
Remote Sens. 2015, 7, 13410-13435; doi:10.3390/rs71013410 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Extracting Leaf Area Index by Sunlit Foliage Component  

from Downward-Looking Digital Photography under  

Clear-Sky Conditions 

Yelu Zeng 1,2,3, Jing Li 1,2,*, Qinhuo Liu 1,2,*, Ronghai Hu 1, Xihan Mu 1, Weiliang Fan 1, 

Baodong Xu 1,3, Gaofei Yin 1,4 and Shengbiao Wu 1,3 

1 State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing 

and Digital Earth, Chinese Academy of Sciences and Beijing Normal University, No. 20A, Datun 

Road, Beijing 100101, China; E-Mails: zengyl@radi.ac.cn (Y.Z.); rhhu@mail.bnu.edu.cn (R.H.);  

muxihan@bnu.edu.cn (X.M.); fanweiliang@163.com (W.F.); xubd@radi.ac.cn (B.X.); 

yingf@radi.ac.cn (G.Y.); wushengbiao13@mails.ucas.ac.cn (S.W.) 
2 Joint Center for Global Change Studies (JCGCS), Beijing 100875, China 
3 College of Resources and Environment, University of Chinese Academy of Sciences,  

Beijing 100049, China 
4 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences,  

Chengdu 610041, China 

* Authors to whom correspondence should be addressed; E-Mails: lijing01@radi.ac.cn (J.L.); 

liuqh@radi.ac.cn (Q.L.); Tel./Fax: +86-010-6485-1880 (J.L.). 

Academic Editors: Alfredo R. Huete and Prasad S. Thenkabail 

Received: 20 July 2015 / Accepted: 1 October 2015 / Published: 13 October 2015 

 

Abstract: The development of near-surface remote sensing requires the accurate extraction 

of leaf area index (LAI) from networked digital cameras under all illumination conditions. 

The widely used directional gap fraction model is more suitable for overcast conditions due 

to the difficulty to discriminate the shaded foliage from the shadowed parts of images 

acquired on sunny days. In this study, a new LAI extraction method by the sunlit foliage 

component from downward-looking digital photography under clear-sky conditions is 

proposed. In this method, the sunlit foliage component was extracted by an automated 

image classification algorithm named LAB2, the clumping index was estimated by a path 

length distribution-based method, the LAD and G function were quantified by leveled 

digital images and, eventually, the LAI was obtained by introducing a geometric-optical 

(GO) model which can quantify the sunlit foliage proportion. The proposed method was 
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evaluated at the YJP site, Canada, by the 3D realistic structural scene constructed based on 

the field measurements. Results suggest that the LAB2 algorithm makes it possible for the 

automated image processing and the accurate sunlit foliage extraction with the minimum 

overall accuracy of 91.4%. The widely-used finite-length method tends to underestimate 

the clumping index, while the path length distribution-based method can reduce the relative 

error (RE) from 7.8% to 6.6%. Using the directional gap fraction model under sunny 

conditions can lead to an underestimation of LAI by (1.61; 55.9%), which was 

significantly outside the accuracy requirement (0.5; 20%) by the Global Climate 

Observation System (GCOS). The proposed LAI extraction method has an RMSE of 0.35 

and an RE of 11.4% under sunny conditions, which can meet the accuracy requirement of 

the GCOS. This method relaxes the required diffuse illumination conditions for the digital 

photography, and can be applied to extract LAI from downward-looking webcam images, 

which is expected for the regional to continental scale monitoring of vegetation dynamics 

and validation of satellite remote sensing products. 

Keywords: leaf area index; near-surface remote sensing; digital photography; gap fraction; 

clumping index; sunlit foliage component; clear-sky conditions 

 

1. Introduction 

Leaf area index (LAI) is a key biophysical variable to characterize vegetation canopy structure and 

functioning in most ecosystem productivity and land surface process models [1,2]. LAI is defined as 

half the total foliage area per unit ground surface area [3]. Satellite remote sensing provides the unique 

way to obtain LAI in long-term time series and at the global scale [2,4]. However, the accuracy of 

remotely sensed LAI can be affected by the land surface heterogeneities, the impact of clouds and 

aerosols in the atmospheric correction, the uncertainties from the forward model used to create the 

look-up tables, and the saturation of optical signals over dense canopies when the lower layer is 

obscured by the upper layer[5–8]. Thus, it is necessary to validate the remotely sensed LAI products 

with ground-based LAI measurements for product utilization and algorithm improvement. In general, 

LAI can be measured through direct and indirect methods in the field campaign [9]. Direct LAI 

measurements include destructive sampling and non-harvest litter traps for deciduous forests, which 

are the most accurate, but are extremely labor-intensive and time-consuming [9–11]. Indirect methods 

using optical radiometric or imaging sensors, e.g., LAI-2000 Plant Canopy Analyzer (PCA), Digital 

Hemispherical Photography (DHP), and Tracing Radiation and Architecture of Canopies (TRAC), are 

based on the gap fraction or gap size distribution analysis [9,12–14]. Indirect LAI measurements are 

widely used in the field campaign due to the high efficiency, but the temporal revisit frequency and the 

spatial coverage are limited by the manpower [4,15]. 

Recently, near-surface remote sensing using networked digital cameras or radiometric sensors 

provides a low-cost way to continuously monitor the vegetation dynamics at high temporal frequency 

(several measurements per day) over the regional to continental scale [15–20]. For example, the 

PhenoCam dataset has collected time series of red-green-blue (RGB) camera images for more than 
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200 forest sites across North America [16,20]. The downward inclined cameras are installed at the top 

of instrument towers, such as the flux towers for eddy covariance measurements, which are several or 

tens of meters above the canopy [17]. The cameras are set at automated or fixed exposure, and webcam 

images are widely used to extract color indices in long-term time-series, such as the excess green 

(ExG) and the green chromatic coordinate (gcc) for vegetation phonological monitoring [16,17,20]. 

Recently much attention has been paid to use LAI time-series for tracking vegetation dynamic 

changes, because color indices or spectral indices, which are derived from camera RGB channel digital 

numbers (DNs) or reflectances, can be affected by leaf optical properties (e.g., chlorophyll a+b content 

and water amount), canopy structure (e.g., LAI, leaf angle distribution, and clumping index), soil 

background, sun-target-sensor geometry, and diffuse irradiance ratio [21–23]. Additionally, compared 

with vegetation indices, the quantitative biophysical meaning of LAI is clear, and LAI will not get 

saturated on the mature phase at least by definition [24–26]. However, little research has been 

conducted to extract LAI from such downward-looking webcam images, which is expected for the 

regional to continental scale monitoring of vegetation dynamics and validation of satellite remote 

sensing products. 

