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Abstract: In this paper, a general nearest feature line (NFL) embedding (NFLE) transformation 

called fuzzy-kernel NFLE (FKNFLE) is proposed for hyperspectral image (HSI) 

classification in which kernelization and fuzzification are simultaneously considered. Though 

NFLE has successfully demonstrated its discriminative capability, the non-linear manifold 

structure cannot be structured more efficiently by linear scatters using the linear NFLE 

method. According to the proposed scheme, samples were projected into a kernel space and 

assigned larger weights based on that of their neighbors. The within-class and between-class 

scatters were calculated using the fuzzy weights, and the best transformation was obtained 

by maximizing the Fisher criterion in the kernel space. In that way, the kernelized manifold 

learning preserved the local manifold structure in a Hilbert space as well as the locality of 

the manifold structure in the reduced low-dimensional space. The proposed method was 

compared with various state-of-the-art methods to evaluate the performance using three 

benchmark data sets. Based on the experimental results: the proposed FKNFLE 

outperformed the other, more conventional methods. 
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1. Introduction 

Dimensionality reduction (DR) in hyperspectral image (HSI) classification is a critical issue during 

data analysis because most multispectral, hyperspectral, and ultraspectral images generate  

high-dimensional spectral images with abundant spectral bands and data. However, it is challenging to 

classify these spectral data because a vast amount of samples has to be collected for training beforehand. 

Besides, the spectral properties of land covers are too similar to clearly separate them. Hence, an 

effective DR is an essential step to extract the salient features for classification. 

Recently, a number of DR methods have been proposed that can be classified into three categories: 

linear analysis, manifold learning, and kernelization. Those using linear analysis try to model the linear 

variation of samples and find a transformation to maximize or minimize the scatter matrix, e.g., principal 

component analysis (PCA) [1], linear discriminant analysis (LDA) [2], and discriminant common 

vectors (DCV) [3]. Sample scatters are represented in the global Euclidean structure in these methods. 

They work well for DR or classification if samples are linearly separated or are distributed in a Gaussian 

function. However, when samples are distributed in a manifold structure, the local structure of a sample 

in a high-dimensional space is not apparent when using global measurement. In addition, the 

classification performance in the case of linear analysis methods would deteriorate when the decision 

boundaries are predominantly nonlinear [4]. Manifold learning methods have been proposed to reveal 

the local structure of samples. He et al. [5] propose the locality preserving projection (LPP) method to 

preserve the local structure of training samples for face recognition. Since LPP presents sample scatter 

using the relationship between neighbors, the local manifold structure is preserved and the performance 

is more effective than in the case of the linear analysis methods. Tu et al. [6] used the Laplacian eigenmap 

(LE) method for land cover classification using polarimetric synthetic aperture radar data. The LE 

algorithm reduces the dimensions of features from a high-dimensional polarimetric manifold space to 

an intrinsic low-dimensional manifold space. Wang and He [7] investigated the LPP for DR in HSI 

classification. Kim et al. [8] utilized the locally linear embedding (LLE) method to reduce the 

dimensionality of HSIs. Li et al. [9,10] used the local Fisher discriminant analysis (LFDA) method which 

integrates the properties of LDA and LPP to reduce the dimensionality of HSI data. Luo et al. [11] 

propose a discriminative and supervised neighborhood preserving embedding (NPE) method for feature 

extraction in HSI classification. Zhang et al. [12] propose a manifold regularized sparse low-rank 

approximation, which treats the hyperspectral image as a data cube for HSI classification. These 

manifold learning methods all preserve the local structure of samples and improve on the performance 

of conventional linear analysis methods. However, according to Boots and Gordon [13], the applicability 

of linear manifold learning is limited to noises. Generally, the discriminative salient features of training 

samples are extracted using certain evaluation processes. An appropriate kernel function could improve 

the performance for the given method [14]. The kernelization approaches have been proposed for 

improving the performance of HSI classification. Boots and Gordon [13] introduced a kernelization 
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method to alleviate the limitation of manifold learning. Scholkopf et al. [15] propose a kernel PCA 

(KPCA) method for nonlinear DR. KPCA generates a high-dimensional Hilbert space to extract the non-

linear structure that is missed by PCA. Furthermore, Lin et al. [16] propose a general framework for 

multiple kernel learning during DR. They unify the multiple kernel representation, and the multiple 

feature representations of data are consequently revealed in a low dimension. On the other hand, a 

composite kernel scheme, which is a linear combination of multiple kernels, extracts both spectral and 

spatial data [17]. Chen et al. [18] present a sparse representation of kernels for HSI classification. A 

query sample is represented via all training samples in an induced kernel space. Moreover, pixels within 

a local neighborhood are also represented by the combination of training samples. Similar to the idea of 

multiple kernels, Zhang et al. [19] proposed a multiple-features combination method for HSI classification, 

which combined spectral, texture, and shape features to increase the HSI classification performance. 

In the previous works, the nearest feature line (NFL) strategy was embedded in the linear transformation 

for dimension reduction on face recognition [20] and HSI classification [21]. However, the nonlinear 

and non-Euclidean structures were not efficiently extracted using the linear transformation. Fuzzification 

and kernelization are two efficient tools for enhancement in nonlinear spaces. The fuzzy methodology 

was further adopted in previous work [26]. In this study, a general NFLE transformation, called fuzzy-

kernel NFLE, was extended for feature extraction in which kernelization and fuzzification were 

simultaneously considered. In addition, more experimental analysis was conducted in this study. Three 

benchmark data sets were evaluated in this work instead of one set as in [26]. The proposed method was 

compared with state-of-the-art algorithms for performance evaluation. 

The rest of this paper is organized as follows: Some related works are reviewed in Section 2.  

In Section 3, the kernelization and fuzzification strategies are introduced and incorporated into the NFLE 

algorithm. Several experiments were conducted to show the effectiveness of the proposed method as 

reported in Section 4. Furthermore, the comparisons with several state-of-the-art HSI classification 

methods are given. Finally, conclusions are given in Section 5. 

2. Related Works 

In this study, three approaches, nearest feature line embedding (NFLE) [20,21], kernelization [15], 

and fuzzy k nearest neighbor (FKNN) [22], were considered to reduce the feature dimensions for HSI 

classification. Before the proposed methods, brief reviews of NFLE and kernelization methods are 

presented in the following: given N  d-dimensional training samples   Nd

N RxxxX  ,,, 21   consisting 

of CN  land-cover classes 
CNCCC ,,, 21  . The new samples in a low-dimensional space were obtained 

by the linear projection i

T

i xwy  , where w  is a found linear projection matrix for DR.  

