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Abstract: Monitoring of water cover and shorelines at a global scale is essential for better 

understanding climate change consequences and modern human disturbances. The level and 

turbidity of the surface water, and the background objects in which they interact with, vary 

significantly at a global scale. The existing water indices applicable to detection and 

extraction of water cover at local and regional scales cannot work efficiently everywhere in 

the globe. In this research, a new water index called Superfine Water Index (SWI) was 

developed for robust detection and discrimination of the surface water at a global scale using 

MODIS based multispectral data. The SWI was designed in such a way that it provides high 

contrast between the water and non-water areas. Achieving high contrast is vital for 

discriminating the surface water mixed with a variety of objects. The sensitivity analysis of 

the SWI demonstrated its high sensitivity to the surface water compared to the existing water 

indices. One single-layered global mosaic of a 90-percentile SWI image was used as a master 

image for global water cover mapping by reducing the large volume of MODIS data 

available between 2012 and 2014 globally. The random walker algorithm was applied in the 

SWI image with the support of reference training data for the extraction and mapping of 

water cover. This research produced an up-to-date global water cover map of the year 2013. 
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The performance of a new map was evaluated with a number of case studies and compared 

with existing maps. The supremacy of the SWI over the existing water indices, and high 

performance of the SWI based water map confirmed the reliability of the new water mapping 

methodology developed. We expect that this methodology can contribute to seasonal and 

annual change analysis of the global water cover as well. 

Keywords: water cover; random walker algorithm; MODIS; Superfine Water Index (SWI); 

HSV color model; global mapping 

 

1. Introduction 

Water is an important resource for life on Earth. It is also crucial for agricultural and industrial 

production affecting the economic development of countries. However, the dramatic increase in 

population and industry and the unequivocal change of climate systems has put the sustainability of 

water resources in doubt, while a number of regions have already faced serious shortages of drinking 

water. On the other hand, water related disasters such as severe drought, inundation and flooding have 

occurred frequently in many places on Earth. The water cover at a global scale has been changing rapidly 

in recent decades influenced by climate-hydrological changes. The monitoring of the water cover and 

shorelines at a global scale is essential for better understanding climate change consequences and modern 

human disturbances. The near-real time monitoring of the surface water and coastlines can track  

water-related disasters and protect life and property. The water cover and coastline database is also 

important for various applications such as landscape design, infrastructure development, earthquake and 

tsunami hazard planning, and managing resilience and sustainability of ecosystems.  

Over recent decades, a number of remote sensing techniques based on aerial photographs, optical 

satellite imagery, radar satellite imagery, airborne laser imagery, and airborne video imagery have been 

utilized for detection and extraction of coastlines/shorelines and inland water bodies. Digital 

photogrammetry with aerial and satellite imagery have been widely used for the monitoring of 

shorelines/coastlines, and detecting their temporal and spatial changes in several locations around the 

world [1–13]. Besides the optical imagery based approach, the synthetic aperture radar (SAR) based 

multi-polarization and multi-incidence data have also been used by many researchers for water 

monitoring and mapping purposes [14–17]. Not only detection and mapping of the shorelines and water 

cover, but validation of the satellite based estimates are equally important. The coastlines detected by 

multi-temporal satellite imagery have been well verified by a number of studies using topographic, 

nautical, water level surveys, and near-ground photography [18,19]. Remote sensing video systems are 

another tool for coastline change detection used by some researchers [20–23]. Airborne Lidar is 

suggested for improved detection and monitoring of coastlines [24–27]. The edge detection technique 

with the radar and optical satellite images have been described as a more precise method for extracting 

shorelines/coastlines [28,29]. Pekel et al. [30] used HSV transformation of mid-near infrared, near 

infrared, and red bands of MODIS multi-spectral time series data for developing automated algorithms 

for near real-time water surface detection, and characterization of their spatial and temporal dynamics. 

Several researchers have reported better target identification and extraction by the HSV (Hue, Saturation, 



Remote Sens. 2015, 7 13809 

 

and Value) color model than by the RGB model [30–32]. Verpoorter et al. [33] produced high-resolution 

global database of lakes using Landsat 7 data. Feng et al. [34] prepared global, high-resolution (30-m) 

inland water body dataset for 2000 using topographic-spectral classification algorithm. 

The Normalized Difference Water Index (NDWI) [35] using the reflected near infrared radiation and 

visible green light was developed to delineate and extract open water features in remotely-sensed digital 

imagery (Equation (1)).  ܰܫܹܦ = ݊݁݁ݎܩ − ݊݁݁ݎܩݎ݅ܰ + (1) ݎ݅ܰ

Besides from the extraction and mapping of water bodies, the NDWI has been widely used for many 

water related researches including detection of flood inundation and flood mapping from space based or 

airborne imagery [36–39]. The NDWI has also been used for mapping of vegetation water contents [40,41]. 

