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Abstract: The extension and frequency of algal blooms in surface waters can be monitored 

using remote sensing techniques, yet knowledge of their vertical distribution is fundamental 

to determine total phytoplankton biomass and understanding temporal variability of surface 

conditions and the underwater light field. However, different vertical distribution classes of 

phytoplankton may occur in complex inland lakes. Identification of the vertical profile 

classes of phytoplankton becomes the key and first step to estimate its vertical profile. The 

vertical distribution profile of phytoplankton is based on a weighted integral of reflected 

light from all depths and is difficult to determine by reflectance data alone. In this study, 

four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic) 

were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October) 

in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and 

regression tree (CART) to determine vertical phytoplankton biomass profile classes. This 

was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI) 
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applied to both in situ remote sensing reflectance (Rrs) and MODIS Rayleigh-corrected 

reflectance (Rrc) data in combination with data of local wind speed. The results show the 

potential of retrieving Chla vertical profiles information from integrated information sources 

following a decision tree approach.  

Keywords: vertical distribution profile classes; chlorophyll-a; Normalized Difference algal 

Bloom Index (NDBI); classification and regression tree (CART); remote sensing 

 

1. Introduction  

The eutrophication of coastal and inland waters is a major environmental and social-economic 

problem around the world. The increasing occurrence and intensity of algal blooms have severely 

affected the security of drinking water and food sources, biodiversity, and economic activities in a large 

number of ecosystems, such as Lake Taihu in China [1], Baltic Sea [2], Seto-Inland Sea in Japan [3], 

and Gulf of Mexico [4]. Beginning in the late 1990s, major lakes in eastern China underwent increasing 

eutrophication and significant algal bloom events. One of these, Lake Chaohu (the fifth largest 

freshwater lake in China), has experienced recurring harmful algal blooms with significant impacts on 

the local population [5].  

Remote sensing has been widely used to monitor the extent and frequency of algal blooms [6–8] as 

well as determine key optically active substances, such as chlorophyll-a concentrations (Chla) [9,10], 

and phycocyanin concentrations (PC) [10,11]. However, these estimates assume that the distribution of 

phytoplankton is vertically uniform or at least vertically consistent, leading to inaccurate estimates of 

total phytoplankton biomass across depth. Variability of the phytoplankton vertical distribution can be 

evidenced by rapid changes in the spatial distribution of surface phytoplankton estimates. For example, 

using the Geostationary Ocean Color Imager (GOCI), algal blooms in the East China Sea increased 100% 

in a single day [12]. Algal biomass estimates in shallow lakes do not typically increase at such a rapid 

pace, but significant vertical movement can occur over short time periods [13]. The variability in the 

vertical distribution of algal biomass represents a major challenge to the remote determination of lake 

optical properties, as well as the estimation of total phytoplankton biomass and primary production [14].  

The vertical distribution of phytoplankton is mainly governed by meteorological, biological and 

hydrological parameters [13]. In particular, vertical distributions of phytoplankton in shallow water are 

directly and indirectly influenced by wind [15]. When the wind speed is higher than 2–4 m/s, 

phytoplankton is likely to be evenly distributed [13,16–19]. Some cyanobacteria, such as microcystis 

aeruginosa, are capable of regulating their buoyancy, and maintain cyanobacterial cells in suspension, 

moving vertically through the water in response to changing conditions of temperature [20], light 

intensity [21] and nutrients [22,23]. However, the extent to which cyanobacteria can control their vertical 

distribution is also indirectly affected by wind, which controls mixing (temperature), surface reflection 

(light) and upwelling (nutrients). Generally, weak winds lead to less uniform vertical distributions of 

algae. In such conditions, cyanobacteria may float to the surface, even accumulating in extreme high 

concentrations to form scums [24].  
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In ocean optics, many studies have focused on the vertical distribution of phytoplankton and 

chlorophyll-a [14,25,26] and its influence on the remote sensing reflectance [27–29]. Gaussian  

models [30–32] or shifted Gaussian models [14] have been used to represent the vertical profile of 

chlorophyll-a concentrations in marine environments. It is often assumed that the typical shape of the 

chlorophyll-a profile is stable in a given region or season [14,33]. However, the vertical distribution of 

phytoplankton in lakes can change rapidly [34]. Unfortunately, there are few in situ datasets of the 

vertical distribution of phytoplankton in shallow lakes.  

