spectrally similar [40].

The aim of this paper is to propose and demonstrate an automated methodology for annual cropland
mapping performing along the season in various agricultural systems using high spatial and temporal
resolution remote sensing time series. This research attempts to tackle some of the operational challenges
by alleviating the annual in situ data dependency and by proposing a generic methodology directly
applicable in various environments. The methodology includes: (1) an approach leveraging existing
high resolution baseline land cover information, if available, or a globally available baseline, if not;
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(2) an extraction of crop-specific spectral-temporal features targeting the most relevant reflectances to
differentiate the cropland; and (3) a flexible and robust classification algorithm. This study corresponds
to the development phase of the European Space Agency (ESA) Sentinel-2 for Agriculture (Sen2Agri)
project [41].

The method is assessed on eight sites with very different agrosystems, which are described below. The
core of the paper focuses on the accuracy and performance assessment of the methodology. The impact
on the accuracy of the baseline resolution and the spatial unit are also assessed. Finally, the feasibility
of implementing the method in a crop monitoring program is discussed, and the paper concludes with an
evaluation of its prospects as a generic cropland mapping approach.

2. Materials

2.1. Site Selection

Eight test sites were selected around the world for benchmarking the algorithms (Table 1) following
three main criteria: (1) representativeness; (2) quality and uniformity of the EO time series; and
(3) availability of in situ data. Representativeness refers to the aim of addressing global agricultural
diversity, covering a large variety of agricultural practices and climate conditions. Special emphasis was
placed on the crops of high global importance for food security surveillance (wheat, maize and soya),
thus contributing to the GEOGLAM initiative [30].

Table 1. Site descriptions. Field size: typical field size in hectares. H: hemisphere (N:
northern; S: southern). Main crops: S: soya; M: maize; W: wheat; WW: winter wheat; SG:
sorghum; B: barley; SO: soybean; TC: tree crops.

Field Size Main Crops
Site H. Climate (ha) S M W WW SG B SO TC

Argentina S Temperate humid 20 x x x x x
Belgium N Temperate 3–5 x x x
China N Temperate to semi-arid 0.2–0.8 x x
France N Temperate to Mediterranean 10 x x
Morocco N Semi-arid 0.5–40 x x
South Africa S Sub-humid to semi-arid 40 x x x x x
Ukraine N Humid continental 30–250 x x x x x
USA N Mediterranean 20–120+ x x x x

All of the available cloud-free Spot 4 Take 5 and Landsat-8 imagery during the most relevant period of
the 2013 growing season was collected to form the sample for detailed analysis. Only sites with available
Spot 4 Take 5 data were pre-selected. To evaluate the method’s genericity over various agrosystems, the
final site selection included two sites in African countries (Morocco and South Africa), one site in Asia
(China), three in Europe (France, Belgium and Ukraine), one in North America (USA) and one in South
America (Argentina) (Figure 1).
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Figure 1. Eight sites selected throughout the world (red dots) to encompass some of the
cropland diversity (global cropland in green from GLCShare [26]).

2.2. Data Preprocessing

The Spot 4 Take 5 Level 1C (20 m) data were used in combination with Landsat-8 data (30 m)
(Table 2). The time-series are quite dense from February–mid-June thanks to the Spot 4 Take 5
experiment. Few Landsat-8 acquisitions enrich this period. From the end of the Spot 4 data acquisitions,
several Landsat-8 data are available and used to the end of December (Figure 2). Only the red, green,
NIR and SWIR bands of the Landsat-8 were used with the resampling at 20 meters, and these were used
collectively with the Spot 4 Take 5 dataset in a single time series following the independent preprocessing
steps (Table 3). The Spot 4 Take 5 data were preprocessed for atmospheric correction and cloud cover
screening to produce Spot 4 Take 5 Level 2A surface reflectance. The same methodology was applied to
the Landsat-8 Level 1T imagery. This methodology relied on the Multi-Sensor Atmospheric Correction
and Cloud Screening (MACCS) spectro-temporal processor [42]. MACCS is based on multi-temporal
methods for cloud screening, cloud shadow detection and water detection, as well as for the estimation
of aerosol optical thickness.