2.1. Nearest Feature Line Embedding (NFLE) 

NFLE is a linear transformation for DR. The sample scatters are represented in a Laplacian matrix 

form by using the point-to-line strategy which originated from the nearest linear combination (NLC) 

approach [23]. The objective function is defined and minimized as follows: 
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Here, point  inm yL ,  is a projection point on line nmL ,  for point iy , and weight  inm yl ,  (being 1 or 0) 

represents the connectivity relationship from point iy  to a feature line nmL ,  that passes through two 

points my  and ny . The projection point  inm yL ,  is represented as a linear combination of points my  

and ny :    mnnmminm yytyyL  ,, , in which        nm

T

nmnm

T

minm yyyyyyyyt ,  , and 

nmi  . Using simple algebra operations, the discriminant vector from point iy  to the projection point  

 inm yL ,   can be represented as  j jjii yMy ,  , in which two values in the ith row in matrix M  are set 

as mnmi tM ,,  , nmni tM ,,  , and 1,,  nmmn tt , when weight   1, inm yl . The other values in the ith row 

are set as zero, if nmj  . The mean squared distance in Equation (1) for all training points to their 

NFLs is next obtained as  wXLXwtr TT
, in which WDL  , and matrix D  is a matrix of the column 

sums of the similarity matrix W . From the results of Yan et al. [24], matrix W  is defined as 

  ji

TT

ji MMMMW ,,   when ji  , and is zero otherwise;  
j jji yM 1, . Matrix L  in Equation 

(1) is represented as a Laplacian matrix. For more details, refer to [20,21].  

Considering the class labels in supervised classification, two parameters 1K  and 2K  are manually 

determined in calculating the within-class scatter wS  and the between-class scatter bS , respectively: 
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 kiK CxF ,
1

 indicates the set of 1K  NFLs within the same class, kC , of point ix , i.e., 1)(, inm yl , and 

 liK CxF ,
2

 is a set of 2K  NFLs belonging to the different classes of point ix . The Fisher criterion 

 wwwwtr w

T

b

T SS  is then maximized to find the projection matrix w , which is composed of the 

eigenvectors with the corresponding largest eigenvalues. A new sample in the low-dimensional space 

can be obtained by the linear projection xwy T , and the nearest neighbor (one-NN) matching rule is 

applied for template matching. 

2.2. Kernelization of LDA 

In kernel LDA, considering the nonlinear mapping function from a space X  to a Hilbert space H , 

  ΗxXx   : , the within-class and between-class scatter in space H  are calculated as 

  



Remote Sens. 2015, 7 14296 

 

 

      
 
















C

ki

N

k Cx

T

kikiw xx
1


S , and (4) 

  



CN

k

T

kkb

1

 
S  (5) 

Here,   
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k

k

n

i ink x
1

1   and   


N

i iN x
1

1   represent the class mean and the population mean in 

space H , respectively. To generalize LDA to the nonlinear case, the dot product trick is exclusively 

used. The expression of dot product on the Hilbert space H  is given by the following kernel function: 

)()(),( , ji

T

jiji xxkxxk  . Let the symmetric matrix K  of N  by N  be a matrix composed of dot 

product in feature space H , i.e.,      jijiji kxxxxK , ),(    and, Nji ,...,2,1,  . The kernel 

operator K  makes it possible for the construction of the linear separating function in space H  to be 

equivalent to that of the nonlinear separating function in space X . Kernel LDA also maximizes the 

between-class scatter and minimizes the within-class scatter, i.e.,  wSwwSw w

T

b

T max . This 

maximization is equivalent to the following eigenvector resolution: wSwS bw

  . There is a set of 

coefficients   for  


N

i ii xw
1

)(  such that the largest eigenvalue gives the maximum of the scatter 

quotient wSwwSw w

T

b

T   . 

3. Fuzzy Kernel Nearest Feature Line Embedding (FKNFLE) 

According to the analyses above, a training DR scheme effectively extracts the discriminant features 

from the non-Euclidean and non-linear space. To this end, fuzzy kernel nearest feature line embedding 

(FKNFLE) is proposed for HSI classification. The idea of FKNFLE is to incorporate the fuzziness and 

kernelization into the manifold learning method. The kernel function not only generates a non-linear 

feature space for discriminant analysis, but also increases the robustness to noise during the training 

phase. Manifold learning methods preserve the local structure of samples in the Hilbert space. On the 

other hand, the fuzzy kernel nearest neighbor method extracts the non-Euclidean structures of training 

samples to enhance discriminative capability. NFLE has been successfully applied in HSI classification. 

Noise variations and high-degree non-linear data distributions limit the performance of manifold 

learning. A kernel trick is used to alleviate this problem as introduced in the following. 

3.1. Kernelization of NFLE 

The kernelization function adopted in this study was inspired by that in [15]. Let 

  ΗxXx   : be a nonlinear mapping from a low-dimensional space to a high-dimensional 

Hilbert space H . The mean squared distance for all training points to their NFLs in the Hilbert space is 

written as follows: 
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Then, the object function in Equation (6) is minimized and expressed as a Laplacian matrix. The 

eigenvector problem of kernel NFLE in the Hilbert space is expressed as: 

         wXDXwXLX TT    (7) 

To extend NFLE to its kernel version, the implicit feature vector, )(x , does not need to be obtained 

explicitly. The dot product expression of two samples is exclusively applied in the Hilbert space with a 

kernel function as follows:      jiji xxxxK  ,,  . The eigenvectors of Equation (7) are represented 

by the linear combinations  1x ,  2x ,  ,  Nx . The coefficient i  is    αXxw
N

i ii   1
 

where   NT

N R  ,,, 21 α . Then, the eigenvector problem is as follows:  

 KDKKLK  . (8) 

Let the coefficient vectors, N ,,, 21  , be the solutions of Equation (8) in a column format. Given 

a testing point, z , the projections onto the eigenvectors, kw , are obtained as follows:
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where k

i  is the ith element of the coefficient vector, k . The kernel function RBF (radial basis function) 

is used in this study. Thus, the within-class and between-class scatters in a kernel space are defined as 

follows:  
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The kernelized manifold learning preserves the non-linear local structure in a Hilbert space. The 

distances in the NFLE approach are calculated by the Euclidean distance-based measurement. On the 

other hand, the non-Euclidean structure of training samples can be further extracted by fuzzification. 