Xu [42] modified the NDWI by substituting shortwave infrared band (band 5) of Landsat TM for the 

near infrared band used in the NDWI to suppress the false positive errors from built-up land as well as 

vegetation and soil. The Modified Normalized Water Index (MNDWI) by this approach is shown  

in Equation (2).  ܫܹܦܰܯ = ݊݁݁ݎܩ − ݊݁݁ݎܩݎ݅ݓܵ + (2) ݎ݅ݓܵ

Feyisa et al. [43] proposed Automated Water Extraction Index (AWEI) by enhancing spectral contrast 

of Landsat TM data and assigning an optimal threshold value for accurate classification of surface water 

bodies (Equation (3)).  AWEI = 	4 × (Green − Mir) − (0.25 × Nir + 2.75 × 	Swir) (3)

Ayana et al. [44] proposed Enhanced Water Index (EWI) by combing the Normalized Difference 

Vegetation Index (NDVI) with the Normalized Difference Water Index (NDWI) for improving water 

extraction accuracy in the presence of various environmental noises using a stable threshold  

(Equation (4)). Unlike the NDWI, MNDWI, and AWEI, the EWI provides discrete mask of the surface 

water and non-water, but not the continuous measure of the wateriness of the land surface. EWI = 	if	(NDVI < 0 and NDWI > 0, ′waterᇱ else ′landᇱ) (4)

However, most of the studies on water cover detection, extraction, and mapping were carried out at 

local to regional scale, and limited studies were conducted at a global level. The databases that provide 

ocean and inland water cover at global scale are as follows: Global Self-consistent, Hierarchical,  

High-resolution Geography database 2015 (GSHHG; [45]), and MODIS land-water mask product 2009 

(MOD44W; [46,47], MODIS Land Cover Type Product 2012 (MCD12Q1 v5.1; [48]), GLCNMO  

2008 [49], and ESA GlobCover 2009 [50]. 

The GSHHG database provides geography datasets for world shorelines, rivers, and borders at five 

resolutions. The database is organized into multiple hierarchical and classification levels. In this 

database, the polygons representing land–ocean boundaries, and the shorelines related to the land-lake 

and land-river boundaries can be separated. The early GSHHG database was constructed from two  

well-known and public domain datasets: the World Data Bank II [51] containing coastlines, lakes, 

political boundaries, and river; and the World Vector Shoreline [52] containing the shorelines along the 

ocean and land boundary. The line segments and polygons from these two data sources were processed 
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by removing duplicates and outliers, and combined with each other to obtain the closed and high-resolution 

polygons [45]. The latest product results from continuous revision since the early processing. 

The MODIS land-water mask (MOD44W) product provides the mask between land and water 

including both the inland water bodies such as rivers and lakes, and ocean. However, it does not 

distinguish between the ocean and inland water bodies, and serves both the ocean and inland water bodies 

as a single water product. This product has a long history of development. The MOD44W product was 

developed through improvement of the Shuttle Radar Topography Mission’s (SRTM) land-water mask 

with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance 

(NBAR) product, MODIS land cover product, and MODIS–based Mosaic of Antarctica. This product is 

available at 250-m spatial resolution raster grids.  

The MODIS Land Cover Type Product under the International Geosphere-Biosphere Programme 

(IGBP) classification [53] system classifies the cover types using an ensemble supervised classification 

algorithm (decision tree) complemented by the training data from 1860 sites distributed across the 

Earth’s land areas [48].  

The Global Land Cover by National Mapping Organizations (GLCNMO) classifies the water cover 

based on tasseled cap transformation [54] of the MODIS seven bands’ data by referencing with MODIS 

land-water mask product (MOD44W) [49].  

The GlobCover 2009 by European Space Agency (ESA) based on Medium Resolution Imaging 

Spectrometer (MERIS) apply the ISODATA clustering method and labeling by reference data as the 

basic method.  

The water cover mapping at global scale is challenging because the level and turbidity of the surface 

water and the background objects in which they interact with vary significantly. The existing water 

indices applicable to detection and extraction of water cover at local and regional scales cannot work 

efficiently everywhere in the globe. In this research, a new methodology was developed for robust 

detection and mapping of the marine and continental surface water solely based on MODIS based 

multispectral data. The spectral index based mapping approach was chosen for its simplicity,  

cost-effectiveness, and faster reproducibility.  

2. Methodology 

2.1. Proposal of Superfine Water Index (SWI) 

Discriminating the water bodies from dense vegetation and snowy background are difficult with the 

Normalized Difference Water Index (NDWI). Potential of NDWI based discrimination and extraction 

of the water cover becomes worse particularly in northern, higher latitudes where the surface water 

bodies are covered by temporary snowfall, and in the vegetative regions where the shallow water bodies 

are mixed with the vegetation. The Modified Normalized Difference Water Index (MNDWI) and 

Automated Water Extraction Index (AWEI) that use short wave infrared band are more susceptible to 

snow, and cannot work efficiently in snowy regions.  

In this research, a new spectral index called “Superfine Water Index (SWI)” has been developed for 

better detection and discrimination of the surface water everywhere in the globe. The SWI is derived  

by replacing the “Green” in the NDWI with the ‘Saturation (Sat)’ obtained from the HSV  
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(Hue-Saturation-Value) transformation of the RGB composite made up of red (R), green (G), and blue 

(B) bands of the MODIS data. The formulation of the SWI is shown in Equation (5). ܹܵܫ = (ோீ஻)ݐܽܵ − 7 × (ோீ஻)ݐܽܵݎ݅ܰ + 7 × ݎ݅ܰ  (5)

The SWI provides very high contrast between the surface water and non-water cover types including 

the snow and vegetation. The coefficient on the near infrared reflectance in Equation (5) was introduced 

in such a way that it provides high contrast between the saturation values and near infrared reflectance 

of the non-water areas, whereas, at the same time, the raised near infrared reflectance does not reach the 

saturation values of the water areas. The coefficient of 7.0 was used in this research because raising the 

near infrared reflectance up to that level did not interfere with the saturation values of the water areas 

everywhere in the globe while tuning up the contrast of the non-water areas well. The normalization of 

the difference between the saturation (Sat) and near infrared (Nir) is used to standardize the dynamic 

range of the SWI between −1 and 1.  