Understanding the vertical profile classes of phytoplankton is important to estimate the  

column-integrated phytoplankton biomass and biogeochemical applications involving primary 

production [35]. In addition, it is also the key parameters in radiative transfer simulation of the 

underwater light field.  

The present study was directed to: (1) analyze the vertical profiles of algal biomass for a large  

shallow eutrophic lake, Lake Chaohu; (2) develop an integrated approach to identify the vertical 

distribution profile class based on remote sensing reflectance data and wind speed; and (3) develop and 

apply the integrated approach to map the Chla vertical profile classes using MODIS image data  

(Rayleigh-corrected reflectance, Rrc).  

2. Study Region  

Lake Chaohu is the fifth largest fresh water lake in China, with an area of 770 km2 (31°25′–31°43′N, 

117°17′–117°51′E, Figure 1) and a mean depth of 3.0 m [36]. The maximum Secchi depth was 0.60 m, 

allowing for optical deep conditions where bottom effects (reflectance from lake bottom) were not 

important [37,38]. Several rivers (Nanfei, Paihe and Hangbu rivers) flow into the lake, while the Yuxi 

River flows out and into the Yangtze River [39]. Lake Chaohu has had increasing problems of water 

pollution and eutrophication over the past three decades [40], jeopardizing its use as a potable water 

source. Massive algal blooms have been associated to an increase in domestic and industrial sewage 

from the expanding urban and industrial activities in adjacent areas. Most blooms occur between July 

and September, and are particularly severe in the west part of the lake, with higher frequency and 

intensity [41]. The diversity of phytoplankton, including Chlorophyta, Bacillariophyta, Cyanophyta, 

Cryptophyta, and Euglenuphyta, varies seasonally. Cyanophyta has the highest average annual density 

(more than 90%) compared to other phytoplankton species [42].  

3. Methods  

3.1. Field Measurements  

Three field surveys were performed in 2013 (28 May, 19–24 July and 10–12 October, Figure 1). Water 

samples were obtained from 9 depths (surface, 0.1, 0.2, 0.4, 0.7, 1.0, 1.5, 2.0 and 3.0 m) collected in 

separate 1 liter Niskin bottles using an ad hoc vertical collection device, comprised of a 3.5 m perforated 

tube (2.5 cm in diameter), a small vacuum pump (about 10 cm in diameter), connective tubes and a scale 

bar. The depth of water inlet was controlled and determined by the scale bar. The samples of water surface 

(0 m) were collected directly using a water sampler (organic glass hydrophore). When the wind speed was 

high, wind-driven waves influenced the collection of samples at precise depths, in particular near the water 



Remote Sens. 2015, 7 14406 

 

 

surface (surface sampling, 0.1 m and 0.2 m). When these conditions occurred, we sampled twice at each 

depth and mixed both samples together to create a single sample for each depth. Water samples were stored 

in the dark at low temperature (4 °C) before filtration (<6 hours). Following filtration, the samples were 

frozen and the concentrations of chlorophyll-a (Chla, μg/L), suspended particulate inorganic matter  

(SPIM, mg/L) and dissolved organic carbon concentration (DOC, μg/L) were measured in the laboratory 

at the conclusion of the survey (usually 3 days, no more than 5 days). Simultaneously, environmental 

parameters such as the surface wind speed and cloud conditions were recorded. Wind speed and direction 

were measured every 10 to 15 minutes (about 7.5 to 10 kilometers between adjacent two sites) in 

numerous sites across the lake over several days in June 2014 (Figure 1). Water transparency was 

measured using a 20 cm Secchi disk from the shaded side of the boat.  

 

Figure 1. Study region and sampling locations in Lake Chaohu, China. In situ measurements 

of bio-optical parameters made during three cruise surveys in 28 May 2013 (N = 9),  

19–24 July 2013 (N = 32) and 10–12 October 2013 (N = 27). The solid circles indicate field 

measurement sites of wind speed during two cruise surveys on 11 June  

(N = 13) and 13 June (N = 9) 2013, respectively. The solid black triangle represents the 

location of meteorological station.  