The FKNN algorithm [22] enhances the discriminant power among samples by assigning the higher 

membership grades to the samples whose neighbors are within the same class. By doing so, the non-

Euclidean structures are extracted, and the discriminative power of samples can be enhanced. 
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3.2. Fuzzification of NFLE 
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Here, each sample is assigned a fuzzy grade, )( iy . Element jiM ,  denotes the connectivity 

relationship between point iy  and line nmL ,  which is the same as that in Equation (1). Two non-zero 

terms, nmni tM ,,   and mnmi tM ,,  , are set, and 1,  j jiM . Using simple algebra operations, the 

objective function with fuzzification is represented in a Laplacian matrix in which the fuzzy terms,  iy , 

constitute the column vector, F ,with size 1N , and E  is a row vector of all those with size N1 . 

Similarly, given N samples       Nxxx  ,,,(X) 21   in a Hilbert space, the membership grade 

of a specified sample,  ix , and its 3K  neighbors, is designed in the following equation for computing 

the within-class scatter:
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Here, value iq  is the number of samples whose labels are the same as that of  ix  among 3K  nearest 

neighbors, and withinθ  is a manual threshold. If 3Kqi  , then )( ix  returns to 1, i.e., all neighbors are 

in the same class. Adding the fuzzy term )( ix , the within-class scatter matrix becomes: 
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Similarly, a fuzzy term )( ix  is also adopted to evaluate the membership grade of  ix  and its 

neighbors during the computation of between-class scatter as follows:
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Here, value ip  is the number of samples with labels different from  ix  among 4K  nearest 

neighbors, and betweenθ  is a given threshold. If 4Kpi  , term )( ix  returns to 1. That means that all 

neighbors have labels different from  ix . The fuzzy term )( ix  is added into the between-class scatter 

matrix to generate a new one as:  
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Hence, kernelization and fuzzification are simultaneously integrated into the NFLE transformation 

for feature extraction. The pseudo-codes of algorithm FKNFLE are listed in Table 1. It is proposed in 

this paper that a general format for the NFLE learning method using kernelization and fuzzification be 

used for DR. The advantages of the proposed method are threefold: the kernelization strategy generates 

a non-linear feature space for the discriminant analysis and increases the robustness to noise for manifold 

learning; the kernelized manifold learning preserves the local manifold structure in a Hilbert space as 

well as the locality of the manifold structure in the reduced low-dimensional space; non-Euclidean 

structures are extracted for improving discriminative abilities using the FKNN strategy. 

Table 1. The pseudo-codes of FKNFLE (fuzzy-kernel nearest feature line) training algorithm. 

Input: 
A d -dimensional training set  NxxxX ,,, 21  consists of Nc classes projected into a 

Hilbert space         NxxxX  ,,, 21 
 
, and parameters 1K , 2K , 3K , 4K . 

Output: The projection transformation w . 

Step 1: 
PCA projection: Samples are transformed from a high-dimensional space into a low-

dimensional subspace by matrix PCAw . 

Step 2: 

Computation of the within-class scatter: The possible feature lines nmL ,  
 are generated from 

the samples within the same class for a specified point  ix . Find 3K
 
 nearest neighbors of 

point  ix  to calculate the fuzzy membership values  ix
 
by Equation (13). Select 1K  

vectors     inmi xLx  ,  with the smallest distances, and compute the within-class scatter 
F

w


S  by Equation (14). 

Step 3: 

Computation of the between-class scatter: Generate the feature lines from the samples whose 

labels are different from that of point  ix . Find 4K  nearest neighbors of point  ix  to 

calculate the fuzzy membership values  ix  by Equation (15). Select 2K  discriminant 

vectors     inmi xLx  ,  with the smallest distances from point  ix  to the feature lines. 

The between-class scatter 
F

b


S  is obtained from Equation (16). 

Step 4: 

Fisher criterion maximization: The Fisher criterion 
F

w

F

bw 
SSmaxarg*   is maximized to 

obtain the best transformation matrix, which is composed of   eigenvectors with the largest 

eigenvalues. 

Step 5: Output the final transformation matrix: 
*www PCA . 

4. Experimental Results  

4.1. Description of Data Sets 

In this section, the experimental results are discussed to demonstrate the effectiveness of the proposed 

method for HSI classification. Three HSI benchmarks are given for evaluation. The first data set, Indian 
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Pines Site (IPS) image, was generated from AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), 

which was captured by the Jet Propulsion Laboratory and NASA/Ames in 1992. The IPS image was 

captured from six miles in the western area of Northwest Tippecanoe County (NTC).  

A false color IR image of dataset IPS is shown in Figure 1a. The IPS dataset contained 16 land-cover 

classes with 220 bands, e.g., Alfalfa(46), Corn-notill(1428), Corn-mintill(830), Corn(237),  

Grass-pasture(483), Grass-trees(730), Grass-pasture-mowed(28), Hay-windrowed(478), Oats(20), 

Soybeans-notill(972), Soybeans-mintill(2455), Soybeans-cleantill(593), Wheat(205), Woods(1265), 

and Bldg-Grass-Tree-Drives(386), and Stone-Steel-Towers(93). The numbers in parentheses were the 

collected pixel numbers in the dataset. The ground truths in dataset IPS of 10,249 pixels were manually 

labeled for training and testing. In order to analyze the performance of various algorithms, 10 classes of 

more than 300 samples were adopted in the experiments, e.g., a subset IPS-10 of 9620 pixels. Nine 

hundred training samples of 10 classes in subset IPS-10 were randomly chosen from 9,620 pixels, and 

the remaining samples were used for testing.  

 

  

(a) (b) (c) 

Figure 1. False color of IR images for datasets (a) Indian Pines Site (IPS); (b) Pavia 

University; and (c) Pavia City Center. 

The other two HSI data sets adopted in the experiments were obtained from the Reflective Optics 

System Imaging Spectrometer (ROSIS) instrument covering the City of Pavia, Italy. Two scenes, the 

university area and the Pavia city center, contained 103 and 102 data bands, both with a spectral coverage 

from 0.43 to 0.86 um and a spatial resolution of 1.3 m. The image sizes of these two areas were 610 × 

340 and 1096 × 715 pixels, respectively. Figure 1b,c show the false color IR image of these two data 

sets. Nine land-cover classes were available in each data set, and the samples in each data set were 

separated into two subsets, i.e., one training and one testing set. Given the Pavia University data set, 90 

training samples per class were randomly collected for training, and the 8046 remaining samples were 

tested for performance evaluation. Similarly, the numbers of training and testing samples used for the 

Pavia City Center data set were 810 and 9529, respectively. 
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4.2. A Toy Example 

Two toy examples are given to illustrate the discriminative power of FKNFLE in the following. 