Table 2. Sensor description.

SPOT 4 (20 m) Landsat-8 (30 m)

Band Channel Wavelength (µm) Channel Wavelength (µm)
green 1 0.50–0.59 3 0.53–0.59
red 2 0.61–0.68 4 0.64–0.67
NIR 3 0.79–0.89 5 0.85–0.88
SWIR 4 1.59–1.75 6 1.57–1.65

The areas masked out due to clouds or cloud shadow were filled by linear interpolation over time.
This gap filling was applied to the Spot 4 Take 5 and Landsat-8 time series independently using the
closest clear pixels in the time series (Figure 3) as defined in Equation (1), where rp and wp (respectively
rn and wn) are the previous reflectances and weights (respectively next reflectances and weights) and ri
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is the interpolated value. The weights are defined as the inverse of the number of days separating the
valid observation from the value to interpolate.

ri =
rp × wp + rn × wn

wp + wn

(1)
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Figure 2. Data availability for the eight sites and cloud-free percentage.

2.3. Validation Dataset

The in situ data used for the validation were collected from the field for the year 2013 by the respective
JECAM teams in the context of the network’s activities. The ESA Sentinel-2 for Agriculture project
strongly supported this JECAM network and all of its related activities. In the case of Belgium, the
cropland information was extracted from the Land Parcel Identification System (LPIS) [43]. For the U.S.
site, cropland information was obtained from the USDA cropland classification layer [47]. Non-cropland
areas were also sampled in order to have a complete validation dataset. It should be noted that the
number of object-level observations differed depending on the site (Table 3). With the exception of the
Belgium and U.S. sites, the number of field samples for validation aimed to provide similar cropland
and non-cropland proportions, even though the test site extents and respective field sizes were not taken
into account.
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Table 3. Data availability for each site. Source of EO dataset (S4: Spot4; L8: Landsat-8).
CC: mean cloud cover over the complete time series (%). Site area in hectares. Proportion
of cropland represented in the validation dataset. Total extent of the validation dataset.

Site EO Data CC Site Area Crop Proportion(%) Validation Extent
S4 L8 (103 ha) (103 ha)

Argentina 12 11 12 350 78 5
Belgium 8 3 24 380 28 192
China 18 10 26 387 71 2
France 32 8 19 1685 77 190
Morocco 24 16 17 1420 50 95
South Africa 23 15 13 290 73 7
Ukraine 17 11 19 385 79 15
USA 54 15 11 548 10 463

3. Methodology

The methodology was designed to exploit time series covering large areas with very different
agricultural landscapes and without in situ observations. This cropland mapping approach was tested
on the eight sites combining two different classification algorithms and two types of spatial unit, i.e., the
pixel versus the object-based approach.

3.1. Building Baseline Land Cover Information

Already existing land cover information was used to build the baseline, required as prior classification
knowledge. This land cover information consisted of existing (and some possibly out-dated) land cover
maps, which were at high spatial resolution (20 m). Where no high resolution land cover map was
available, medium resolution (300 m) global land cover information served as the baseline. For instance,
in France and Belgium, the data extracted from the LPIS were merged with the global ESA CCI Land
Cover with priority given to the LPIS on overlapping areas (Table 4 [25,43–47]). Since existing maps
were potentially outdated because of changes that may have occurred since the map was produced, it
was necessary to include a cleaning process in our methodology to remove this misleading information.
This cleaning process also reduced possible mapping error in the pre-existing maps.

3.2. Crop-Specific Temporal Features

The second step in the methodology was to identify and extract relevant spectral and temporal features
to differentiate the cropland from the other land cover types. These features were defined according to
generic characteristics of crop growth. Typically, the crop development cycle [48] can be characterized
by four key elements: (1) the growing of crops on bare soil after tillage and sowing; (2) a higher growing
rate than natural vegetation types; (3) a well-marked peak of green vegetation; and (4) a fast reduction
of green vegetation due to harvest and/or senescence (Figure 3).
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Table 4. Respective mapping source to build the baseline land cover information. This
baseline serves as input for the classification. LPIS, Land Parcel Identification System; CCI,
Climate Change Initiative.