Current indirect LAI measurements by upward-pointing or downward-looking imaging sensors, 

such as DHP or non-fisheye digital photography, require stable diffuse illumination conditions, 

including uniform overcast, just before sunrise or after sunset [15,27]. Downward-looking cameras 

have already been used to extract LAI over short vegetation, such as agricultural crops, but are not 

often used for tall forest canopies until the tower-based webcam provides the possibility to extract 

forest LAI by near-surface remote sensing [27–30]. The series of acquired webcam images can be not 

only under overcast conditions, but also under clear-sky conditions with direct sunlight [16,17]. 

According to the theory of the geometric-optical (GO) model, the difference between the two types of 

illumination conditions for the images is that on overcast days there are two scene components: foliage 

and background, while on sunny days there are four scene components: sunlit foliage, sunlit 

background, shaded foliage, and shaded background [31–33]. The directional gap fraction model has 

been widely used on overcast days, while till now little research is dedicated to the extraction of LAI 

on sunny days [29,30]. 

The main challenge for the images acquired on sunny days is that it is difficult to discriminate the 

shaded foliage and shaded background from the shadows, where the signal variations in the three color 

channels are small [28–30]. Misclassification of shaded foliage as background on sunny days will lead 

to an overestimation of the gap fraction extraction [29], which may eventually result in the LAI 

estimation be outside the relative accuracy (20%) and absolute accuracy (0.5) requirement by the 

Global Climate Observation System (GCOS, http://www.wmo.int/pages/prog/gcos). To avoid the 

potential impact of such misclassification on sunny days, the goal of this study is to extract LAI by the 

area ratio of the sunlit foliage component using the GO model, instead of using the directional gap 

fraction model for images acquired under overcast conditions. The sunlit foliage component extraction, 

clumping index estimation and the LAI retrievals by different methods will be presented in detail in 

this study. The accurate extraction of LAI from downward-looking digital photography under clear-sky 

conditions will make it possible to monitor the LAI dynamics from low-cost webcams under all 

illumination conditions. 
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2. Methodology 

2.1. Theory 

According to the GO model, the digital image of the scene within the field of view can be divided into 

four components: sunlit foliage, sunlit background, shaded foliage, and shaded background [31–33]. PT, 

PG, ZT, and ZG are the area ratio of the four components, respectively, and thus PT + PG + ZT + ZG = 1 

holds. The area ratio of the sunlit foliage PT for discontinuous canopies can be expressed by [33]: 

𝑃𝑇 = 1 − exp⁡(−√
𝐺𝑠𝐺𝑣Ω𝑠Ω𝑣

𝜇𝑠𝜇𝑣
𝑤𝐿𝐴𝐼) (1) 

where μ𝑠 = 𝑐𝑜𝑠θ𝑠, μ𝑣 = 𝑐𝑜𝑠θ𝑣, and θ𝑠 and θ𝑣 are the solar/view zenith angle, respectively. Ω𝑠 and Ω𝑣 

are the clumping index in the solar and view directions [12], and 𝐺𝑠 and 𝐺𝑣 are the mean projection of 

unit foliage area on a plane perpendicular to the solar and view directions [34]. The hot spot function w 

can be derived by:  

𝑤 =
1

𝐻
∫ 𝑒

−
𝑧𝛿
𝑠𝐿𝑑𝑧 =

𝑠𝐿
𝐻𝛿

𝐻

0

(1 − 𝑒
−
𝐻𝛿
𝑠𝐿 ) (2) 

where H is the canopy height, and 𝑠𝐿 is the characteristic linear dimension of the foliage in the Kuusk 

Hot-spot model [35]. For the spherical orientation of leaves, the foliage dimension 𝑠𝐿 = 𝑑𝐿𝜋
2/16, and 

for horizontal leaves 𝑠𝐿 = 𝑑𝐿𝜋/4, where 𝑑𝐿 is the mean foliage diameter [36]. δ = √
1

μ𝑠
2 +

1

μ𝑣
2 −

2𝑐𝑜𝑠ξ

μ𝑠μ𝑣
, 

and ξ is the scattering phase angle which can be calculated from the solar/view zenith angle θ𝑠 and θ𝑣, 

and the solar/view azimuth angle φ𝑠 and φ𝑣  

𝑐𝑜𝑠ξ = 𝑐𝑜𝑠θ𝑠𝑐𝑜𝑠θ𝑣 + 𝑠𝑖𝑛θ𝑠𝑠𝑖𝑛θ𝑣cos⁡(φ𝑣 −φ𝑠) (3) 

From Equations (1)–(3), LAI can be derived by the area ratio of the sunlit foliage component PT as: 

LAI =
− ln(1 − 𝑃𝑇)

√
𝐺𝑠𝐺𝑣Ω𝑠Ω𝑣

μ𝑠μ𝑣
𝑤

 
(4) 

where the variables have the meaning as in Equation (1)–(3). Thus, the following procedures are 

proposed to extract LAI from downward-looking digital images acquired on sunny days (Figure 1): 

1. Estimate the area ratio of the sunlit foliage component PT from digital images by an 

automated image classification algorithm. 

2. Extract the clumping index Ω from digital images by a path length distribution-based method [37]. 

3. Characterize the leaf angle distribution (LAD) and calculate the leaf projection function (G). 

4. Acquire the canopy height H, the foliage diameter 𝑑𝐿  and the solar/view geometric 

information by field measurements. 

5. Derive LAI by Equation (4) with the above variables estimated. 

The procedures (1–2) will be described in detail at the following Sections 2.2–2.3. 



Remote Sens. 2015, 7 13414 

 

 

Figure 1. The flow chart of procedures to extract LAI from downward-looking digital 

photography under clear-sky conditions. 

2.2. Sunlit Foliage Component 

An automated image classification algorithm called LAB2 is adopted in this study to extract sunlit 

foliage from images acquired on sunny days [38]. The LAB2 method was originally proposed to 

estimate the foliage cover from digital nadir-view images; and has shown to be the most accurate 

method for foliage cover > 10% when compared with other five classification methods [38].  

Firstly, the green leaf algorithm (GLA) for each pixel is calculated as [39] 

GLA =
2𝐺 − 𝑅 − 𝐵

2𝐺 + 𝑅 + 𝐵
 (5) 

where R, G, and B are the DNs of the RGB channels of the images. The values of GLA range between 

−1 and +1, and the positive values indicate green vegetation because they have higher levels in the 

green channel than in the red and blue channels. 

Secondly, the digital image is converted from the RGB color space to the CIE L*a*b* color space, 

where L* is the luminance component, a* represents color on the green-magenta axis, and b* 

represents color on the blue-yellow axis. The CIE L*a*b* color space separates the luminance channel 

L* from two chromaticity channels a* and b*, which makes the correlations between channels 

minimal, and reduces the potential impact of illumination changes on image processing, compared 

with the RGB space. Negative a* indicates green, while positive a* indicates red, which has been 

implemented in previous studies to quantify the greenness of foliage [38,40]. 