Firstly, 561 samples with 220 dimensions of the three classes (Grass/pasture, Woods, and Grass/trees) 

were collected from a hyperspectral image. The samples were projected onto the first three axes using 

eight algorithms: PCA, LDA, supervised LPP, LFDA [28], NFLE, FNFLE, KNFLE, and FKNFLE, as 

shown in Figure 2. These class samples are represented by green triangles (class G), blue stars (class B), 

and red circles (class R). A simple analysis was done by observing the sample distributions in the reduced 

spaces. Since the global Euclidean structure criterion was considered during the PCA and LDA training 

phases, the samples from three classes in the reduced spaces were mixed after the PCA and LDA 

projections as shown in Figure 2a,b. Since the samples were distributed in a manifold structure in the 

original space, the manifold learning algorithms, e.g., supervised LPP, LFDA, and NFLE, were executed 

to preserve the local structure of the samples. The sample distributions projected by supervised LPP, 

LFDA, and NFLE are displayed in Figure 2c–e, respectively. Three classes were efficiently separated 

and contrasted with those in Figure 2a,b. The class boundaries, however, were unclear due to the non-

linear and non-Euclidean sample distributions in the original space. Kernelization and fuzzification were 

pre-performed to extend the original non-Euclidean and non-linear space to a higher linear space. 

Consider the sample distributions in Figure 2e,h, the boundaries of classes G and R in Figure 2e being 

still unclear using the NFLE transformation. The sample distributions of FNFLE and KNFLE as shown 

in Figure 2f,g were the results when the kernelization and fuzzification strategies were used, respectively. 

Obviously, classes G and R were more effectively separated than those in Figure 2e. The local structures 

of the samples from the observed sample distribution were preserved, and the class separability improved. 

Several points located at the boundaries were misclassified in these cases. When both strategies were 

further adopted in FKNFLE, only one red point was mis-located at class G, and classes G and R were 

clearly separated. From the analysis, both fuzzification and kernelization strategies enhanced the 

discriminative power of manifold learning methods. 

 

(a)  

Figure 2. Cont. 
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(b)  

 

(c) 

 

(d) 

Figure 2. Cont. 
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(e)  

 

(f)  

 

(g)  

Figure 2. Cont. 
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(h)  

Figure 2. The first toy sample distributions projected on the first three axes using algorithms 

(a) PCA (principal component analysis); (b) LDA (linear discriminant analysis); (c) 

supervised LPP (locality preserving projection); (d) LFDA (local Fisher discriminant 

analysis); (e) NFLE (nearest feature line (NFL) embedding); (f) FNFLE (fuzzy nearest feature 

line embedding); (g) KNFLE (kernel nearest feature line embedding); and (h) FKNFLE 

(fuzzy-kernel nearest feature line).  

Secondly, 561 samples with 220 dimensions of the three classes (Corn-no till, Soybeans-min till, 

Soybeans-no till) were collected from a hyperspectral image. The samples were projected onto the first 

three axes by eight algorithms: PCA, LDA, supervised LPP, LFDA, NFLE, FNFLE, KNFLE, and 

FKNFLE, as shown in Figure 3. These class samples are also represented by green triangles (class G), 

blue stars (class B), and red circles (class R). A simple analysis was also done by observing the sample 

distributions in the reduced spaces. Since the global Euclidean structure criterion was considered during 

the PCA and LDA training phases, the samples of three classes in the reduced spaces were mixed after 

the PCA and LDA projections as shown in Figure 3a,b. Since the samples were distributed in a manifold 

structure in the original space, the manifold learning algorithms, e.g., supervised LPP, LFDA, and NFLE, 

were executed to preserve the local structure of the samples. The sample distributions projected by 

supervised LPP, LFDA, and NFLE are displayed in Figure 3c–e, respectively. Due to the strong 

overlapping in classes G, R, and B, they were mixed, and the separation was relatively low compared 

with those in Figure 2c–e. However, when the kernelization and fuzzification strategies were used, class 

B was more effectively separated than those shown in Figure 3c–e. According to the analysis, in the case 

of strong overlapping, both fuzzification and kernelization strategies enhanced the discriminative power 

of manifold learning methods. 
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(a) 

 

(b)  

 

(c) 

Figure 3. Cont. 
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(d) 

 

(e)  

 

(f)  

Figure 3. Cont.  
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(g)  

 

(h)  

Figure 3. The second toy sample distributions projected on the first three axes using 

algorithms (a) PCA; (b) LDA; (c) supervised LPP; (d) LFDA; (e) NFLE; (f) FNFLE;  

(g) KNFLE; and (h) FKNFLE. 

4.3. Classification Results 

The proposed methods, NFLE [20,21], KNFLE, FNFLE [26], and FKNFLE, were compared with 

two state-of-the-art algorithms, i.e., nearest regularized subspace (NRS) [25] and NRS-LFDA [25]. The 

parameter configurations for both algorithms NRS [29] and NRS-LFDA were as seen in [25]. The gallery 

samples were randomly chosen for training the transformation matrix, and the query samples were 

matched with the gallery samples using the nearest neighbor (NN) matching rule. Each algorithm was 

run 30 times to obtain the average rates. To obtain the appropriate reduced dimensions of FKNFLE, the 

available training samples were used to evaluate the overall accuracy (OA) versus the reduced 

dimensions in the benchmark datasets. As shown in Figure 4, the best dimensions of algorithm FKNFLE 

for datasets IPS-10, Pavia University, and Pavia City Center were 25, 50, and 50, respectively. The 

proposed FKNFLE and KNFLE algorithms are both extended from algorithm NFLE. From the 
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classification results as shown in Figure 4, though FKNFLE achieves the best results at the specific 

reduced dimensions on three datasets, the high variant OA rates are obtained. Moreover, two additional 

parameters 𝐾3  and 𝐾4  were needed for training during the fuzzification. On the other hand, the 

performance of KNFLE is more robust than that of FKNFLE. KNFLE usually achieves a higher 

performance even at low reduced dimensions, e.g., five or 10. It also outperforms the other algorithms 

at all reduced dimensions on datasets IPS-10 and Pavia City Center. Compared with NRS-LDA, slightly 

reduced OA rates were obtained on dataset Pavia University. From this analysis, algorithm KNFLE is 

more competitive than FKNFLE in HSI classification. 

 
(a) 

 
(b) 

Figure 4. Cont. 
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(c) 

Figure 4. The classification accuracy versus the reduced dimension on three benchmark 

datasets using the various algorithms: (a) IPS-10; (b) Pavia University; (c) Pavia City Center. 