Laboratory analyses: The water samples were filtered with Whatman GF/C glass-fibre filters (pore size 

of 1.1μm) and pigments were extracted using 90% acetone extraction. The Chla value was calculated using 

absorbance at 630, 645, 663 and 750 nm measured with a Shimadzu UV-2600 spectrophotometer [38]. 

For SPIM, 47 mm Whatman GF/F glass fiber filters were pre-combusted at 450 °C for 6 h and pre-weighted. 

Water samples were filtered and filters were dried at 105 °C for 4–6 h, suspended particulate inorganic 

matter (SPIM) was derived gravimetrically by burning organic matter from the filters at 450 °C for 6 h 
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and weighting the filters again [11]. The filtered water was used to determine the concentration of DOC, 

using a Shimadzu TOC-5000A analyzer [43,44].  

Remote sensing reflectance: Following NASA protocols [45], an ASD field spectrometer (FieldSpec 

Pro Dual VNIR, Analytica Spectra Devices., Inc) was used to measure downwelling radiance and 

upwelling total radiance above water surface. This instrument has a spectral range of 350 to 1050 nm 

with two probes and a viewing field of 25°. Measurements of the total water leaving radiance (Lsw), 

radiance of gray panel (Lp), and sky radiance (Lsky) were performed.  

Each water spectrum was sampled 90° azimuth with respect to the sun and with a nadir viewing angle 

of 45°. Lsw(λ) was measured using the target probe at approximately 0.5 m above the water surface under 

low cloud (<10%, gathered from the nearest weather station) conditions, while the another probe 

measured Lsky(λ). Radiance of a Lambertian gray panel (Lp(λ)) with reflectance p was used to determine 

the incident downwelling irradiance (Ed(λ, 0+)) (Equation (1)).  

Ed(λ, 0+) = Lp(λ) × /p (1) 

Lsw(λ) consisted of the desired water-leaving radiance Lw(λ) and skylight reflection (Lsky(λ)), and was 

corrected by:  

Lw(λ)=Lsw(λ) − ρ Lsky(λ) (2) 

The water surface reflectance factor ρ depended on sky conditions, wind speed, and solar zenith angle, 

and was assumed to be 0.028 [46]. Remote sensing reflectance (Rrs(λ)) was then derived by the ratio of 

water-leaving radiance Lw(λ) to incident downwelling spectral plane irradiance Ed(λ, 0+).  

Rrs(λ) = Lw(λ)/Ed(0+, λ) (3) 

3.2. MODIS Satellite Data  

Data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS Terra and MODIS 

Aqua) were used to assess spatial and temporal coverage of the study lake for the three sampling 

campaigns. The ground resolution of the MODIS data was 250 m for the 645 and 859 nm bands and  

500 m for the bands centered at 469, 555, 1240, 1640, and 2130 nm. Level-0 data were obtained from 

the U.S. NASA Goddard Space Flight Center (GSFC) (http://oceancolor.gsfc.nasa.gov) and converted 

to calibrated radiance (Level-1B) using SeaDAS (version 7.0). At present, there is no reliable 

atmospheric correction to produce accurate MODIS Rrs data for Lake Chaohu. A partial atmospheric 

correction to correct for the gaseous absorption (mainly by ozone) and Rayleigh (molecular) scattering 

effects was applied to the Level-1B data using routines and look up tables (LUTs) available  

in SeaDAS [47]. After correction of Rayleigh scattering and gaseous absorption effects, the  

Rayleigh-corrected reflectance (Rrc,(λ), dimensionless) was determined [48]:  

Rrc(λ) = t(λ) − r(λ) = a(λ) + πt(λ)t0(λ)Rrs(λ) (4) 

where t is the top of atmosphere (TOA) reflectance after adjustment of the gaseous absorption, r is 

the reflectance due to Rayleigh scattering, a is that due to aerosol scattering and aerosol-Rayleigh 

interactions, t and t0 are the diffuse transmittance from the lake surface to the satellite and from the sun 

to the lake surface, respectively. a, t, and t0 are functions of aerosol type, aerosol optical thickness, and 
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solar/viewing geometry. The above formulation assumes negligible contributions from whitecaps and 

sun glint, and was used to show the relationship of Rrc and Rrs here. The Rrc data were geo-referenced 

into a cylindrical equidistance (rectangular) projection [49].  