Site Information Used in the Baseline

Belgium Belgian LPIS (20 m) (2012) [43], CCI Land Cover (300 m) [25]
Argentina Global land cover GLC30 (30 m) [44]
China Global land cover GLC30 (30 m) [44]
France French LPIS (2012) (20 m) [43], CCI Land Cover (30 m) [25]
Morocco CCI Land Cover (300 m) [25]
South Africa Water bodies SRTM-SWBD(30 m) [45], SADCLand Cover Dataset (30 m) (2000) [46], CCI

Land Cover (300 m) [25]
Ukraine Classification map (30 m) provided by JECAM site manager (2010)
USA USDA data layer 2012 (20 m) [47]

Based on this conceptual framework, five distinct remote sensing stages in the crop cycle could be
defined at the pixel scale: (1) the maximum value of red; (2) the maximum positive slope of the NDVI
time series; (3) the maximum value of NDVI; (4) the maximum negative slope of the NDVI time series;
and (5) the minimum value of NDVI. The final spectral-temporal features corresponded to the reflectance
values observed at these stages. These features were time independent, which allowed us to deal with
the cropland diversity and the agro-climatic gradient across the landscape.

Twenty features (four spectral bands of the five crop growth characteristics) are too numerous
as input for most of the classifiers, as this can lead to a performance deterioration due to Hughes’
phenomenon [49]. Specific feature combinations were selected in order to create a relevant set of features
for differentiating croplands from non-cropland. Following a preselection step, it was found that the
SWIR band did not provide valuable enough information, and it was discarded. The final features were
selected as the set of five features providing the best mean overall accuracy (OA) on all of the test sites.
This included the red and NIR reflectances from the minimum NDVI stage and the green, red and NIR
from the maximum NDVI stage.

3.3. Classification Algorithms

To classify the remote sensing features, two different algorithms were compared (Figure 4). The
first was the K-means, an unsupervised classifier commonly found in the literature [50], followed by
an automated labeling of the clusters (Figure 4). K-means clustering consisted of minimizing the mean
square d-dimensional distance between each pixel to its closest cluster center [51]. One hundred clusters
were created, aggregating spectrally-close pixels. The baseline was used for labeling the clusters, based
on a simple majority-voting rule, which consisted of labeling clusters as cropland if more than half of
the cluster pixels corresponded to the cropland class of the baseline. If not, the cluster is labeled as
non-cropland.
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(a) (b)

(c) (d)

Figure 3. Temporal NDVI profile for crop surfaces (a,b), grassland surface (c) and forest
(d), all located in France with dates where interpolated reflectances were used to compute
the NDVI (green dots and lines) and temporal features (A: maximum value of NDVI; B:
minimum value of NDVI; C: maximum slope; D: minimum slope).

The second algorithm, the trimming method, was a two-step, supervised classification. First, a
cleaning process removed any pixels likely to have been mislabeled from the baseline by iterative
trimming, and second, a maximum likelihood classifier was applied.

The iterative trimming step consisted of removing from a given frequency distribution the least
probable values that behave like outliers [52,53]. The purpose of this procedure was to reduce the
sensitivity to outliers of parameter estimates, such as the sample mean and variance. For each class, the
selection of outliers relied on a probability threshold α, which specified the limit at which an observation
was considered to be an outlier. As the estimates of the distribution parameters were influenced by the
outliers, the trimming was iteratively performed until no more outliers were identified.

As we assumed a Gaussian distribution of reflectances for any given class, outliers were defined as
values that were outside the commonly-agreed interval, described by the distribution variance:
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(x− µ)′Σ−1(x− µ) ≤ χ2
p(α) (2)

where χ2 was the upper (100α)-th percentile of a χ2 distribution with p degrees of freedom. Outliers were
mainly due to recent land cover changes and the discrepancy between the existing land cover information
and the EO dataset, often due to spatial resolution mismatches (20 m versus up to 300 m for the land
cover maps). A sample of 1000 pixels, randomly selected for each class of the baseline, provided the
distribution of the spectral signature of this class, which was then cleaned by iterative trimming with
a threshold α of 0.01. This resulted in a more robust spectral signature for each class, defined by the
legend of the baseline. These different spectral signatures were then used in a conventional maximum
likelihood classifier [54,55]. Finally, a translation of the cropland and non-cropland classes as defined
by the baseline legend yielded the final cropland map.