Thirdly, automatically identify the background and sunlit foliage training sets by the DNs of the 

RGB images. Pixels with GLA ≤ 0 are classified as definite background training sets, while pixels 

satisfying the criterion (G > R) & (G > B) & (G > 25) are identified as sunlit foliage training sets, 
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according to the suggestions by [38] to detect the background and foreground training sets. Mean 

values of GLA, a*, and b* are calculated for the background and sunlit foliage training sets. 

Finally, classify each pixel by the Euclidean distance from the sunlit foliage and background means 

of GLA, a*, and b* using the minimum-distance-to-means classifier. The area ratio of the sunlit 

foliage PT can be calculated by NT/N, where N is the total number of pixels for the digital image, and 

NT is the number of pixels classified as the sunlit foliage. 

2.3. Clumping Index 

The clumping index (CI), which quantifies the degree of foliage nonrandom distribution in space, is 

defined as [12]: 

Ω(θ𝑣 , φ𝑣) =
𝐿𝐴𝐼𝑒𝑓𝑓(θ𝑣 , φ𝑣)

𝐿𝐴𝐼𝑡𝑟𝑢𝑒
 (6) 

where 𝐿𝐴𝐼𝑡𝑟𝑢𝑒 is the true LAI of the scene, and 𝐿𝐴𝐼𝑒𝑓𝑓(θ𝑣 , φ𝑣) is the effective LAI that can be derived 

from the directional gap fraction model: 

𝐿𝐴𝐼𝑒𝑓𝑓(θ𝑣 , φ𝑣) ⁡=
− cosθ𝑣ln 𝑃(θ𝑣 , φ𝑣)

𝐺(θ𝑣 , φ𝑣)
 (7) 

where 𝑃(θ𝑣 , φ𝑣) is the directional gap fraction at the view zenith angle θ𝑣 and view azimuth angle φ𝑣, 

𝐺(θ𝑣 , φ𝑣)  is the foliage projection function as in Equation (1). 𝑃(θ𝑣 , φ𝑣)  can be extracted from 

images acquired on adjacent overcast days by the LAB2 image classification algorithm in Section 2.2. 

However, in practice, the true LAI is usually unknown, which means the clumping index cannot be 

directly derived by definition as in Equation (6). The total clumping index Ω can be divided into 

two components 

Ω =
Ω𝐸

γ𝐸
 (8) 

where Ω𝐸 is the element clumping index quantifying the degree of foliage clumping at scales larger 

than the shoot, and γ𝐸 is the needle-to-shoot area ratio, which is usually assumed to be 1 for broadleaf 

forests [14]. In general, the element clumping index Ω𝐸  can be estimated by the finite-length 

logarithmic gap averaging (LX) method of [41] or gap size distribution-based (CC) method of [42] 

from sampled transects in the image. In this study, a path length distribution-based method is adopted 

to estimate the clumping index since it has shown to improve the accuracy on the basis of the widely 

used LX and CC methods over heterogeneous canopies [37]. The estimated true LAI in Equation (6) 

by the path length-based method can be expressed as [37]: 

LAI𝑡𝑟𝑢𝑒̃ =∫ (𝐹𝐴𝑉𝐷 ∙ 𝑙𝑚𝑎𝑥)
1

0

∙ 𝑐𝑜𝑠θ𝑣 ∙ 𝑙𝑟 ∙ 𝑝𝑙𝑟(𝑙𝑟)𝑑(𝑙𝑟) (9) 

where 𝐹𝐴𝑉𝐷 is the foliage area volume density, 𝑙𝑚𝑎𝑥 is the maximum path length along the transect, 

θ𝑣 is the view zenith angle, 𝑙𝑟 is the relative path length, and 𝑝𝑙𝑟(𝑙𝑟) is the path length distribution 

function inversed from measured gaps in the sliding windows. Similar to the segment length in the LX 

method, the size of the sliding window is set to be 10 times the foliage characteristic width, and 40 

transects are employed for an image in this study [41]. More detailed description of the variables in 
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Equation (9) can be found in [37]. Eventually the clumping index can be calculated by Equation (6–9) 

from digital images acquired on adjacent overcast days. 

2.4. Leaf Angle Distribution and Leaf Projection Function 

The leaf projection function (G) is the mean projection of unit foliage area on a plane perpendicular 

to the solar or view directions [34]. Assuming a uniform leaf azimuth orientation distribution, the G 

function can be expressed as [43]: 

𝐺(θ) = ∫ 𝐴(θ, θ𝐿)

𝜋
2

0

𝑓(θ, θ𝐿)𝑑θ𝐿 (10) 

𝐴(θ, θ𝐿) = {
𝑐𝑜𝑠θ𝑐𝑜𝑠θ𝐿 |𝑐𝑜𝑡θ𝑐𝑜𝑡θ𝐿| > 1

𝑐𝑜𝑠θ𝑐𝑜𝑠θ𝐿[1 + (2/𝜋)(𝑡𝑎𝑛𝜓 − 𝜓)] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

where θ is the solar or view zenith angle, θ𝐿 is the leaf inclination angle, and 𝜓 = 𝑐𝑜𝑠−1(𝑐𝑜𝑡θ𝑐𝑜𝑡θ𝐿). 

The two-parameter Beta-distribution has been evaluated to be the most accurate to describe the leaf 

inclination distribution function 𝑓(θ𝐿) [44,45]: 

𝑓(𝑡) =
1

𝐵(μ, ν)
(1 − 𝑡)μ−1𝑡ν−1 (12) 

where t is 2𝜃𝐿/𝜋, μ and ν are two parameters, and 𝐵(μ, ν) is the Beta-function defined as: 

𝐵(μ, ν) ⁡= ∫ (1 − 𝑥)μ−1𝑥ν−1
1

0

𝑑𝑥 =
Γ(μ)Γ(ν)

Γ(μ + ν)
 (13) 

where Γ is the Gamma function, and 𝜇 and 𝜈 are calculated as:  

μ = (1 − 𝑡̅)(
σ0
2

σ𝑡
2 − 1) (14) 

ν = 𝑡̅(
σ0
2

σ𝑡
2 − 1) (15) 

where 𝑡̅ and σ𝑡
2 are the mean and variance of t, and σ0

2 is the maximum variance of t, which can be 

calculated as:  

σ0
2 = 𝑡̅(1 − 𝑡̅) (16) 