2.2. Calculation of Water Indices 

The MODIS based 8-day Level 3 Global 500-m Nadir Bidirectional Reflectance Distribution 

Function (BRDF)-Adjusted Reflectance (NBAR) product (MCD43A4; [55]) data between January 2012 

and December 2014 were obtained from the U.S. Geological Survey (USGS). The MCD43A4 product 

has been validated over a number of land cover types by several researchers e.g., [56–61] granting wider 

scientific usage. We used 3-years data from 2012–2014 so as to minimize the void data pixels due to 

cloudy pixels represented by the year 2013. For each time period, the Superfine Water Index (SWI) 

along with other three existing water indices: Normalized Difference Water Index (NDWI), Modified 

Normalized Difference Water Index (MNDWI), and Automated Water Extraction Index (AWEI) were 

calculated. For facilitating further image processing, the water indices were converted into 8-bit 

unsigned integers ranging between 0 and 255. 

The SWI values are proportional to the wateriness of the surface, i.e., the larger the amount of surface 

water, the higher the index values. However, the amount of surface water varies with time; for instance, 

the same area full of water in the wet season may be completely dry in the arid season. In this research, 

we used maximum extent of wateriness observed over a year avoiding temporary flooding. Therefore, 

we computed 90-percentile values from the stack of eight-day period water index images while the visual 

interpretation confirmed that 100-percentile values were contaminated by the signals from temporary 

flooding. The pixels still having the void pixels were filled by replacing the no-data values from another 

MODIS 8-day surface reflectance product (MOD09A1 and MYD09A1) based SWI values calculated 

using similar method. The computation of the percentile values reduced the big volume (900 Gigabytes) 

of data into a tiny single-layered final image (about 1 Gigabyte). 

2.3. Evaluating SWI with Other Indices 

Three land surface types from different locations were chosen for evaluating the water indices: (i) 

snowy region dominated by winter snowfall, (ii) relatively dry region dominated by bare soil, and (iii) 

wet region dominated by dense forests. The selected region of interest (ROI) in snowy (7,259,280 km2), 



Remote Sens. 2015, 7 13812 

 

dry (601,804 km2), and wet (2,603,154 km2) regions are very large and they include a variety of 

background objects. The location map of these three ROIs are displayed in Figure 1.  

  

Figure 1. The location map of three regions of interest (ROIs) used for evaluating the water 

indices, and eight sites used for specific case studies. 

For each ROI, all MODIS scenes available between January 2012 and December 2014 were processed 

to create true color (RGB) composite images using 25-percentile values. The gap-free 90-percentile 

composite of the SWI image was interactively traced over the true color composite images, and water 

pixels were visually extracted by fixing the suitable threshold value between the water and non-water 

pixels. Though this procedure was time-consuming, water cover map capturing finer details of the 

surface water was obtained. This map was used as the reference map for evaluating the water indices. 

Though the reference map relied on the SWI index, this map was constructed by a visual interpretation 

technique, and therefore this map should not bias the comparison of the water indices. The SWI was 

used only to capture finer details of the water bodies while other alternatives were not available.  

The sensitivity of the water indices to water cover was analyzed by preparing sample data of different 

sizes in each region of interest (ROI). For snowy region, the whole image of 8058 × 4203 pixels was 

divided into regular blocks of nine different sizes ranging from 16 × 8 pixels (249,001 samples) to  

161 × 84 pixels (2401 samples). For each block, the average values of water indices and percentage 

water cover were calculated. For the dry region, the whole image of 2489 × 1111 pixels was divided into 

9801 sample blocks with a block of 25 × 11 pixels. Similarly, for the wet region, the whole image of 

4420 × 2738 pixels was divided into 89,401 sample blocks with a block of 15 × 9 pixels. The  

90-percentile composite image of the water indices was used for the sensitivity analysis. The linear 

regression method with Coefficient of Determination (R2) and Root Mean Square Error (RMSE) were 
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used to account for the relationship between the dependent variable (water indices) and independent 

variable (water cover). 

In addition to the sensitivity analysis of the water indices, the monthly variation of the green, near 

infrared, saturation, and SWI were analyzed for each ROI. For this purpose, the sample blocks 

established in previous sensitivity analysis were separated into water and non-water blocks. The blocks 

larger than 75% water cover were used as the water areas; whereas the blocks smaller than 25% water 

cover were used as the non-water areas. This deliberate threshold for the water and non-water blocks 

were used to obtain a large number of samples falling in both groups. For snowy regions, we obtained 

4755 blocks of water areas and 78,767 blocks of non-water areas allowing random selection of 4000 

sample blocks for each of the groups. For dry regions, random sampling of 150 blocks for each of the 

water and non-water areas out of total 160 water and 9171 non-water blocks were used. In wet regions, 

random sampling of 950 blocks out of a total 953 water and 86,208 non-water blocks was done. Using 

all the MODIS (MCD43A4) scenes available between January 2012 and December 2014, monthly 

median composite images were prepared; and mean values of the green, near infrared, saturation, and 

SWI for each block were calculated. 