Features K-means Clusters

Baseline

Labeling
(majority voting)

Crop map

(a)

Features

Baseline

Sample selection 
for each class

Iterative 
Trimming

Signature for each 
class

Frecquency of 
each class

Maximum
Likelihood

Crop map

(b)

Figure 4. Flow charts for both algorithms describing the main classification steps. Boxes
correspond to data (input/output); ellipses correspond to processing steps; and diamonds
correspond to final results.(a) The K-means-based approach is made up of a first step of
clustering followed by majority-voting cluster labeling. (b) The trimming-based approach
is made up of a first step of baseline cleaning (iterative trimming) followed by a maximum
likelihood classifying process to produce the final result.)

3.4. Baseline Resolution Impact Assessment

The spatial resolution of the land cover baseline that was used as input ranged from 20 m in Belgium
to 300 m in Morocco. The impact of this resolution difference was assessed by comparing the results
obtained from a global baseline instead of the more precise local one. This assessment allowed us to
test the methodology’s robustness when a global land cover was the only source available and, thus,
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the possibility of applying the methodology on a larger scale. Moreover, the influence of the baseline
accuracy was also assessed by systematically adding noise to the baseline and observing the impact on
classification results. The noise consisted of a random class permutation of a given percentage of the
total pixels, which ranged from 0%–70%. Obviously, only sites where a local high resolution baseline
was available were tested (i.e., Belgium, France, South Africa, Ukraine and the USA).

3.5. Spatial Unit Assessment

Two different spatial units were considered, i.e., the pixel and the object. The objects resulted from a
segmentation step based on the mean-shift segmentation algorithm. This algorithm was applied to the set
of the six first principal components obtained by a principal component analysis (PCA) transformation
on the full NDVI times series [56].

This segmentation reduced the salt and pepper effect that was visible in most of the per pixel
classification maps and increased the spatial consistency (Figure 5). The objects were used in two
different ways: first, as a standard object-based classification, applied to a spectral signature averaged at
the object level, and, second, as a post-processing step to filter the pixel-based classification result, using
a majority-voting rule. The impact of the spatial unit was assessed by comparing the corresponding
accuracies using the best performing classification algorithm.
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Figure 5. Spatial unit impact on cropland (in white) mapping. (a) The SPOT 4 image
acquired on 11 June 2013. (b) The pixel-based result presents the salt and pepper effect,
preventing a sharp field delineation. (c) The object post-filtering approach is a dual
approach combining both aspects. (d) The object-based classification result is spatially
more consistent.

3.6. Crop Mapping along the Season

It was predicted that the proposed algorithm could be applied in a dynamic system that would produce
cropland masks along the season with increased accuracy. The methodology was run repeatedly using
the available time series from Month 1 to Month 12 in order to assess its performance along the season.

Four delivery periods were considered for producing maps along the season at three-month intervals.
Both the OA and F-scores for each map were assessed using the same validation dataset. The start
of the EO time series coincided with the beginning of the growing season for most of the Northern
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Hemisphere’s sites, although this was not the case for the Southern Hemisphere. The growing cycle
ended after three months of the time series, and then, a new growing season was initiated. It was possible
that the new information acquired was in some cases different, and consequently, this added noise to the
cropland class during the trimming step and some temporal disagreement.

3.7. Performance Assessment

The performance of the different approaches was assessed for timeliness by two complementary
criteria, namely the accuracy assessment and across-site robustness. Two different metrics, derived from
the confusion matrix, were selected for the OA assessment. The OA evaluated the overall effectiveness of
the algorithm, while the F-score measured the accuracy of a class using the precision and recall measures.