From Equation (10)–(16), the leaf angle distribution (LAD) and G function can be described by two 

parameters, 𝜇 and 𝜈. Traditionally, LAD can be measured by mechanical inclinometers, while this 

direct method is labor-intensive and may not be feasible for tall forest canopies [46]. A new developed 

photographic method by analyzing leveled digital camera images at different heights of the canopy 

allows for a rapid and accurate estimation of LAD over broadleaf canopies [46–48]. The leveled digital 

images can be taken along a vertical crown profile at 2-m height increments from the crown bottom to 

the top [48]. Leaves in the images oriented perpendicularly to the view direction of the camera are 

selected, and their leaf inclination angles between the leaf surface normal and the zenith direction are 

estimated using the angle measurement tool of an image processing software (ImageJ; 

http://rsbweb.nih.gov/ij/) [47].  
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The LAD has an impact on the regional CO2 and H2O fluxes [49], and can be affected by the trunk, 

stems, branches, and twigs. The spatial variability of LAD can be accounted for by dividing the canopy 

into multiple layers, and then the LAD of each layer and its contribution to the four components can be 

calculated layer by layer separately. The temporal variability of LAD can be quantified by a  

time-series model to extract the trend of temporal changes from LAD measurements at several times. 

The spatial representative of the LAD measurements may be limited in a heterogeneous forest when 

the tower has access to only a few species. The potential impact of light environment changes caused 

by the tower on the canopy structure can be reduced by the mask of canopies near the tower. In 

general, a minimum sample set of 75 measured leaves across the whole canopy are considered to be 

sufficient to characterize LAD reliably [48]. The leaf inclination angle measurements are used to fit the 

two parameters μ  and ν  in Equations (13)–(15), with which 𝑓(θ𝐿)  and 𝐺(θ)  can be derived by 

Equations (10)–(13). If no LAD field measurement data are available, then a typical LAD function for 

specific tree species can be assumed as the back-up approach [48]. 

3. Materials 

Firstly, the different LAI extraction methods were evaluated by the 3D realistic structural scene at 

the YJP site. Then the proposed LAI extraction approach for sunny days was applied to extract LAI 

from actual images acquired at Huailai Remote Sensing Experimental Station in Beijing, China, from 

July to September in 2014. 

3.1. Field Data Collection at the YJP Site 

The YJP site in this study is part of the Boreal Ecosystem-Atmosphere Study (BOREAS) eddy 

covariance tower sites [14]. YJP denotes young jack pine (Pinus banksiana), and is located in the 

BOREAS southern study area situated near Candle Lake, Saskatchewan, Canada (53.975°N, 

104.650°W) as in Figure 2. The average age of the jack pine trees is 11–16 years old, and the density 

of the YJP site is about 4000 stems per hectare. The crown shape of the jack pine consists of a cone top 

and a cylinder bottom with the mean radius of 0.85 m, and the understory is composed of thin grasses, 

lichens, and some bearberry [50].  

Three parallel transects with the equal length of 300 m, were separated by 10 m and oriented along 

northwest and southeast directions. The flux tower in YJP site was exactly located at the center of the 

middle transect. The effective LAI measurements by LAI-2000 Plant Canopy Analyzer (LI-COR, 

Lincoln, NE, USA) were taken along the transects every 10 m marked by the forest flags and, thus, 

eventually 90 readings were made within 20 min under overcast conditions. The 90° view caps were 

used to hide the operator from the sensor’s view during the measurements by LAI-2000. The element 

clumping index Ω𝐸  was measured by TRAC along the transects under clear-sky conditions. The 

sensors were carried at about 0.1–0.2 m above the forest floor with the walking speed of 1 m per three 

seconds. The needle-to-shoot area ratio (γ𝐸 ) was 1.43, and the mean width of foliage elements 

projected on a plane perpendicular to the solar direction (Ws) was 0.17 m [12]. The spherical LAD 

(i.e., G = 0.5) was assumed, which means leaves have no preferred orientation and is often considered 

as a reasonable assumption for conifer shoots where no LAD measurement data are available [48]. The 

canopy structure parameters of the YJP site are shown in Table 1. The same dataset of the YJP site has 
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been used to evaluate the optical-based LAI measurement techniques and the improved four-scale 

model in previous studies [12,14,50]. 

 

Figure 2. The young jack pine (YJP) site located in the BOREAS southern study area 

situated near Candle Lake, Saskatchewan, Canada (53.975°N, 104.650°W). The projection 

is UTM 13 North, WGS84. The background image is a true-color composite image from 

Landsat8/TM that was acquired on 8 August 2014.  

Table 1. The canopy structure parameters of the YJP site. Ha is the height of the lower part 

of the tree with no foliage; Hb is the height of the crown; R is the mean radius of the tree 

crowns; Ws is the mean width of foliage elements projected on a plane perpendicular to the 

solar direction; and G is the leaf projection function in Equation (10). 

Tree Density 𝐋𝐀𝐈𝐭𝐫𝐮𝐞 𝛀𝐄 𝛄𝑬 Ha Hb R Ws G 

4000 trees/ha 2.7 0.72 1.43 0.5 2.5 0.85 m 0.17 m 0.5 

3.2. 3D Reference Scene Construction 

Ground truth LAI can be difficult to acquire by destructive methods in practice for tall forest 

canopies, and previous studies usually relied on indirect LAI measurements by optical sensors, such as 

LAI-2000 and TRAC, as the reference value to compare different methods [30]. [12] reported that 80% 

accuracy can be achieved by LAI-2000 and TRAC when operated carefully, which suggests it is difficult 

to draw firm conclusions in method comparisons if the uncertainty of the reference values is relatively 

large. The 3D realistic structural scenes can account for the location, orientation, size, and shape of every 

individual leaf within a canopy, and thus have the advantage of knowing exactly the true values of each 

parameter, such as LAI, which provides the objective ground truth for the validation of various indirect 

LAI measurement methods [37,51]. In fact, the 3D realistic structural scene based approaches have been 

widely used as the “surrogate truth” in the RAdiative transfer Model Intercomparison (RAMI) exercise 
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conducted by the Joint Research Center, European Commission [52]. It should be noted that the 

following analysis was based on synthetic images by the 3D scene instead of real images. The canopy 

structure parameters acquired in the field measurements at YJP site in Table 1 except γ𝐸 were used as 

inputs to construct the 3D scene by the 3D Max software and the Maxscript language [53]. Since it was 

almost impossible to construct conifer forests at the needle level due to the huge number of needles, the 

shoot was used as the elementary unit in the 3D reference scene construction. Then the needle-to-shoot 

area ratio (γ𝐸) was set at 1 and, thus, Ω = Ω𝐸, which was equivalent to set the forests as broadleaf trees. 

The constructed 3D scene has an area of 125 m2 with 50 crowns. 