The average classification rates versus the number of training samples on dataset IPS-10 are shown 

in Figure 5a; algorithms FKNFLE and KNFLE outperformed the other methods. The accuracy rate of 

FKNFLE was 4% higher than that of FNFLE. The kernelization strategy effectively enhanced the 

discriminative power. The performance of FKNFLE was better than that of KNFLE to a value of 0.8%, 

and the rate of FNFLE was higher than that of NFLE to a value of 0.7%. This shows that the fuzzification 

strategy slightly enhanced the performance. Figure 5b,c also demonstrates the overall accuracy versus 

the number of training samples in the benchmark datasets of Pavia University and Pavia City Center, 

respectively. According to the classification rates in these two datasets, algorithm FKNFLE outperformed 

the other methods. In addition, the classification results were insensitive to the number of training 

samples. Next, the maps of the classification results for the dataset IPS-10 are given in Figure 6. The 

classification results of algorithms FKNFLE, KNFLE, FNFLE, NFLE, NRS, and NRS-LFDA are given 

based on the maps of 145 × 145 pixels depicting the ground truth. The speckle-like errors of FKNFLE 

were fewer than those of the other algorithms. Figures 6–8 give the maps of the classification results for 

datasets Pavia University and Pavia City Center, respectively. Once again, the speckle-like errors of 

FKNFLE were fewer than in the case of the other algorithms. In addition, the thematic maps of Pavia 

University and Pavia City Center are shown in Figure 9a,b, respectively, using the proposed FKNFLE 

method. Observing the results in Figure 9a, the roads, buildings, and the areas in University were clearly 

classified even though there was some speckle-like noise in the images. The roads, rivers, buildings, 

small islands, and the areas in the city were classified in the same way. See Figure 9b. Algorithm FKNFLE 

effectively classified the land cover even in the limited training samples. 
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(a) 

 
(b) 

 
(c) 

Figure 5. The accuracy rates versus the number of training samples for datasets (a) IPS-10; 

(b) Pavia University; and (c) Pavia City Center. 
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(f) (g) 

  
(h) (i) 

  
(j) (k) 

Figure 6. The classification maps of dataset IPS using various algorithms: (a) The ground 

truth; (b) FKNFLE; (c) KNFLE; (d) FNFLE; (e) NFLE; (f) NRS (nearest regularized 

subspace); (g) LFDA-NRS (local Fisher discriminant analysis-NRS); (h) LFDA;  

(i) supervised LPP; (j) LDA; and (k) PCA.  
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Figure 7. Cont. 
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(f) (g) 

  

(h) (i) 

  

(j) (k) 

Figure 7. The classification maps of dataset Pavia University using various algorithms:  

(a) The ground truth; (b) FKNFLE; (c) KNFLE; (d) FNFLE; (e) NFLE; (f) NRS;  

(g) LFDA-NRS; (h) LFDA; (i) supervised LPP; (j) LDA; and (k) PCA. 



Remote Sens. 2015, 7 14315 

 

 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(a) 

 
 

(b) (c) 

 
 

(d)  (e) 

Figure 8. Cont. 
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(f) (g) 

  

(h) (i)  

  

(j) (k) 

Figure 8. The classification maps of dataset Pavia City Center using various algorithms: (a) 

The ground truth, (b) FKNFLE; (c) KNFLE; (d) FNFLE; (e) NFLE; (f) NRS; (g) LFDA-

NRS; (h) LFDA; (i) supervised LPP; (j) LDA; and (k) PCA. 
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(a) (b) 

Figure 9. The thematic maps of (a) Pavia University, and (b) Pavia City Center using the 

proposed FKNFLE algorithm. 

The proposed method was compared with various classification methods on computational time. All 

methods were implemented by MATALB codes on a personal computer with an i7 2.93-GHz CPU and 

12.0 gigabyte RAM. The comparisons of various algorithms on computational time were tabulated in  

Table 2 for the IPS-10, Pavia University, and Pavia City Center datasets. Considering the training time, 

the proposed FKNFLE algorithm was generally faster than NRS and NRS-LFDA by two times and 15 

times, respectively. Due to the fuzzification process, algorithms FKNFLE and FNFLE were slower than 

KNFLE and NFLE, by 13 times and 15 times, respectively. 

Table 2. The training and testing times of various algorithms for the benchmark datasets (s). 

Datasets IPS-10 Pavia University Pavia City Center 

Algorithms Training Testing Training Testing Training Testing 

 900 8720 810 8046 810 9529 

NFLE-NN 10 18 9 16 9 20 

KNFLE-NN 12 18 11 16 11 20 

FNFLE-NN 155 18 140 16 140 20 

FKNFLE-NN 156 18 141 16 141 20 

NRS 326 326 294 300 294 351 

LFDA-NRS 2331 327 2098 301 2098 352 
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From Tables 3–5, the producer’s accuracy, overall accuracy, kappa coefficients, and user’s accuracy 

defined by the error matrices (or confusion matrices) [27] were calculated for performance evaluation. 

They are briefly defined in the following. The user’s accuracy and the producer’s accuracy are two 

widely used measures for class accuracy. The user’s accuracy is defined as the ratio of the number of 

correctly classified pixels in each class by the total pixel number classified in the same class. The user’s 

accuracy is a measure of commission error, whereas the producer’s accuracy measures the errors of 

omission and indicates the probability that certain samples of a given class on the ground are actually 

classified as such. The kappa coefficient, also called the kappa statistic, is defined to be a measure of the 

difference between the actual agreement and the changed agreement. The overall accuracies of the 

proposed method were 83.34% in IPS-10, 91.31% in Pavia University, and 97.59% in Pavia City Center 

with the kappa coefficients of 0.821, 0.910, and 0.971, respectively. Subset IPS-10 of 10 classes is used 

for fair comparisons with other algorithms. Another alternative classification on the whole IPS dataset 

of 16 classes was performed. Ten percent training samples of each class were randomly chosen from 

10,249 pixels except for class Oats. Three training samples were randomly chosen from class Oats 

because of few samples in this data set. The remaining samples were used for testing. The classification 

error matrix is given in Table 6 in which the overall accuracy and kappa coefficient are 83.85% and 

0.826, respectively. 

Table 3. The classification error matrix for data set IPS-10 (in percentage). 