The OA was calculated as the total number of correctly-classified pixels divided by the total number
of validation pixels:

OA =

∑r
i=1 nii∑r

i=1

∑r
j=1 nij

(3)

The precision or user’s accuracy for class i was the fraction of correctly-categorized pixels with regard
to all pixels classified as this class i in the classification results:

Precisioni =
r∑

k=1

nii

nik

(4)

The recall or producer’s accuracy for class i was the fraction of correctly-classified pixels with regard
to all pixels of that ground truth class i:

Recalli =
r∑

k=1

nii

nki

(5)

The F-score (also known as the F-1 score or F-measure) for class i was the harmonic mean of the
precision and recall and reached its maximum value at 1 and minimum score at 0:

F -Scorei = 2 × Precisioni ×Recalli
Precisioni +Recalli

(6)

4. Results

The different combinations of classification algorithms (i.e., K-means or a maximum likelihood
classifier including a trimming) and spatial units (i.e., either the pixel, the object-based classification
or the object-based filtering) were applied on the eight test sites. In addition to the systematic accuracy
assessment, the robustness of the input dataset was analyzed with regard to information timeliness and
the baseline resolution.

4.1. Crop Mapping Methodologies Assessment

The accuracy of the cropland maps provided by the different methodologies was assessed using
independent validation datasets. In general, the approach combining the trimming and the maximum



Remote Sens. 2015, 7 13220

likelihood classifier provided better OA than the K-means approach (Table 5). This difference ranged
from less than 1% (USA) to 12% (Argentina), depending on site characteristics. The K-means approach
tended to overestimate the cropland area (Figure 6). While Ukraine, France and the USA sites showed
rather constant results, some of the other results are worth discussing.

The poor quality of the baseline and the limited presence of the non-crop class in Argentina meant
that the K-means algorithm was unable to distinguish non-cropland, because all pixels were labeled as
cropland. Using the same baseline, the trimming-based method succeeded in distinguishing both classes,
thereby increasing the OA by 20%, albeit still with only 30% of recall for non-cropland.

Despite the short duration of the EO time series for Belgium, the accuracy level reached 89%
even for the K-means algorithm. This underlines the importance of an appropriate temporal
distribution of observation, which can compensate for the low frequency of cloud-free observation for
cropland mapping.

In the case of the Chinese site, the OA reached 68% for K-means, while the trimming method yielded
an accuracy of 82%, corresponding to an increase of 14%. The main improvement was found in the
cropland precision and non-cropland recall pair, showing an overestimation of the cropland area by the
K-means (represented by the blue patches in Figure 6f).

In South Africa, the OA was only slightly improved by using the trimming method as compared
to the K-means. It is worth highlighting the non-cropland recall and precision. While the K-means
underestimated non-cropland by 78%, it showed good non-cropland precision. Thanks to the cleaning
process achieved by the trimming, the omission error was reduced from 78% down to 49% with quite
low commission errors. This is illustrated by the blue patterns in Figure 6b, which correspond to the
cropland mapped by the K-means algorithm.

The Moroccan site presented the poorest cropland precision results for both the trimming and the
K-means approaches, mainly due to an overestimation of cropland extent. Unlike the other sites, these
performances were related to a landscape that was not dominated by cropland. Indeed, non-cropland
pixels were 40-times more abundant than cropland pixels. Misclassified cropland pixels, therefore,
have no effect on the non-cropland precision results (i.e., false negatives are not able to compensate
for the huge amount of true negatives). Finally, cropland precision was also particularly low because the
error of cropland overestimation could not really be compensated for by a good cropland classification
due to their unbalanced proportions. As such, the recall remained the only reliable indicator for an
accuracy assessment for Morocco, and the trimming method performed best for both cropland and
non-cropland recalls.

It is also worth mentioning that the three sites with the highest accuracy differences between the two
algorithms, i.e., Argentina, China and Morocco, were the sites for which a high resolution baseline was
not available. This demonstrates a better ability to deal with coarse land cover baseline when using the
trimming approach, yielding generic performances. Because these results demonstrated that trimming
outperformed the K-means approach for every site, only the results from the trimming approach will be
used in the assessments below.
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Table 5. Accuracy results for the eight sites obtained by the K-means algorithm at the pixel
scale (pxl) and the maximum likelihood classifier with the trimming method at the pixel scale
(pxl), at the object-level (OB) or filtered by objects (filter).