For synthetic images under sunny conditions, the solar zenith angle 𝜃𝑠 and solar azimuth angle 𝜑𝑠 

were set at −30° and 180°, respectively. Then multi-angular downward-looking synthetic images under 

axonometric projection in the principal plane (PP) and in the cross plane (CP) were generated  

at 900 × 900 pixels in 8-bit digitalization per color channel, with the view zenith angle 𝜃𝑣 ranged from 

−50° to 50° at 10° intervals, as partly shown in Figure 3. For synthetic images under overcast 

conditions, the illumination was set to be isotropic and thus significant shadows cannot be seen in the 

synthetic images. The 3D software can determine whether each leaf was sunlit and visible at the same 

time by a ray tracing method. The sunlit foliage component (PT), shaded foliage component (ZT), gap 

fraction (GF), and true LAI can be directly extracted from the constructed 3D scene by definition as 

the ground truth values. The 3D reference values for clumping index (CI) at different view angles can 

also be derived from the 3D scene by definition in Equation (6), which was a more direct way than 

other methods such as the LX, CC or the path length distribution-based method in Section 2.3. PT was 

extracted from synthetic images on sunny days, GF and CI were derived from synthetic images on 

overcast days, while ZT was derived from all of the synthetic images because ZT was the difference 

between the probability of seeing the foliage and seeing the sunlit foliage. 

   

(a) (b) (c) 

Figure 3. The downward-looking synthetic images from constructed 3D scene of the YJP 

site under clear-sky conditions. The components in bright green, bright brown, dark green, 

and dark brown correspond to sunlit foliage, sunlit background, shaded foliage and shaded 

background, respectively. (a–c) correspond to synthetic images generated in the principal 

plane with the view zenith angle θ𝑣 of 30°, 0° and −30°, respectively. The solar zenith 

angle θ𝑠 and solar azimuth angle φ𝑠 are −30° and 180°, respectively. 
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3.3. In Situ Measurements at the Huailai Site 

The Huailai Remote Sensing Experimental Station is located in Beijing, in the north of China 

(40.348°N, 115.783°E). The camera was fixed on the tower crane about 23 m above the ground 

surface, and the size of the images was 2736 × 1824 pixels. In total, 18 digital actual images were 

acquired under clear-sky conditions by the tower crane at nadir view (θ𝑣 = 0°) in 2014 over two 

different vegetation types: aspen and corn. Among them, seven images were taken over the aspen on 

27 July and four, three, and four images were taken over the corn on 27 July, 18 August, and 20 

September, respectively. The illumination geometry including the solar zenith angle and the solar 

azimuth angle for each image were determined by the location of the Huailai site and the accurate 

acquisition time of each image. 

The heights of the aspen were measured at 35 sampled trees in the seven images by a laser distance 

meter, and the corn heights were measured at 20 sampled plants for each time phase. The average 

canopy height of the aspen was about 7.8 m on 27 July and the average corn height was about 1.6 m, 

1.9 m, and 2.0 m on 27 July, 18 August and 20 September, respectively. The mean foliage diameter 𝑑𝐿 

for the sampled aspen leaves was 0.16 m, and 𝑑𝐿 for the sample corn leaves was 0.15 m, 0.18 m, and 

0.20 m. The spherical LAD was assumed for the aspen and corn as a reasonable assumption where no 

LAD measurement data was available [48]. The size of the ground surface corresponding to each image 

was about 25.2 m × 16.8 m, and the four corners of the ground in the image were labeled for the LAI 

and the element clumping index (Ω𝐸) measurements. The effective LAI was measured by LAI-2000 at 

nine single points evenly distributed over each image after sunset of the image acquisition day. The 

element clumping index (Ω𝐸 ) for the aspen was measured by TRAC along two transects under  

clear-sky conditions. The corn was usually considered as homogeneous canopies when the 

characteristic of row structure was not significant, and thus the element clumping index (Ω𝐸) for the 

corn was set as 1. The needle-to-shoot area ratio (γ𝐸) was set at 1 because both of the aspen and the 

corn were broadleaf plant species.  

4. Results and Analysis 

4.1. Scene Component Extraction 

The sunlit foliage component (PT) extracted by the automated LAB2 image classification algorithm 

from 22 images in the principal plane and the cross plane under sunny conditions were compared with 

that determined by the 3D software as in Figures 4 and 5. The minimum and average overall accuracy 

of the LAB2 algorithm for the 22 images were 91.4% and 93.6%, respectively. The overall accuracy 

was the proportion of the number of pixels correctly identified as sunlit foliage component or 

background in the number of all pixels of the image. From visual inspection in Figures 3b and 4, the 

sunlit foliage were effectively extracted by the LAB2 algorithm. The slight misclassification mainly 

occurred on the edge of the sunlit leaf blur, which might be due to the smoothing of the penumbra 

effect and the light scattering and diffraction [54]. Figure 5 suggests that the R2, root-mean-square error 

(RMSE) and bias for the PT extracted by the LAB2 algorithm from the 22 images were 0.98, 0.04, and 

−0.03, respectively. The intercept of the regression line was negative, which suggests that the PT 

extracted by the LAB2 algorithm was negatively biased when the value of PT was small. The slope of 
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the regression line was larger than 1, which indicates that the LAB2 algorithm can overestimate PT 

when the value of PT was large. 

  

(a) (b) 

Figure 4. The classification results of sunlit foliage (in black) and background (in white) 

by the automated LAB2 algorithm (a) and by the 3D software (b). The original RGB 

image was acquired at nadir view (θ𝑣 = 0°) as in Figure 3b. 

 

Figure 5. Comparison between the area ratio of the sunlit foliage component (PT) extracted 

by the LAB2 algorithm (on the vertical axis) and the 3D reference values (on the horizontal 

axis) from 22 images in the principal plane and in the cross plane.  

The area ratio of different scene components, including sunlit foliage (PT), shaded foliage (ZT) and 

gap fraction (GF) extracted by the LAB2 algorithm and the 3D reference values at different view 

zenith angles in PP and CP are shown in Figure 6. In PP, the sunlit foliage component (PT) reached the 

maximum in the hot spot direction when illumination and view directions coincide (θ𝑣 = −30°), 

which was due to the absence of visible shadows, but dropped quickly with the increasing of the phase 

angle between the directions to the sun and the camera. By contrast, a valley can be seen around the 

hot spot for the shaded foliage component (ZT), but the value of ZT increased significantly on both 
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sides of the hot spot region. In CP, PT increased slightly from nadir view to large view zenith angles, 

while ZT increased more sharply compared with PT. In both PP and CP, the gap fraction (GF) reached 

the maximum at nadir view, but decreased smoothly with the increasing of the view zenith angle. 

Compared with PT and ZT, the gap fraction (GF) extracted by the LAB2 algorithm exhibited the best 

performance with an RMSE of 0.03. The shaded foliage (ZT) had the lowest accuracy with an RMSE 

of 0.07. 