Classes 
Reference Data User’s 

Accuracy 1 2 3 4 5 6 7 8 9 10 

1 79.20 3.43 0.28 0.35 0 5.46 9.73 1.54 0 0 79.20 

2 5.90 81.81 0 0.12 0 1.33 6.39 4.34 0 0.12 81.81 

3 0 0 97.49 1.46 0.21 0.42 0 0.21 0.42 0.84 97.49 

4 0 0 0.27 96.30 0 0 0 0 0 3.42 96.30 

5 0 0 0.42 0 99.58 0 0 0 0 0 99.58 

6 5.14 0.21 0.10 0.41 0 88.89 4.42 0.72 0 0.10 88.89 

7 10.59 5.58 0.29 0.33 0.04 9.78 69.98 3.30 0 0.12 69.98 

8 1.35 4.05 1.52 0.34 0 1.69 1.85 88.53 0 0.67 88.53 

9 0 0 3.32 0.16 0 0 0 0 90.83 5.69 90.83 

10 0 0 3.89 5.70 0 0 0 0.26 10.88 79.27 79.27 

Producer’s 

Accuracy 
77.51 86.04 90.62 91.57 99.75 82.63 75.76 89.51 88.94 87.85  

Kappa Coefficient: 0.821  Overall Accuracy: 83.34%  

Table 4. The classification error matrix for data set Pavia University (in percentage). 

Classes 
Reference Data User’s 

Accuracy 1 2 3 4 5 6 7 8 9 

1 90.18 3.15 0 0 0 3.24 1.35 1.26 0.81 90.18 

2 2.31 92.50 0 2.31 0 1.85 0 1.01 0 92.50 

3 0 0 90.07 2.38 1.58 0.99 2.97 0.99 0.99 90.07 

4 0 1.23 2.84 90.24 1.42 1.42 1.51 1.32 0 90.24 

5 0.63 1.13 0.75 1.26 91.91 0.63 1.64 0.88 1.13 91.91 

6 1.10 1.19 1.38 1.56 1.19 92.54 0.55 0.46 0 92.54 
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Table 4. Cont. 

Classes 
Reference Data User’s 

Accuracy 1 2 3 4 5 6 7 8 9 

7 0 1.12 0.51 0.61 2.24 0 93.25 1.22 1.02 93.25 

8 0.47 1.42 0.95 1.42 2.38 1.90 0 90.76 0.66 90.76 

9 1.14 0 2.15 2.01 0 2.29 0 2.15 90.22 90.22 

Producer’s 

Accuracy 
94.10 90.92 91.30 88.65 91.25 88.25 92.08 90.71 95.14 

 

Kappa Coefficient: 0.910 Overall Accuracy: 91.31% 

Table 5. The classification error matrix for data set Pavia City Center (in percentage). 

Classes 
Reference Data User’s 

Accuracy 1 2 3 4 5 6 7 8 9 

1 98.61 0.17 0.51 0.34 0.34 0 0 0 0 98.61 

2 1.04 97.47 0.43 0 0 0.34 0.17 0.52 0 97.47 

3 0.59 0.82 96.23 0.69 0.99 0 0 0 0.69 96.23 

4 0 0.56 0.66 96.68 0.37 0.47 0.66 0.56 0 96.68 

5 0 0 0.43 0.34 97.73 0.26 0.34 0.34 0.52 97.73 

6 0.35 0.26 0.61 0 0 98.15 0 0.26 0.35 98.15 

7 0.35 0.26 0 0.35 0 0.44 98.23 0.35 0 98.23 

8 0 0 0.37 0.30 0.37 0.52 0.45 97.43 0.52 97.43 

9 0.39 0.59 0.79 0.29 0.29 0 0 0 97.60 97.60 

Producer’s 

Accuracy 
97.32 97.34 96.20 97.67 97.64 97.97 98.38 97.96 97.91 

 

Kappa Coefficient: 0.971 Overall Accuracy: 97.59% 

Table 6. The classification error matrix for data set IPS of 16 classes (in percentage). 

 
Reference Data 

UA 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 78.22 0 0 0 4.35 0 0 17.43 0 0 0 0 0 0 0 0 78.22 

2 0 77.15 2.22 0.69 0 0.18 0 0 0.07 5.17 13.26 1.19 0 0 0.07 0 77.15 

3 0 3.32 73.03 3.04 0 0 0 0 0 0.71 15.15 4.75 0 0 0 0 73.03 

4 0 13.91 8.84 65.83 0.42 0 0 0.82 0 1.29 7.59 1.29 0 0 0 0 65.83 

5 0 0.21 0.23 0.24 94.61 0.22 0 0 0 0.80 0.81 1.04 0 1.85 0 0 94.61 

6 0 0.12 0.14 0 0.19 97.11 0 0 0 0 0.68 0 0 0.58 1.18 0 97.11 

7 0 0 0 0 3.61 0 92.81 3.58 0 0 0 0 0 0 0 0 92.81 

8 1.81 0 0 0 0 0 0 98.19 0 0 0 0 0 0 0 0 98.19 

9 0 0 0 0 0 0 0 0 94.99 0 0 0 5.01 0 0 0 94.99 

10 0 3.83 0.31 0 0.32 0.31 0 0 0.11 81.74 12.95 0.43 0 0 0 0 81.74 

11 0 4.62 3.52 0.22 0.32 0.31 0 0 0.08 5.45 83.95 1.37 0 0 0.16 0 83.95 

12 0 4.93 7.93 0.61 0.12 0.14 0 0 0 2.05 9.79 74.25 0 0 0.17 0 74.25 

13 0 0 0 0 0 0 0 0 0 0 0 0.49 99.51 0 0 0 99.51 

14 0 0 0 0 0.47 0.08 0 0 0 0 0 0 0.08 96.03 3.34 0 96.03 

15 0 0 0.54 0.54 7.25 15.02 0 0 0.20 1.85 2.59 0.25 0.25 16.85 54.66 0 54.66 

16 0 1.03 0 0 0 0 0 0 0 1.06 3.28 0 0 0 0 94.63 94.63 

PA 97.73 70.70 75.47 92.49 84.73 85.65 1 81.81 99.51 81.64 56.21 87.29 94.90 83.27 91.74 1  

Kappa Coefficient: 0.826  Overall Accuracy: 83.85% 

UA: User’s Accuracy, PA: Producer’s Accuracy 
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In this study, since we focused on the performance of kernelization and fuzzification, the k-NN 

classifier was adopted rather than the complex support vector machine (SVM) classifier. An analysis of 

various k values is given to demonstrate the performance of the k-NN classifier as shown in Table 7. 

Here, value k was set as values 1, 3, and 4, and the voting strategy was used in this analysis. Obviously, 

an adaptive higher value of the k-NN classifier can achieve more competitive performances. Next, the 

empirical parameters ,,, 321 KKK  and 4K  were properly determined by a cross-validation technique. 

Training samples were separated into two groups: the training and validation subsets, where, for 

example, 50% of the samples for training and the other for validation. The validation results were 

generated under various parameters, and the proper setting was determined by selecting the best results. 