Cropland Non-Cropland
Site Method Overall Accuracy Precision Recall Precision Recall

Argentina

K-means pxl 59.2 59.2 100.0 0.0 0.0
trimming pxl 71.4 67.6 99.2 96.5 30.9
trimming OB 87.0 82.6 99.0 98.0 69.6
trimming filter 59.1 59.2 99.8 1.9 0.0

Belgium

K-means pxl 88.6 87.3 96.0 91.5 75.7
trimming pxl 89.8 89.9 94.5 89.4 81.5
trimming OB 89.4 89.3 94.7 89.7 80.2
trimming filter 91.5 87.4 89.4 93.9 92.6

China

K-means pxl 68.4 46.6 96.9 98.0 57.5
trimming pxl 82.2 61.8 93.6 96.9 77.9
trimming OB 85.9 67.3 95.2 97.8 82.3
trimming filter 86.1 67.7 95.3 97.9 82.6

Ukraine

K-means pxl 89.4 94.3 93.7 50.9 53.6
trimming pxl 90.5 93.1 96.6 58.9 40.7
trimming OB 91.5 93.7 97.0 65.3 46.4
trimming filter 91.7 69.4 41.5 93.2 97.8

South Africa

K-means pxl 85.6 85.4 99.5 90.1 21.8
trimming pxl 88.8 90.1 97.0 78.4 51.0
trimming OB 90.0 93.1 94.8 74.0 67.4
trimming filter 91.3 76.5 74.0 94.4 95.1

France

K-means pxl 86.3 83.4 76.7 87.7 91.6
trimming pxl 81.5 69.2 86.2 91.2 78.9
trimming OB 72.0 56.6 90.6 92.3 61.8
trimming filter 87.6 79.6 87.5 92.7 87.7

Morocco

K-means pxl 73.3 5.4 84.8 99.6 73.1
trimming pxl 76.4 6.8 96.0 99.9 76.1
trimming OB 81.4 8.5 95.4 99.9 81.2
trimming filter 76.5 99.9 76.1 6.9 96.8

USA

K-means pxl 99.0 95.7 92.4 99.3 99.6
trimming pxl 98.6 91.3 93.1 99.3 99.2
trimming OB 98.6 90.1 93.9 99.4 99.0
trimming filter 99.0 99.2 99.7 96.2 91.8
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Figure 6. Temporal comparison (left-hand column), displaying the number of cropland
detections along the season respectively after three, six, nine and twelve months. Method
comparison (right-hand column) in South Africa (a,b), Ukraine (c,d) and China (e,f) between
trimming and K-means (0: non-cropland for both classifications; ML: cropland detected only
by the maximum likelihood, preceded by the iterative trimming; KM: cropland only detected
by the K-means method; ML + KM: cropland identified by both methods).
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4.2. Spatial Unit Assessment

First, the effect of the sites’ characteristics prevailed over the spatial unit effect in most cases, since
the OA difference between sites was greater than the OA difference between spatial units for any given
site (Table 5). The exceptions to this were Argentina, France and Morocco, which are discussed further
below. Second, the object-based approaches provided rather similar or slightly better performances than
the pixel-based approach. However, this slight difference does not really balance out the additional
computing cost of the segmentation step.

Only the French site presented a significant decrease in OA (−11%) for the object-based classification
and only a slight increase when using objects for post-processing. This difference was mainly due to the
specific spatial structure of vineyards, accurately classified at the pixel level but providing a misleading
spectral signature once averaged at the object level.

In Argentina, the converse was observed, with an increase in OA (+15%) for the object-based
classification and a decrease of 11% for the object filtering applied as post-processing. In this case,
the low quality of the baseline impacted negatively on the training process over the small number of
non-cropland areas, while the object-based classification seemed to compensate for this negative impact.
Similarly, the Moroccan site also showed an OA increase of 5% when using objects in a standard
approach, but it showed no effect for the object-based post-processing, although the explanation for
this slight increase may be different.