  

(a) (b) 

Figure 6. The area ratio of the sunlit foliage component (PT), shaded foliage component (ZT) 

and gap fraction (GF) extracted by the LAB2 algorithm and the 3D reference values in the 

principal plane (a) and in the cross plane (b) with the solar zenith angle (SZA) of −30°. 

4.2. Clumping Index Estimation 

The clumping index (CI) estimated by two indirect methods and the 3D reference values at different 

view zenith angles in PP and CP are shown in Figure 7. In both PP and CP, the CI increased with the 

increasing view zenith angle (𝜃𝑣), and reached the minimum value at nadir view, which suggests the 

clumping effect for such discontinuous canopies was the most significant when θ𝑣 = 0°. In PP, both 

the path length-based method and the LX method for CI were underestimated compared with the 3D 

reference values. Performances for the path length-based method and the LX method were slightly 

better in CP than in PP, and the accuracy of the image classification to distinguish the foliage and 

background in the previous step may have an impact on the CI estimation. In PP and CP, the variations 

of the CI by the LX method against θ𝑣 were much smoother than that by the path length-based method 

and the 3D reference values, which suggests that the LX method may not be very sensitive to the view 

zenith angle variations for the CI estimation. 

The statistical results for the evaluation of the path length-based method and the LX method by the 

3D reference values at different view zenith angles in PP and CP are shown in Figure 8. The clumping 

index (CI) was slightly underestimated by both methods with the negative bias, while the scatter points 

by the path length-based method were more approaching the 1:1 line compared with the LX method. 

The R2, RMSE, and Relative Error (RE) of the path length-based method were 0.86%, 0.05%, and 

6.6%, while that of the LX method were 0.46%, 0.07%, and 7.8%, respectively, which suggests that 
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the path length-based method improved the accuracy of the clumping index (CI) estimation compared 

with the LX method. 

  

(a) (b) 

Figure 7. The clumping index (CI) estimated by the path length distribution-based method 

in this study (CI_Path) and the LX method (CI_LX), compared with the 3D reference 

values (CI_3D) in the principal plane (a) and in the cross plane (b). 

 

Figure 8. Comparison between the clumping index (CI) estimated by the path length 

distribution-based method (CI_Path) or the LX method (CI_LX) with the 3D reference 

values (CI_3D) from 22 images in the principal plane and in the cross plane. 

4.3. Comparison of LAI Retrievals with Other Methods 

The retrieved LAI and the corresponding RE by four different methods at different view zenith 

angles in PP and CP are shown in Figure 9. The four methods include the retrieval of LAI by the sunlit 

foliage component under sunny conditions with the CI estimated by the path length-based method 

(LAI_Path) and the LX method (LAI_LX), and by the directional gap fraction model under overcast 

conditions (LAI_Overcast) and under sunny conditions (LAI_Sunny) with the CI estimated by the 
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widely used LX method. In PP, the LAI_Path and the LAI_LX methods underestimated the LAI in the 

forward scattering directions with the view zenith angle θ𝑣 > −30°, while overestimated the LAI in 

the backward directions with θ𝑣 < −30°. The largest RE for the two methods in PP occured at large 

view zenith angles in the backward directions, which was probably due to the symmetrical 

characteristic of the Kuusk Hot-spot function [35]. In CP, the two methods underestimated the LAI 

when the view zenith angle θ𝑣 ≤ 30°, while overestimated the LAI at large view zenith angles when 

θ𝑣 > 30° . The LAI_Overcast overestimated the LAI in PP, especially at large view zenith angles, 

while achieved the highest accuracy among the four methods in CP. 

 
(a) 

 
(b) 

Figure 9. The retrieved LAI and the corresponding Relative Error (RE) by four different 

methods in the principal plane (a) and in the cross plane (b). The LAI_True is the true LAI 

set in the 3D realistic structural scene, which serves as the ground reference value; LAI_Path 

and LAI_LX are the retrieval of LAI by the sunlit foliage component under sunny conditions 

with the CI estimated by the path length-based method and the LX method, respectively; 

LAI_Overcast and LAI_Sunny are the retrieval of LAI by the directional gap fraction model 

under overcast conditions and under sunny conditions, respectively. 
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The directional gap fraction model underestimated the LAI in both PP and CP under sunny 

conditions (LAI_Sunny) as in Figure 9, due to the difficulty to correctly extract the shaded foliage 

component from the shadowed parts of the images in the automated image classification. The 

misclassification of shaded foliage as background led to the overestimation of the gap fraction, and 

eventually resulted in the LAI underestimation by the gap fraction model. In PP, LAI_Sunny achieved 

the highest accuracy in the hot spot direction when the area ratio of the shaded foliage component was 

minimum, and the amplitude of RE increased when the view directions were away from the hot spot 

direction as in Figure 9a. The trend of the RE amplitude in PP was correlated with that of the shaded 

foliage fraction (ZT) in Figure 6a, which also increased with the increasing of the phase angle between 

the directions to the sun and the camera. The largest RE amplitude in PP occurred at large view zenith 

angle (e.g., θ𝑣 = 50° ) in the forward scattering direction. In CP, the RE amplitude reached the 

minimum value at the nadir view, and increased with the increasing view zenith angle (θ𝑣) as in Figure 

9b. The trend of the RE amplitude in CP was also similar to that of the shaded foliage fraction (ZT) in 

Figure 6b, which was symmetrical along the nadir view direction. 

The evaluation results for the performances of the four different methods by 22 images in PP and 

CP are shown in Table 2. The LAI_Overcast achieved the highest accuracy among the four methods 

with an RMSE of 0.32 and an RE of 9.0%, which suggests that the directional gap fraction model was 

the best choice for the LAI extraction under overcast conditions. The LAI_Path method proposed in 

this study performed best among the other three methods using images acquired under sunny 

conditions, with an RMSE of 0.35 and an RE of 11.4%, which can meet the accuracy requirement (0.5; 

20%) by the GCOS. The LAI_Path method performed slightly better than the LAI_LX method, which 

was mainly due to the more accurate estimation of the clumping index as described in Section 4.2. The 

LAI_Sunny method had the lowest accuracy among the four methods, with an RMSE of 1.61 and an 

RE of 55.9%, which was significantly outside the accuracy requirement (0.5; 20%) by the GCOS. This 

suggests that the directional gap fraction model was inappropriate for images acquired under clear-sky 

conditions due to the uncertainties in the shaded foliage extraction, and it was more accurate to extract 

LAI by the sunlit foliage component on sunny days. 

Table 2. The statistical results for the performances of four different LAI retrieval methods 

from 22 images in the principal plane and in the cross plane. The four methods including 

LAI_Path, LAI_LX, LAI_Overcast, and LAI_Sunny are the same as in Figure 9. 