2.4. Extraction and Mapping of Water Cover  

The coastlines can be represented in terms of highest water line, mean high water line, or mean sea 

level. However, highest water line is the preferred reference for photography and photo interpretation 

based techniques [62,63]. In this research, the coastlines and inland water bodies were extracted based 

on the highest water extent approach avoiding temporary flooding since we used the 90-percentile 

Superfine Water Index (SWI) image.  

The extraction and mapping of the water cover was supported by reference data collected using 

Google Earth images with visual interpretation and expert knowledge. For each of the continental  

non-water and water areas, 500 reference polygons were collected. In addition, 200 lines along the 

coastlines for each of the coastal ocean and coastal land 500-m adjacent to the coastlines were also 

collected. The ocean very far from the coastlines are already labeled as no-data in MODIS data, and 

mapping is not necessary there. For each of the continental water and non-water areas, we extracted 

30,000 points randomly that fall inside the polygon out of 500 polygons; whereas for each of the coastal 

ocean and land areas, we extracted 5,000 points randomly that touch the line out of 200 lines. Out of 

35,000 points for each of the water and non-water areas, 22,500 points were used for mapping; whereas 

12,500 points were used for validation. The 70,000 reference points used in the research are displayed 

in Figure 2. 

The reference polygons and lines were collected from large homogenous regions which did not show 

significant changes over the available time-series images in Google Earth between 2012 and 2014. The 

Google Earth serves as an interactive playground for accessing geo-spatial information by providing 

time-series of massive satellite imagery of very high spatial resolution. There is not another feasible and 

appropriate technology rather than the Google Earth for collecting the reference data for global mapping. 



Remote Sens. 2015, 7 13814 

 

 

Figure 2. Distribution of the reference data belonging to the water and non-water areas used 

in the research.  

We applied random walker algorithm [64] in 90-percentile Superfine Water Index (SWI) image for 

the extraction of water pixels. The random walker algorithm is a graph based image segmentation 

technique that uses each pixel as a node which is connected to neighboring pixels by edges, and the 

edges are weighted to reflect the similarity between the pixels. This algorithm requires a number of 

pixels with known labels called seeds. Given a small number of seeds, one can analytically and quickly 

determine the probability that a random walker starting at each unlabeled pixel will first reach one of the 

pre-labeled pixels. By assigning each pixel to the label for which the greatest probability is calculated, 

a high-quality image segmentation could be obtained [64]. The application of the random walker 

algorithm with the SWI image simplified the overall mapping procedure since both the image 

segmentation and classification could be done simultaneously and automatically in this method. The 

training data collected for each of the water (coastal and continental) and non-water (coastal and 

continental) class were used to supply the seeds as the pre-labeled pixels for running the random walker 

algorithm. The segmentation result of the random walker algorithm was used to extract the water pixels 

from the background of non-water pixels. To avoid the bias related to placement of the seed points, the 

segmentation procedure was separately carried out for each region of 30° longitudes by 30° latitudes, 

and the extracted results were finally merged together to produce a global binary map of the water cover. 

The inland water bodies with diverse water levels and turbidity are different to the coastal water with a 

variety of shore objects. Therefore, the training data from both the coastal and continental water areas 

were used for the extraction of water cover. 
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2.5. Performance Analysis 

The performance of SWI based water cover map was examined in a number of sites consisting of a 

variety of background objects and turbidity of surface water. The locations of these sites used for specific 

case studies are shown in Figure 1. The true-color (RGB) composite images using 25-percentile values 

of the MODIS (MCD43A4) data available between January 2012 and December 2014 were prepared as 

the reference images for examining the SWI based water cover maps. 

The water cover map produced in this research was also compared with five existing global maps: 

Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) database, MODIS  

land-water mask product (MOD44W, 2001 and 2009), MODIS Land Cover Type Product (MCD12Q1 

v5.1, 2012), Global Land Cover by National Mapping Organizations (GLCNMO v2.0, 2008), and 

European Space Agency’s GlobCover 2009. The variation of percentage water cover estimated by each 

map with respect to latitudes at 10° interval was computed by counting all the water pixels. The 

confusion matrix was calculated to assess the accuracy of the water cover map produced using 12,500 

validation points for each of the water and non-water areas.  

3. Results and Discussion 

3.1. Performance of SWI in Snowy Regions 

The reference water map of the snowy region is shown in Figure 3e. The visual interpretation of the 

five water index images with the reference water map in Figure 3 demonstrates that only the Superfine 

Water Index (SWI) and Normalized Difference Water Index (NDWI) images have correctly captured 

the details of water bodies, whereas the Automated Water Extraction Index (AWEI) and Modified 

Normalized Difference Water Index (MNDWI) have failed. 

Figure 4 shows the relationship between the water cover and the water indices using 89,401 samples. 

As shown in Figure 3, the SWI performed best (R2 = 0.95, RMSE = 5.06) followed by the NDWI  

(R2 = 0.58, RMSE = 15.15). The MNDWI and AWEI could not correctly explain the variation of water 

cover. The short wave infrared is affected by the snow, and therefore any index using the short wave 

infrared did not work in the snowy region.  