It is important to mention that the OA results cannot be linked to field size, which means that the
expected large border effects in the small fields agricultural landscapes seem negligible because cropland
is mapped as a spatially continuous class throughout the landscape regardless of the parcel fragmentation.

4.3. Cropland Mapping along the Season

The accuracy of the cropland maps delivered along the season was assessed with the same independent
validation datasets. Figure 7 illustrates the saturation of the OAs six months after the start of the time
series, when stable OA values were observed, and it was noted that additional EO data did not improve
the results. This was quite meaningful for the Northern Hemisphere sites, as this period corresponded
to August, when most of the crop cycles were being completed. This period also corresponded to the
end of the Spot 4 Take 5 experiment, so only the Landsat-8 data were used for the rest of the season,
providing less dense time series.

After the three-month period, the methodology produced cropland maps with accuracies that were
higher than 75% for all sites, except France (OA of 65%). Such results are promising for analyzing
shortened or fragmented time series, as is often the case in cloudy regions. The main proportion of the
area detected as cropland by three out of the four cropland maps (blue areas in Figures 6a,c,e) was linked
to cropland not identified as such at the beginning of the time series (after three months). The sites
located in the Southern Hemisphere provided the highest accuracies at the beginning of the time series
and then tended to decrease slightly due to the mismatch between the growing season and the EO time
series (Figure 6a).
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months after the beginning of the time series.

4.4. The Effect of Baseline Resolution

Previous results showed an impact on accuracy for sites for which a local high resolution baseline
was available when using the K-means method (see Section 4.1, Table 5). With the exception of France,
the test sites showed that OAs resulting from the use of a local high resolution baseline were very
close to those obtained when using a global 300-m baseline (Table 6), with a difference in accuracy of
below 2%. The cropland and non-cropland precisions were both balanced. Nevertheless, the French site
showed a loss of about 30% OA when using a global baseline, mainly because of a low precision for
non-cropland. This discrepancy with the validation dataset was mainly present in the northeast of the
site, where vineyards dominated the landscape.
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Hence, using a global coarse baseline dataset does not significantly affect cropland mapping in
comparison with the use of high resolution baseline datasets. Coarse resolution land cover maps are
thus a viable source of prior land cover information available globally. This allows the methodology to
be applied to any site and even over large areas that are not locally mapped.

The noise added artificially to baselines affects the classification OA to a limited extent (Figure 8).
The noise is expressed in terms of global error (GE), defined as GE = 1 − OA. The lower impact
is clearly visible in the USA, South Africa and Ukraine, where an increase of 60% of the baseline GE
impacted the classification OA by only 5%. In Belgium and France, as the baseline GE increased, the
classification OA decreased more than over the other sites. However, the classification OA reduction
rate decreases as the baseline GE increases, demonstrating that the baseline GE’s impact progressively
diminishes (Figure 8). This shows some robustness of the method in terms of mislabeled pixels in
the baseline. It is worth mentioning that two distinct classes of the baseline (i.e., rainfed cropland and
irrigated cropland) were used separately in Belgium and France to train the cropland classification output,
thus making them more sensitive to noise because the initial number of pixels of the individual cropland
class was heavily reduced.
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Table 6. Impact of baseline resolution on accuracy. The“local” land cover information
refers to locally available high resolution maps, while “global” refers to the 300-m CCI
Land Cover dataset.

Site Overall Accuracy Cropland Precision Non-Cropland Precision
Local Global Local Global Local Global

Belgium 89.8 90.9 90.1 93.2 98.2 87.1
France 81.5 56.2 92.7 90.6 92.3 44.4
South Africa 88.8 89.0 90.1 90.6 78.4 77.7
Ukraine 90.5 91.1 93.1 92.4 58.9 67.7
USA 98.6 98.2 91.3 86.0 99.3 99.5

5. Discussion

The automated methodology proposed for annual cropland mapping was independent of in situ data
and proved to effectively differentiate the cropland (OA > 85%). The results showed that the most
accurate approach included an iterative trimming of the baseline to extract training data, necessary for the
calibration of a maximum likelihood classifier. The OA obtained for the eight sites distributed throughout
the world ranged from 71%–99%, depending on the site, its agricultural landscape and the EO time
series (six out of eight sites had an OA higher than 80%). These performances seem compatible with
the expected use of a cropland mask in an operational agricultural monitoring system, i.e., masking out
the non-cropland area to specifically monitor the crop growing condition along the season or to provide
an early outlook on the cultivated area in a given region. For the latter application, an accuracy level of
higher than 90% is most suitable and seems attainable for half of the sites.