From the cross-validation experiment, the proper parameters 81 K , 282 K , 143 K , and 284 K  

were chosen. After that, the transformation was obtained from the whole training set. A sensitivity 

analysis on four parameters ,,, 321 KKK  and 4K  was done as shown in Figure 10. In Figure 10a, the 

variances of classification rates were relatively low for parameters 1K  versus 2K . In contrast, from 

Figure 10b–f, parameters 3K  and 4K  resulted in a higher variance of classification rates. In other words, 

the NFLE parameters 1K  and 2K  were not sensitive to the classification rates, and the parameters 3K  

and 4K  of fuzzy k nearest neighbor were sensitive to the classification rates. According to the results of 

the sensitivity analysis of the four parameters, the parameters selected in the proposed algorithm were  

81 K , 282 K , 143 K , and 284 K , which are consistent with the parameters in the cross-

validation test. 

Table 7. The classification performance using various k-NN for data set IPS-10 (in percentage). 

 

FKNFLE KNFLE FNFLE NFLE 

k-Value k-Value k-Value k-Value 

1 3 4 1 3 4 1 3 4 1 3 4 

IPS-10 83.34 84.19 85.11 83.07 83.55 84.19 78.37 78.98 79.10 77.59 78.89 78.93 

Pavia City Center 97.59 98.18 98.24 96.55 96.84 96.88 95.08 95.32 95.51 94.58 95.26 95.41 

Pavia University 91.31 92.13 92.36 89.50 90.04 90.19 85.10 86.05 86.57 83.80 84.63 85.05 

 

 

(a) 

Figure 10. Cont. 
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(d) 

Figure 10. Cont. 
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(e) 

 

(f)  

Figure 10. The sensitivity analysis of four parameters 1K , 2K , 3K , 4K . (a) 1K  vs. 2K ;  

(b) 1K  vs. 3K ; (c) 1K  vs. 4K ; (d) 2K  vs. 3K ; (e) 2K  vs. 4K ; (f) 3K  vs. 4K . 

Furthermore, due to the proposed algorithm being based on kernelization and fuzzification, the 

performance comparison between the proposed algorithms and the well-known kernelization-based 

algorithm GCK-MLR (Generalized composite kernel-multinomial logistic regression) [17,30] is 

illustrated in Tables 8 and 9. Basically, algorithm GCK-MLR is a multinomial logistic regression 

(MLR)-based classifier of composite kernels in which four kernels, spectral, spatial, spectral-spatial 

cross information, and spatial-spectral cross information kernels, deeply impact the classification results. 

The training configurations in [17] were quite different from ours. Besides, it is unfair for comparing the 

results of a single kernel (KNFLE) method with those of multi-kernels (GCK-MLR). In the experiment, 

we re-trained the classifier using the same configurations of [17]. The training configurations and 

classification results have directly been referred from [17]. Moreover, only the results using a single 

spectral kernel K  were used for the fair comparison. Datasets IPS of 16 classes and Pavia University 

were evaluated as shown in Tables 8 and 9, respectively. Considering the IPS dataset of 16 classes in 

Table 8, algorithm GCK-MLR outperforms the proposed method at the overall accuracy index, while 
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the average accuracy rate is lower than those of algorithms FKNFLE and KNFLE. In Table 9, the overall 

accuracy and average accuracy rates of the proposed method are both higher than those of algorithm 

GCK-MLR. 

Table 8. The comparison between algorithm GCK-MLR (𝐾𝜔) and the proposed method for 

dataset IPS of 16 classes (in percent). 

Class 

Number of 

Samples GCK-MLR (𝑲𝝎) FKNFLE KNFLE 

Train Test 

Alfalfa 3 51 47.06 ± 15.41 65.22 ± 15.32 56.52 ± 16.42 

Corn-no till 71 1363 78.24 ± 3.01 70.66 ± 3.05 67.44 ± 3.03 

Corn-min till 41 793 64.17 ± 3.01 67.71 ± 3.04 71.08 ± 3.05 

Corn 11 223 48.211 ± 1.76 43.88 ± 11.54 47.68 ± 12.14 

Grass/pasture 24 473 87.76 ± 2.27 84.47 ± 2.18 87.16 ± 2.58 

Grass/tree 37 710 95.13 ± 1.40 96.58 ± 1.42 94.79 ± 1.32 

Grass/pasture-mowed 3 23 53.04 ± 11.74 92.86 ± 11.88 92.82 ± 10.68 

Hay-windrowed 24 465 98.84 ± 0.61 97.28 ± 0.59 98.12 ± 0.62 

Oats 3 17 68.82 ± 17.33 65.10 ± 16.31 70.12 ± 15.35 

Soybeans-no till 48 920 68.42 ± 5.22 70.27 ± 5.12 66.87 ± 5.42 

Soybeans-min till 123 2245 82.56 ± 1.26 77.43 ± 1.31 73.93 ± 1.25 

Soybeans-clean till 30 584 74.52 ± 5.35 62.56 ± 5.32 61.89 ± 5.52 

Wheat 10 202 99.36 ± 0.52 91.71 ± 0.54 94.63 ± 0.51 

Woods 64 1230 95.46 ± 1.53 96.60 ± 1.49 97.15 ± 1.54 

Bldg-grass-tree-drives 19 361 50.75 ± 3.49 38.34 ± 3.18 48.19 ± 3.38 

Stone-steel towers 4 91 62.09 ± 6.95 82.80 ± 6.89 83.87 ± 6.59 

Overall accuracy 80.16 ± 0.73 77.19 ± 0.71 76.43 ± 0.73 

Average accuracy 73.40 ± 1.26 75.22 ± 1.21 75.76 ± 1.25 

Table 9. The comparison between algorithm GCK-MLR (𝐾𝜔) and the proposed method for 

dataset Pavia University of nine classes (in percent). 

Class 
Number of Samples 

GCK-MLR (𝑲𝝎) FKNFLE KNFLE 
Train Test 

Asphalt 548 6631 82.64 83.14 82.64 

Bare soil 540 18,649 68.62 82.89 82.07 

Bitumen 392 2099 75.04 81.75 79.32 

Bricks 524 3064 97.00 93.21 92.95 

Gravel 265 1345 99.41 99.93 99.93 

Meadows 532 5029 93.88 80.47 79.48 

Metal Sheets 375 1330 90.08 92.26 92.41 

Shadows 514 3682 91.36 85.61 85.17 

Trees 231 947 97.57 99.89 99.89 

Overall accuracy 80.34 85.76 84.04 

Average accuracy 88.40 88.79 88.20 
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5. Conclusions 

In this paper, a general NFLE transformation, FKNFLE, for HSI classification has been proposed. 