The results did not vary significantly by increasing or decreasing the sample sizes; therefore, the 

analyses using a single set of samples are displayed and discussed for all regions. 

The monthly variation of the green, near infrared, saturation, and SWI in this snowy region are shown 

in Figure 5.  

As shown in Figure 5, both the green and near infrared reflectance of the water areas showed a similar 

trend of variation though it was slightly different for non-water areas. However, the saturation of both 

the water and non-water areas showed different trends of variation than the near infrared reflectance. 

The SWI based on the saturation and near infrared showed high contrast between the water and  

non-water areas for most of the months. 
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Figure 3. Plotting of four water indices and water cover map in a snowy region: (a) 

Automated Water Extraction Index (AWEI), (b) Modified Normalized Difference Water 

Index (MNDWI), (c) Normalized Difference Water Index (NDWI), (d) Superfine Water 

Index (SWI), (e) Reference water cover map. 
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Figure 4. The sensitivity of different water indices to the water cover in a snowy region: (a) 

Automated Water Extraction Index (AWEI) vs. water cover, (b) Modified Normalized 

Difference Water Index (MNDWI) vs. water cover, (c) Normalized Difference Water Index 

(NDWI) vs. water cover, (d) Superfine Water Index (SWI) vs. water cover. 
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Figure 5. Monthly variation of different parameters over the water and non-water areas in a 

snowy region: (a) Green reflectance, (b) Near infrared reflectance, (c) Saturation values, (d) 

Superfine Water Index (SWI) values 

3.2. Performance of SWI in Dry Regions 

The reference water map of the dry region is shown in Figure 6 along with four different water  

index images. 

In the dry region, all the indices showed higher sensitivity to the water cover than in the snowy region 

(Figure 7). Nevertheless, the SWI established the strongest relationship (R2 = 0.97, RMSE = 2.59) with 

the water cover compared to any existing indices. Among the existing indices, the NDWI was best  

(R2 = 0.81, RMSE = 6.76). Though the detail of water bodies was not captured by the NDWI in the 

snowy region, it has estimated the water cover well in the dry region. This dry region also is not 

completely free from snow. The short wave infrared based water indices (MNDWI and AWEI) did not 

work very well. 
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Figure 6. Plotting of four water indices and water cover map in a dry region: (a) Automated 

Water Extraction Index (AWEI), (b) Modified Normalized Difference Water Index 

(MNDWI), (c) Normalized Difference Water Index (NDWI), (d) Superfine Water Index 

(SWI), (e) Reference water cover map. 
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Figure 7. The sensitivity of different water indices to the water cover in a dry region:  

(a) Automated Water Extraction Index (AWEI) vs. water cover, (b) Modified Normalized 

Difference Water Index (MNDWI) vs. water cover, (c) Normalized Difference Water Index 

(NDWI) vs. water cover, (d) Superfine Water Index (SWI) vs. water cover.  

The monthly variation of the green, near infrared, saturation, and SWI over the water and non-water 

areas in a dry region is shown in Figure 8. 

Though both the green and near infrared bands showed a similar trend of variation over the year, for 

the water areas, the green reflectance was slightly larger than the near infrared reflectance. The saturation 

values showed different trends of variation than the near infrared reflectance for the water areas. The 

SWI provided high contrast between the water and non-water areas. 

The green and near infrared reflectance observed in Figure 5 in the snowy region is dramatically 

higher than in Figure 8 in the dry region. In the presence of snow, not only the green reflectance but also 

the near infrared reflectance further reduced the discriminability between the water and non-water areas.  
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Figure 8. Monthly variation of different parameters over the water and non-water areas in a 

dry region: (a) Green reflectance, (b) Near infrared reflectance, (c) Saturation values,  

(d) Superfine Water Index (SWI) values. 

3.3. Performance of SWI in Wet Regions 

The reference water map of the wet region is shown in Figure 9 along with four different water index 

images used. 

In the wet region, all the water indices worked well for the estimation of water cover (Figure 10). 

Nevertheless, the SWI provided the strongest relationship (R2 = 0.88, RMSE = 4.22) with the water cover 

compared to any existing indices. Among the existing indices, the AWEI performed best (R2 = 0.73, 

RMSE = 6.28). This wet region dominated by dense forests is completely free from snow. The short 

wave infrared based water indices (MNDWI and AWEI) which were not working in snowy and dry 

regions worked well in this wet region. However, the SWI worked very well in each region in  

this research. 
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Figure 9. Plotting of four water indices and water cover map in a wet region: (a) Automated 

Water Extraction Index (AWEI), (b) Modified Normalized Difference Water Index 

(MNDWI), (c) Normalized Difference Water Index (NDWI), (d) Superfine Water Index 

(SWI), (e) Reference water cover map. 
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Figure 10. The sensitivity of different water indices to the water cover in a wet region: (a) 

Automated Water Extraction Index (AWEI) vs. water cover, (b) Modified Normalized 

Difference Water Index (MNDWI) vs. water cover, (c) Normalized Difference Water Index 

(NDWI) vs. water cover, (d) Superfine Water Index (SWI) vs. water cover. 

The monthly variation of the green, near infrared, saturation, and SWI values over the water and  

non-water areas in a wet region is shown in Figure 11. Due to the presence of dense vegetation, the green 

reflectance is not very sensitive to the water cover. However, the near infrared reflectance is showing 

high contrast between the water and non-water areas. Similar to the green reflectance, the saturation 

from the visible wavelength regions is also not very sensitive to the water cover. However, for water 

areas, the saturation values are higher than the near infrared reflectance as in the snowy and dry regions. 