The large diversity of landscapes structures and the contrasted densities of EO time series (11 images
in Belgium, 69 in the USA) did not prevent the methodology from delivering relevant results. Among
the major agrosystems, rice was the only commodity not considered in this study. All major factors
impacting cropland mapping were included in the dataset (i.e., cloudiness, unsynchronized crop cycles,
crop diversity, parcel size, climate conditions and landscape homogeneity), making the demonstration of
robustness quite convincing.

In most cases, the object-based versions of the methodology yielded similar or slightly better results
than the pixel approach. As the segmentation is a computationally-intensive process, its added value
ought to be balanced out carefully, and it represents a potential issue when considering large areas.
Only two sites presented significant improvement when using objects instead of pixels as the spatial
processing unit. The segmentation used was derived from the complete NDVI time series, which
hampered information delivery along the season. An alternative would be to use objects from the
previous year and to assume minor annual changes. Both the availability of an NDVI time series
from the previous year and the limited cropland inter-annual variability constrained the extension of
the methodology, especially in regions with high temporal variations in crop structures [57].

The performance of the methodology and its independence from season field data collection and even
from any in situ data rely heavily on the trimming process. However, assumptions have to be met when
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using the trimming method for cleaning. First, the spectral reflectances corresponding to each class are
assumed to fit a unimodal Gaussian distribution. This is not necessarily always the case, especially in
regions with a large diversity of crop cycles, so spectrally-different pixels must be included in the same
class, disabling the trimming outlier removal capabilities. However, this effect is limited by the use
of the temporal features computed on each pixel reducing the spectral gap between crops. The second
assumption concerns the quality of the existing land cover data, which should be valid for the majority of
the pixels (i.e., more than half of them). As the trimming is applied to each class separately, taking into
account the information contained in the other classes could help in the case of a poor quality map [58].

The automation and genericity of the methodology presented in this paper could be further
improved by a local adjusted feature selection, taking into account the regional agricultural landscape
characteristics. Indeed, the twenty possible features were reduced to five in order for the experiment
to cope with Hughes’ phenomenon [49]. The literature contains some clues, such as an adaptation of
the maximum relevance minimum redundancy feature selection [59–61], that would support a more
specific feature selection. A so-called “optimum approach” might consist of an automated selection
of features containing the most discriminating power between cropland and non-cropland pixels. This
would enhance the methodology in terms of handling site specificity, making it more able to address
global crop diversity.

6. Conclusions

This paper presents a generic methodology for mapping cropland along the season with no need
for field-based data. The main purpose of the study consisted of looking for an alternative to the use
of in situ data to train the algorithms. The results showed that good OA, timeliness and across-site
robustness were achieved to provide accurate cropland maps on any given test site. Prior ground collected
information was replaced by a globally-available land cover map, used as the land cover baseline. Two
algorithms were compared, namely the K-means clustering with a majority-voting labeling and the
maximum likelihood preceded by an iterative trimming step for cleaning the baseline. The trimming
method (85% average OA) outperformed the K-means method (81% average OA). The timeliness of
delivery was proven by an accurate cropland map (80% average OA), produced three months after the
beginning of the time series, demonstrating the possibility of producing a cropland mask earlier than
the crop maturation. This accuracy increased after six, nine and twelve months of data acquisition.
The eight sites presented different agrosystems under various climatic conditions, sometimes with poor
time series (affected by large cloud cover or low EO density) and low resolution baseline information
(300 m, including mislabeled pixels). These different conditions show how robust and extendable the
methodology proposed in this paper is. Integrating it with existing operational crop monitoring programs
could make for easier implementation in contrasted sites.
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