Kernelization and fuzzification in NFLE were both considered in order to extract non-linear and  

non-Euclidean structures. Three state-of-the-art algorithms, NFL, NRS and NRS-LFDA, were compared 

with the proposed FKNFLE. Three land-cover benchmarks, IPS-10, Pavia University, and Pavia City 

Center, were tested for performance evaluation. From the experimental results, algorithm FKNFLE 

outperformed the other algorithms. More specifically, using the 1-NN classifier, the rates of FKNFLE 

were higher than those of NFLE to the value of 5.75%, 3.01%, and 7.51% for datasets IPS-10, Pavia 

City Center, and Pavia University, respectively. Though FKNFLE had high classification rates using the 

features on a single pixel, there was some speckle-like noise in the image segmentation results. In the 

future, the features of spatial neighbors will be adopted for better classification and segmentation. 

Acknowldgement 

The work was supported by Ministry of Science and Technology of Taiwan under Grant nos. 

MOST104-2221-E-008-030-MY3 and MOST103-2221-E-008-058-MY3. 

Author Contributions 

The idea was conceived by Ying-Nong Chen and Chin-Chuan Han, performed by Ying-Nong Chen, 

Cheng-Ta Hsieh, and Ming-Gang Wen, analyzed by Chin-Chuan Han, Ying-Nong Chen,  

Cheng-Ta Hsieh, and Ming-Gang Wen, written by Chin-Chuan Han and Ying-Nong Chen, and revised 

by Ying-Nong Chen, Chin-Chuan Han and Kuo-Chin Fan. 

Conflicts of Interest 

We have no conflict of interest to declare. 

References 

1. Turk, M.; Pentland, A.P. Face recognition using eigenfaces. In Proceedings of the 1991 Proceedings 

CVPR ’91. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 

Maui, HI, USA, 3–6 June 1991; pp. 586–591. 

2. Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition using 

class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720. 

3. Cevikalp, H.; Neamtu, M.; Wikes, M.; Barkana, A. Discriminative common vectors for face 

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 4–13. 

4. Prasad, S.; Mann Bruce, L. Information fusion in kernel-induced spaces for robust subpixel 

hyperspectral ATR. IEEE Trans. Geosci. Remote Sens. Lett. 2009, 6, 572–576. 

5. He, X.; Yan, S.; Ho, Y.; Niyogi, P.; Zhang, H.J. Face recognition using Laplacianfaces. IEEE Trans. 

Pattern Anal. Mach. Intell. 2005, 27, 328–340. 

6. Tu, S.T.; Chen, J.Y.; Yang, W.; Sun, H. Laplacian eigenmaps-based polarimetric dimensionality 

reduction for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2011, 50, 170–179. 



Remote Sens. 2015, 7 14325 

 

 

7. Wang, Z.; He, B. Locality preserving projections algorithm for hyperspectral image dimensionality 

reduction. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, 

China, 24–26 June 2011; pp. 1–4. 

8. Kim, D.H.; Finkel, L.H. Hyperspectral image processing using locally linear embedding.  

In Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Italy,  

20–22 March 2003; pp. 316–319. 

9. Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving discriminant analysis in  

kernel-induced feature spaces for hyperspectral image classification. IEEE Geosci. Remote Sens. 

Lett. 2011, 8, 894–898. 

10. Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and 

classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50,  

1185–1198. 

11. Luo, R.B.; Liao, W.Z.; Pi, Y.G. Discriminative supervised neighborhood preserving embedding 

feature extraction for hyperspectral-image classification. Telkomnika 2012, 10, 1051–1056. 

12. Zhang, L.; Zhang, Q.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Ensemble manifold regularized sparse 

low-rank approximation for multi-view feature embedding. Pattern Recognit. 2015, 48, 3102–3112. 

13. Boots, B.; Gordon, G.J. Two-manifold problems with applications to nonlinear system 

Identification. In Proceedings of the 29th International Conference on Machine Learning, 

Edinburgh, UK, 26 June–1 July 2012. 

14. Odone, F.; Barla, A.; Verri, A. Building kernels from binary strings for image matching.  

IEEE Trans. Image Process. 2005, 14, 169–180. 

15. Scholkopf, B.; Smola, A.; Muller, K.R. Nonlinear component analysis as a kernel eigenvalue 

problem. Neural Comput. 1998, 10, 1299–1319. 

16. Lin, Y.Y.; Liu, T.L.; Fuh, C.S. Multiple kernel learning for dimensionality reduction. IEEE Trans. 

Pattern Anal. Mach. Intell. 2011, 33, 1147–1160. 

17. Li, J.; Reddy Marpu, P.; Plaza, A.; Bioucas-Dias, J.M.; Atli Benediktsson, J. Generalized composite 

kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 

51, 4816–4829. 

18. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse 

representation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 217–231. 

19. Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote 

sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893. 

20. Chen, Y.N.; Han, C.C.; Wang, C.T.; Fan, K.C. Face recognition using nearest feature space 

embedding. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1073–1086. 

21. Chang, Y.L.; Liu, J.N.; Han, C.C.; Chen, Y.N. Hyperspectral image classification using nearest 

feature line embedding approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 278–287. 

22. Keller, J.J.M.; Gray, M.R.; Givens, J.A., Jr. A fuzzy k-nearest neighbor algorithm. IEEE Trans. 

Syst. Man Cybern. 1985, 15, 580–585. 

23. Li, S.Z. Face recognition based on nearest linear combinations. In Proceedings of the IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 

USA, 23–25 June 1998; pp. 839–844. 



Remote Sens. 2015, 7 14326 

 

 

24. Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph embedding and extensions: a 

framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51. 

25. Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest regularized subspace for hyperspectral 

classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 477–489. 

26. Chen, Y.N.; Han, C.C.; Fan, K.C. Use fuzzy nearest feature line embedding for hyperspectral image 

classification. In Proceedings of the 4th International Conference Earth Observations and Societal 

Impacts, Miaoli, Taiwan, 22–24 June 2014. 

27. Lillesand, T.M.; Kiefer, R.W. Remote Sensing and Image Interpretation; Wiley: New York, NY, 

USA, 2000. 

28. Sugiyama-Sato Lab at the University of Tokyo. Available online: http://www.ms.k.u-

tokyo.ac.jp/software.html (accessed on 26 October 2015). 

29. Github. Available online: https://github.com/eric-tramel/NRSClassifier (accessed on 15 May 2015). 

30. IEEE Publications. Available online: http://www.lx.it.pt/~jun/publications.html (accessed on 15 

May 2015). 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

https://github.com/eric-tramel/NRSClassifier