For non-water areas, when the near infrared reflectance is uplifted by introducing the coefficient to it, 

high contrast with the saturation values was obtained. In this research, the coefficient of 7.0 was used so 

that the raised near infrared reflectance by this level did not interfere with the saturation values of the 

water areas everywhere in the globe. Therefore, the SWI has worked very well for discriminating the 

water areas in all months.  
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Figure 11. Monthly variation of different parameters over the water and non-water areas in 

a wet region: (a) Green reflectance, (b) Near infrared reflectance, (c) Saturation values, (d) 

Superfine Water Index (SWI) values. 

The true-color composite based saturation values secured very large values compared to the near 

infrared reflectance in water areas for all the regions under research. For discriminating the water areas 

from non-water areas, the near infrared reflectance of the non-water areas have to be larger than the 

saturation values. However, near infrared reflectance of the non-water areas was slightly lower than the 

saturation values. Therefore, the near infrared reflectance was uplifted by introducing the coefficient to 

it. Multiplying the near infrared reflectance by the coefficient of 7.0 substantially raised the reflectance 

of the non-water areas, but slightly increased the reflectance of the water areas because the near infrared 

reflectance of the water areas was very low. The raised near infrared reflectance of the water areas also 

did not hit the saturation values of the water areas because the saturation values of the water areas were 

very large.  

The NDWI using the green and near infrared reflectance should discriminate the water areas as long 

as the green reflectance is larger than the near infrared reflectance for the water areas; and for the  

non-water areas, the near infrared reflectance is larger than the green reflectance. The green band 

maintained slightly larger reflectance of the water areas than the near infrared band in dry and wet 
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regions providing the discriminability of the water areas. However, in the snowy region, due to the 

presence of snow, not only the green reflectance but also the near infrared reflectance of both the water 

and non-water areas further reduced the discriminability of the NDWI. The partial discrimination in the 

snowy region by the NDWI was achieved because the near infrared reflectance of the non-water areas 

was larger than that of the water areas mainly in summer months. Raising the infrared reflectance hits 

the green reflectance of water areas, and it does not work in case of NDWI. However, the combination 

of the saturation and uplifted near infrared reflectance provided superior discriminability of the water 

areas in all the snowy, dry, and wet regions. 

Since the SWI measures wetness of the region, when the water bodies are covered by snow it cannot 

detect the hidden water surface. Therefore, the SWI has discriminated the water areas during summer 

months only (Figures 5d and 8d). In the snowy region (Figure 5a,b), the higher reflectance of the green 

and near infrared bands during winter months compared to the summer months are demonstrated very 

clearly. This is also seen in the dry region (Figure 8a,b) during a few months in winter which there was 

snow fall but not on the same scale as in the snowy region. However, in the wet region dominated by 

forests, the winter snowfall is completely absent (Figure 11a,b). Therefore, in the wet region, the SWI 

discriminated the water surface from the background of non-water surfaces throughout the year  

(Figure 11d). However, mapping of global water cover is based on the definition of maximum extent of 

water cover observed in a region avoiding temporary flooding. 

3.4. Performance of the Water Map  

The global water cover map of year 2013 produced through the research is shown in Figure 12. 

 

Figure 12. Global water cover map of 2013 produced through the research. 

The performance of the SWI based water cover map was examined in a number of places consisting 

of a variety of background objects and turbidity of water bodies. In spite of a variety of water turbidities 

as seen in Figure 13a, the SWI successfully discriminated the surface water (Figure 13b) because its 

values over the turbid water are always higher than the background values (Figure 13d). The extracted 

water cover in Figure 13c also matches very well with the visually recognized water cover in Figure 13a.  
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Figure 13. Performance of SWI based extraction of water cover in case of varied turbidity 

of water bodies: (a) MODIS true-color image, (b) SWI image, (c) Extracted water cover, (d) 

Profile plot of SWI along the red line drawn. 

In Figure 14, the SWI efficiently detected very narrow water bodies of water as well. The presence 

of algal bloom in Lake Erie has no effect on the SWI based extraction of the water cover as shown  

in Figure 15. The aerial proportion of the water seen in the true-color image matches well with the 

extracted water cover. In case of dark soils and high sediments in Figure 16, the SWI correctly 

discriminated the surface water, and the extracted water cover is very similar to the water cover existing 

on the ground. In case of coastal zones with varied shore objects and turbidity as shown in Figure 17, 

since the SWI provides high contrast between the surface water and non-water areas, the water cover 

was efficiently extracted and the coastlines were correctly delineated. The MODIS based true-color 

image in Figure 18 shows the presence of both the turbid and non-turbid water surrounded by dense 
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vegetation. Nevertheless, the SWI efficiently discriminated both types of water, and the extracted cover 

map is very similar to the photo interpreted water cover. Figures 19 and 20 demonstrate the performance 

of SWI in case of volcanic areas. Though the SWI values are slightly higher in the active volcanic pixels 

than in other background pixels, they are far less than the values of the water areas. Therefore, the SWI 

based cover map worked perfectly, even in the volcanic regions (Figures 19c and 20c). The site-specific 

case studies conducted in a number of locations confirmed the reliability of the SWI based technique for 

the extraction and mapping of water cover. The credit for successful extraction and mapping of the water 

cover in spite of a variety of background objects and turbidity of water goes to SWI. The SWI was 

designed in such a way that it could broadcast high contrast between the water and non-water areas. 