 LAI_Path LAI_LX LAI_Overcast LAI_Sunny 

RMSE 0.35 0.40 0.32 1.61 

Relative Error (RE) 11.4% 12.1% 9.0% 55.9% 

4.4. Applications at the Huailai Site 

The actual downward-looking digital images acquired under clear-sky conditions for a corn region 

and for an aspen region at the Huailai site are shown in Figure 10 together with the classification 

results by the automated LAB2 algorithm. From visual interpretation, the sunlit foliage component of 

the two vegetation types were generally extracted by the LAB2 algorithm, which laid the foundation 
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for the further steps of LAI extraction. The uncertainties in the image classification will affect the final 

LAI extraction accuracy by error propagation in the subsequent procedures. 

 

(a)                                                                         (b) 

 

(c)                                                                         (d) 

Figure 10. The actual downward-looking digital images acquired under clear-sky conditions 

for a corn region on 20 September 2014 (a) and for an aspen region on 27 July 2014 (b) at 

the Huailai site. Both of the two images were acquired at nadir view (θ𝑣 = 0° ). The 

classification results of sunlit foliage (in black) and background (in white) by the automated 

LAB2 algorithm for the corn region and the aspen region are shown in (c,d), respectively. 

The comparison between retrieved LAI by 18 images acquired on sunny days with field measured 

true LAI at the Huailai site in 2014 is shown in Figure 11. The field measured true LAI was calculated 

as the ratio of the effective LAI measured by LAI-2000 and the element clumping index measured by 

TRAC. Two methods include the proposed LAI extraction method by the sunlit foliage component 

under sunny conditions with the clumping index estimated by the path length-based method 

(LAI_Path), and the retrieval of LAI by the directional gap fraction model under sunny conditions with 

the clumping index estimated by the widely used Lang and Xiang (LX) method (LAI_Sunny). It can be 

seen from the 1:1 line that the directional gap fraction model underestimated the LAI with the bias of 

−1.38 under sunny conditions (LAI_Sunny), and this was due to the misclassification of shaded foliage 

as background, which resulted in the overestimation of gap fraction. The proposed LAI extraction 

method by the sunlit foliage component (LAI_Path) was more approaching the 1:1 line with the slope 
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closer to 1 compared with the directional gap fraction model. The proposed LAI extraction method 

slightly overestimated the LAI at low vegetation cover (LAI < 3), while underestimated the LAI at 

high vegetation cover (LAI > 5). The R2, RMSE, and Relative Error (RE) of the directional gap 

fraction model were 0.86%, 1.55%, and 36.2%, while that of the proposed LAI extraction method were 

0.89%, 0.49%, and 11.6%, respectively. This suggests that the directional gap fraction model may not 

meet the accuracy requirement (0.5; 20%) by the GCOS on sunny days, and the proposed LAI 

extraction method by the sunlit foliage component improved the accuracy of the LAI estimation from 

(1.55; 36.2%) to (0.49; 11.6%) compared with the directional gap fraction model. 

 

Figure 11. Comparison between retrieved LAI and the corresponding Relative Error (RE) 

by 18 images acquired on sunny days with field measured true LAI by LAI-2000 and 

TRAC at the Huailai site in 2014. LAI_Path is the retrieval of LAI by the sunlit foliage 

component under sunny conditions with the clumping index estimated by the path  

length-based method, and LAI_Sunny is the retrieval of LAI by the directional gap fraction 

model under sunny conditions with the clumping index estimated by the widely used Lang 

and Xiang (LX) method. 

5. Discussion 

One of the advantages for near-surface remote sensing is the high spatial resolution, which can 

distinguish the foliage from background and makes it possible to extract LAI continuously by  

near-surface imaging sensors [15,16,54]. The directional gap fraction model can achieve the highest 

accuracy under overcast conditions (LAI_Overcast) as in Figure 9, while the performance of the 

traditional gap fractional model on sunny days was quite poor (LAI_Sunny), which was significantly 

outside the accuracy requirement (0.5; 20%) by the GCOS. The poor performance of the gap fractional 

model on sunny days limited the extraction of LAI by near-surface remote sensing under different 

illumination conditions. The proposed LAI extraction method (LAI_Path) by sunlit foliage component 

achieved the accuracy of (0.35; 11.4%) on sunny days, which can meet the accuracy requirement (0.5; 

20%) by the GCOS. Although the accuracy of the proposed method on sunny days (LAI_Path) was 

slightly lower than that of (0.32; 9.0%) by the gap fraction model under overcast conditions 
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(LAI_Overcast) partly due to the penumbra smoothing effect under sunny conditions, the proposed 

method improved the accuracy greatly from (1.61; 55.9%) by the gap fractional model on sunny days 

(LAI_Sunny). The proposed method relaxes the required illumination conditions for the extraction of 

LAI by near-surface remote sensing from only overcast conditions to all light conditions. The 

uncertainties for the non-fisheye or fisheye digital photography-based LAI extraction methods mainly 

come from image classification, canopy structure parameter estimation (e.g., Ω and G), and the LAI 

inversion model [9,47]. 

Illumination conditions and camera exposure settings have a crucial impact on the image 

classification for gap fraction estimation, and sunny illumination conditions can lead to poor gap 

fraction estimations due to the misclassification of the shadowed parts in the images as in previous 

studies [29,54]. In this study, the average overestimation of the gap fraction which is, in fact, the 

proportion of the shaded foliage component (ZT), can be as large as 0.23 in the principal plane and 0.26 

in the cross plane. The consequent underestimation of LAI is (1.61; 55.9%), which is obviously outside 

the accuracy requirement (0.5; 20%) by the GCOS. The underestimation of LAI on sunny days is 

consistent with previous studies, which strongly recommend that overcast conditions should be 

privileged to guarantee the image classification accuracy when feasible [9,29,30]. Misclassification 

can occur on the edges of the leaf blur due to the light scattering and diffraction or the penumbra 

smoothing effect under sunny conditions, which has also been reported by [54]. While the tedious and 

time-consuming image processing used to be considered as the main weakness for DHP by [9], the 

LAB2 algorithm makes it possible for the automated image processing and the accurate extraction of 

the sunlit foliage component with the minimum overall accuracy of 91.4%. 

The Lang and Xiang (LX) method is shown to be not very sensitive to variations of the view zenith 

angle (𝜃𝑣) for the clumping index (CI) estimation in this study. The underestimation of CI by the LX 

method has also been reported in previous studies, which can be explained by the assumption that the 

foliage elements are randomly distributed within the finite length, while empty segments (no gaps) or 

large gaps between tree crowns will give erroneous results [37,41,55,56]. The path length  

distribution-based method can avoid the assumption of constant path length and can effectively 

characterize the non-randomness within canopies, which has improved the accuracy of the CI 

estimation compared with the LX method. For the leaf projection function (G) and LAD estimation, 

previous studies have started to use multi-directional gap fraction measurements by the 5 rings of  

LAI-2000 or different angular sectors of the DHP image for a joint retrieval of LAI, Ω and G [9,29],  

while [57] argued further work was still needed to separate the effects of foliage clumping (Ω) on the 

estimation of G. The photographic method adopted in this study by analyzing leveled digital camera 

images provides an independent way for LAD and G estimation, which can avoid the influence of 

other canopy structure parameters, e.g., Ω and LAI [47,48]. 

The development of the GO model which can quantify the sunlit foliage component relaxes the 

required illumination conditions for the digital photography from only overcast conditions to all light 

conditions [33]. Actually, the state of the art of forward models can significantly improve the theory 

and methods of ground observations. For example, the apparent clumping index proposed by [58] 

makes it possible for the LAI-2000 instrument to quantify the clumping effects, and the 1D 

bidirectional transmission model developed by [59] can overcome the traditional assumption of  

LAI-2000 that foliage absorbs all the radiation in the blue band, and provides a mechanism for the use 
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of the instrument under direct sunlight conditions in the latest version of LAI-2200C. The largest 

overestimation of LAI by the proposed method (LAI_Path) occured at large view zenith angles on the 

backward side in the principal plane (e.g., θ𝑣 = −50°). This is mainly due to the underestimation of 

the sunlit foliage component for the current GO model in the backward directions, and this 

phenomenon has been reported by [53] and [60]. Thus, futher development is still needed for the GO 

model to simulate the sunlit foliage component more accurately in the backward scattering directions. 

In this study, the woody part is neglected because the shadowing effect of the trunk, stems, 

branches, and twigs is less of a problem for extracting sunlit foliage from downward-looking images, 

while the woody elements may significantly influence the extinction and gap fraction measurements 

for upward-pointing cameras and LAI-2000 [15,47]. Additionally, the YJP site in this study does not 

have important understory, the canopies are relatively open and, thus, the sunlit background can be 

easily distinguished, while the contrast between the foliage and the background understory will have 

an impact on the accuracy of the image classification and the sunlit foliage extraction [38,50]. It is 

promising to use photographs taken at different times on a sunny day with varying solar zenith angles 

to reduce the LAI inversion uncertainty. Finally, the digital photography method may not work due to 

gap saturation when canopies reach closure and the visible sunlit foliage component reaches the upper 

limit, especially for relatively dense tropical rainforest, which is also the limitation of other indirect 

methods [30]. There is a little difference for the sensitivity of saturation, because the saturation is 

directly related to the reflectance for downward-looking sensors, such as satellite or near-surface 

remote sensing, while the saturation is linked to the transmittance for upward-pointing sensors such as 

LAI-2000. The proposed downward-looking method underestimated the LAI at high vegetation cover 

(LAI > 5) compared with the upward-pointing LAI-2000 in Figure 11, which suggests that  

downward-looking methods might be more sensitive than upward-pointing methods because the light 

intensity can still be decreased when penetrating the canopy even after the canopy is closed and no sky 

can be observed from the ground surface. 

6. Conclusions 

Recently, near-surface remote sensing using networked digital cameras provides a low-cost way to 

continuously monitor the vegetation dynamics over the regional to continental scale. However, current 

indirect LAI measurements by the directional gap fraction model can only use images acquired under 

diffuse sky conditions, while tower-based webcam images can also be acquired under clear-sky 

conditions with the direct sunlight. The main challenge for the images on sunny days is that it is 

difficult to discriminate the shaded foliage and shaded background from the shadows. A new LAI 

extraction method by the sunlit foliage component from downward-looking digital photography under 

clear-sky conditions is proposed in this study. This method extracts the sunlit foliage component by the 

automated LAB2 image classification algorithm, estimates the clumping index by a path length 

distribution-based method, quantifies the LAD and G function by leveled digital images, and 

eventually obtains the LAI by introducing a GO model which can quantify the sunlit foliage fraction. 

The proposed method was evaluated at the YJP site, Canada, by the 3D realistic structural scene 

constructed based on the field measurements. Then the proposed LAI extraction approach for sunny 

days was applied to extract LAI from actual images acquired at Huailai Remote Sensing Experimental 
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Station in Beijing, China, from July to September in 2014. The following conclusions can be drawn 

from this study: 

(1) The LAB2 algorithm makes it possible for the automated image processing and the accurate 

sunlit foliage component extraction with the minimum overall accuracy of 91.4%. 

(2) The widely used LX method tends to underestimate the clumping index, while the path length 

distribution-based method can reduce the RE from 7.8% to 6.6%. 

(3) Using the current directional gap fraction model under sunny conditions can lead to an 

underestimation of LAI by (1.61; 55.9%), which was significantly outside the accuracy 

requirement (0.5; 20%) by the GCOS. 

(4) The proposed LAI extraction method has an RMSE of 0.35 and an RE of 11.4% under sunny 

conditions, which can meet the accuracy requirement of the GCOS. 

The new method relaxes the required illumination conditions for the digital photography from only 

overcast conditions to all light conditions, and can be applied to extract LAI from downward-looking 

webcam images, which is expected for the regional to continental scale monitoring of vegetation 

dynamics and validation of satellite remote sensing products. 
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Nomenclature 

CC                      The gap size distribution-based method to estimate CI by Chen and Cihlar 

CI                        Clumping index 

CP                       The cross plane  

DHP                    Digital Hemispherical Photography 

GCOS                 Global Climate Observation System 

GF                       Gap fraction  

GLA                    Green leaf algorithm 

GO                      Geometric-optical model 
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LAD                    Leaf angle distribution 

LAI                     Leaf area index 

LAI_Path           The retrieval of LAI by the sunlit foliage component under sunny conditions with the 

CI estimated by the path length-based method 

LAI_LX             The retrieval of LAI by the sunlit foliage component under sunny conditions with the 

CI estimated by the LX method 

LAI_Overcast   The retrieval of LAI by the directional gap fraction model under overcast conditions 

with the CI estimated by the LX method 

LAI_Sunny       The retrieval of LAI by the directional gap fraction model under sunny conditions with 

the CI estimated by the LX method 

LX                     The finite-length logarithmic gap averaging method to estimate CI by Lang and Xiang 

PCA                   Plant Canopy Analyzer 

PP                      The principal plane 

PG                      Sunlit background component 

PT                       Sunlit foliage component 

RE                     Relative Error 

SZA                  Solar zenith angle 

TRAC               Tracing Radiation and Architecture of Canopies 

YJP                   The young jack pine site 

ZG                     Shaded background component 

ZT                      Shaded foliage component 
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