Achieving the high contrast is important for the extraction and mapping of water cover because it 

interacts with a number of complex background objects at a global scale. 

 

Figure 14. Performance of SWI based extraction of water cover in case of narrow water 

bodies of water bodies: (a) MODIS true-color image, (b) SWI image, (c) Extracted water 

cover, (d) Profile plot of SWI along the red line drawn. 
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Figure 15. Performance of SWI based extraction of water cover in case of algal bloom: (a) 

MODIS true-color image, (b) SWI image, (c) Extracted water cover, (d) Profile plot of SWI 

along the red line drawn. 
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Figure 16. Performance of SWI based extraction of water cover in case of dark soils and 

high sediments: (a) MODIS true-color image, (b) SWI image, (c) Extracted water cover,  

(d) Profile plot of SWI along the red line drawn. 
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Figure 17. Performance of SWI based extraction of water cover in case of coastal zone with 

varied shore objects and turbidity: (a) MODIS true-color image, (b) SWI image, (c) 

Extracted water cover, (d) Profile plot of SWI along the red line drawn. 
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Figure 18. Performance of SWI based extraction of water cover in case of dark vegetation 

with varied turbidity of water bodies: (a) MODIS true-color image, (b) SWI image, (c) 

Extracted water cover, (d) Profile plot of SWI along the red line drawn. 
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Figure 19. Performance of SWI based extraction of water cover in the case of volcanoes: 

(a) MODIS true-color image, (b) SWI image, (c) Extracted water cover, (d) Profile plot of 

SWI along the red line drawn. 
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Figure 20. Performance of SWI based extraction of water cover in the case of volcanoes: 

(a) MODIS true-color image, (b) SWI image, (c) Extracted water cover, (d) Profile plot of 

SWI along the red line drawn. 

The water cover estimated by our water map was compared with the following seven types of existing 

water maps/products: Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) 

database, MODIS land-water mask product (MOD44W, 2001 and 2009), MODIS Land Cover Type 

Product (MCD12Q1 v5.1, 2012), Global Land Cover by National Mapping Organizations (GLCNMO 

v2.0, 2008), and European Space Agency’s GlobCover 2009. The percentage water cover estimated by 

each map was calculated at every 10° interval of latitudes over the whole longitudinal range  

(−180°–180°). The variation of the water cover with respect to latitudes is plotted in Figure 21. In 

addition, the percentage of water cover estimated by each map at every interval of 10° latitudes is shown 

in Table 1. 
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Figure 21. Variation of percentage water cover with respect to latitudes estimated by seven 

different maps. The results over the full latitudes in (a) are zoomed in to show details in (b) 

between 40° and 70° latitudes. 

The variation of the water cover below −60° latitudes in the Southern hemisphere as distinctly seen 

in Figure 21a is due to variation of the boundary of Antarctica used by different maps. The boundary of 

Antarctica estimated by our map matches well with the GSHHG-2015. However, the most important 

variation of the water cover among the maps are seen between 40° and 70° latitudes. The MOD44W 

product originally in 250-m resolution is overestimating the water cover in this region compared to all 

other maps. The GLCNMO-2008 relied on MOD44W-2001 product as the reference data [49] is also 

overestimating the water cover compared to our map. The details of water bodies as reported by the 

GLCNMO-2008 and MOD44W-2001/MOD44W-2009 are not seen by 463-m resolution  

multi-spectral imaging. The difference between MOD44W-2001 and MOD44W-2009 is very minor 

everywhere in the globe besides Antarctica where MOD44W-2009 is not available. Overall, our map 

was very similar to the MODIS-2012 everywhere in the globe except in Antarctica. Both the  

MODIS-2012 and our map-2013 used the MODIS data, and the years they represent are very close to 

each other. 
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Table 1. Estimates of percentage water cover by different maps at every interval of 10° latitudes. 

Latitudes Percentage Water Cover Based on Different Maps 

 MOD44W 
2001 

MOD44W 
2009 

GSHHG 
2015 

MODIS 
2012 

GLCNMO 
2008 

GlobCover 
2009 

Our map 
2013 

90°N–80°N 94.36 94.36 94.26 94.52 94.01 93.97 93.86 
80°N–70°N 71.91 71.92 71.08 70.83 71.97 70.67 70.81 
70°N–60°N 32.62 32.75 30.71 30.68 31.97 30.65 30.72 
60°N–50°N 45.25 45.25 44.40 44.38 44.98 45.40 44.46 
50°N–40°N 50.10 50.10 50.06 49.64 49.92 50.16 49.73 
40°N–30°N 57.86 57.86 57.87 57.68 57.79 57.87 57.84 
30°N–20°N 62.52 62.52 62.52 62.41 62.48 62.52 62.48 
20°N–10°N 73.83 73.84 73.90 73.72 73.79 73.83 73.78 
10°N–00°N 77.42 77.43 77.49 77.31 77.39 77.43 77.36 
00°N–10°S 76.89 76.90 76.86 76.70 76.83 76.91 76.81 
10°S–20°S 78.14 78.14 78.15 78.05 78.10 78.14 78.16 
20°S–30°S 77.01 77.01 76.97 76.91 76.97 77.02 76.97 
30°S–40°S 88.92 88.92 88.85 88.85 88.90 88.93 88.91 
40°S–50°S 96.95 96.97 96.93 96.92 96.95 96.96 96.93 
50°S–60°S 99.23 99.24 99.23 99.21 99.23 99.26 99.21 
60°S–70°S 90.33 NA 89.05 90.25 90.31 NA 89.01 
70°S–80°S 34.96 NA 26.07 34.69 34.89 NA 26.08 
80°S–90°S 23.28 NA 0.00 6.34 6.69 NA 0.00 

Table 2 shows the confusion matrix computed between the photo-interpretation based validation data 

and water cover map produced in this research. The overall accuracy of our water cover map was 

calculated to be 92.84%. 

Table 2. Confusion matrix of the global water map produced in this research. 

Predicted Photo-Interpretation Accuracy 

Water ( 12,500 points) Non-water (12,500 points)  

Water 10,867 157 98.57% (User) 

Non-water  1633 12,343 88.31% (User)  

Accuracy 86.93% (Producer) 98.74% (Producer) 92.84% (Overall) 

4. Conclusions 

The breakthrough of the true-color composite based saturation is that it secured very large values 

compared to the near infrared reflectance in water areas. The normalized difference between the 

saturation values and the uplifted near infrared reflectance provided a standard measurement of the 

wetness of the surface with the dynamic range of −1 to 1. The resulted water index called Superfine 

Water Index (SWI) captured finer details of the surface water in most of the months for all land surface 

types in the research. The use of 90-percentile SWI values for the extraction and mapping of the water 

cover assured much higher contrast of the water pixels from any backgrounds despite that MODIS data 

cannot discriminate the water areas in every month in snowy regions.  
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The performance of the water indices strongly varied with the type of land surface. In the snowy 

region dominated by winter snow falls, only the NDWI and SWI worked, explaining 58% and 95% 

variation of the water cover, respectively. The AWEI and MNDWI using the shortwave infrared 

reflectance failed to capture the variation of water cover there. In the dry region dominated by bare soil 

and permanent snow, though the AWEI and MNDWI performed better in the snowy region, only the 

NDWI and SWI worked satisfactorily, explaining 81% and 97% variation of the water cover, 

respectively. All the indices worked well in the case of the wet region dominated by dense forest. 

However, SWI and AWEI worked most effectively, by explaining 88% and 73% variation of the water 

cover, respectively. The sensitivity analysis of the water indices to the water cover in the major types of 

land surface in the research proved the supremacy of the newly developed SWI because it was most 

sensitive to the water cover compared to any existing water indices. The analysis of monthly variations 

of the SWI showed that the SWI could efficiently discriminate the water areas in most months in the 

snowy and dry regions, and in all months in the wet region. Moreover, the SWI provided high contrast 

between the water and non-water pixels. Achievement of this high contrast greatly influences the success 

of the water index for extracting the water cover, because the water bodies are usually mixed with 

complex types of background objects. The sensitivity of the SWI was recursively tested in different land 

surfaces and was found to be the best measure of surface water cover. 

Since the SWI measures the wetness of a surface, it should be capable of detecting the surface water 

changes by weather patterns like El Niño and La Niña, extreme weather events such as flooding, and 

phenology of the water bodies. However, in this research, the potential of the SWI was assessed for 

extraction and mapping of the marine and continental surface water at a global scale. We worked 

according to the definition of annual maximum extent of surface water avoiding temporary flooding. 

Since the inland water bodies with diverse water levels and turbidity surrounded by complex mixtures 

of land cover types are very different to the ocean water and shore objects, training data from both the 

ocean water and inland water bodies were supplied for extracting and mapping the water cover at a 

global scale. 

A brand new map of global water cover of the year 2013 was produced by designing a new 

methodology. The overall accuracy of 92.84% of our water cover map confirmed the reliability of the 

methodology developed in this research. The reference library constructed in this research can run the 

overall mapping procedure automatically. However, the global water cover map produced using the SWI 

did not differ significantly to the existing water maps. The water cover estimated by this research 

matched very well with the estimates by MODIS-2012 in most of the geographical regions. None of the 

existing maps were created by using water indices. The MODIS Land cover type product used supervised 

classification (decision trees) approach for classifying the water areas. It was based on 135 feature 

images as the inputs created from monthly composites of MODIS seven bands, land surface temperature 

(LST), enhanced vegetation index (EVI), and their annual metrics (minimum, maximum and mean 

values); and supported by training data from 1860 sites distributed across the Earth’s land  

areas [48]. The water cover was not mapped separately in the case of this research. Since different 

mapping approaches and methodologies were used by each of the existing maps and they were produced 

by using composite data of multiple years, the water cover estimations by them are not directly 

comparable. Moreover, reproducing the water cover map for the year 2013 by exactly following their 

techniques and comparing with the new results is also not feasible due to many reasons. Therefore, the 
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comparison results shown in Figure 21 and Table 1 are for reference purposes only to show how the 

estimates differ to each other. The similarity of our map using new methodology for the MODIS-2012 

map based on a supervised classification approach means that the new mapping methodology works 

well. We expect that this methodology can contribute to seasonal and annual change analysis of water 

cover at a global scale. 
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