Then, after excluding pixels identified as clouds (these pixels had extremely high reflectance). There 

were 8 cloud free MODIS Rrc images coincident with the sampling campaigns on 28 May, 24 July,  

10–12 October 2013. The spatial resolution of Rrc data was resampled to 250 m. Four MODIS bands of 

Rrc data with the nominal central wavelengths of 555, 645, 859, and 1240 nm were used in bloom indices 

and true color images.  

3.3. Parameterization of Vertical Chla Profiles  

To describe the shape of each vertical chlorophyll profile, we wrote a function to curve fit automately 

using the Curve Fitting Toolbox of MATLAB R2012a software (The Math Works, Inc.). Each Chla 

vertical profile data was fitted to 5 functions: linear function, quadratic polynomial, Gaussian, 

exponential, and power function. The sum of squares due to error (SSE), lowest root-mean-square error 

(RMSE), and coefficient of determination (R2) of each function were compared. The fitted function with 

the highest R2 (R2 > 0.8) and lowest SSE and RMSE was used to identify the vertical distribution class 

of the Chla vertical profile.  

To compare the variabilty of the vertical distribution with respect to a uniform distribution, the 

coefficient of variation (CV) was used with the standard deviation (SD) and mean:  

SD
CV 100%

mean
   (5) 

3.4. Algal Bloom Indexes  

Resampled remote sensing reflectance Rrs,MODOS was constructed using the in situ measured 

reflectance (Rrs) and the spectral response function of MODIS (B(t)) (Equation (6)). 
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Several algal bloom indexes were used to distinguish the algal bloom waters from non-bloom waters, 

Normalized Difference Vegetation Index (NDVI, Equation (7)) [50]; Chlorophyll Spectral Index (CSI, 

Equation (8)) [51], Floating Algae Index (FAI, Equation (9)) [52], and the Normalized Difference algal 

Bloom Index (NDBI, Equations (10) and (11)):  
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Among these algal bloom indexes, NDVI, CSI, and NDBIRrs were derived by in situ Rrs data while 

FAI and NDBIRrc were applied to MODIS Rrc data. In MODIS algorithms, λGREEN, λRED, λNIR, and λSWIR 

are associated to wavebands centered at 555 nm, 645 nm, 859 nm, and 1240 nm, respectively.  

3.5. Classification and Regression Tree (CART)  

Statistical Package for the Social Sciences (SPSS) was used to generate decision trees to classify Chla 

vertical distribution classes, using the classification and regression tree (CART) approach. CART [53] is 

a non-parametric procedure for predicting continuous dependent variable with categorical and/or 

continuous predictor variables where the data are partitioned into nodes on the basis of conditional binary 

responses to questions [54]. The maximum number of tree levels, minimum number of data sets for the 

parent nodes and minimum number of data sets for the child nodes was pre-defined. The CART model 

concluded after one of the stopping rules was satisfied. Stopping rules were set to prevent the model 

from over-fitting the training data. Accuracy estimates (classification and accuracy), the number of  

non-terminal nodes, and the number of leaves were used to describe the results. A decision tree to classify 

the Chla vertical profile classes was developed using the CART algorithm, taking into consideration 

remote sensing reflectance and wind speed.  

Distance to shore provided an indirect influence on Chla vertical distribution, by changing the local 

wind speed with respect to wind direction and position with respect to the shore or island. The distance 

(fetch) of this effect will vary with respect to wind speed, wind direction, lake bathymetry and land 

topography [55]. To overcome this limit, we limited our analysis to those stations with a distance of 

more than 500 meters (2 MODIS band 1pixels) from the lakeshore. Therefore, the stations whose 

distance to shore was less than 500 meters were deleted prior to the decision tree development.  

Ten-fold cross validation was used to estimate the performance of the decision tree; the data were 

partitioned into 10 equally (or nearly equally) sized sets. The training and validation were performed 10 

times such that 1 segment is held-out for validation, while the remaining 9 are used for training within 

each iteration [56]. Classification accuracy assessment was accomplished through comparison of the 

resulting classification classes with in situ data through the use of a confusion or error matrix. The 

number of test sites required for accurate comparisons is discussed in detail below. From the confusion 

matrix, it was possible to compute a number of metrics that assess the accuracy of the classification, 

such as overall accuracy, Kappa coefficient, user’s accuracy, and producer’s accuracy. The traditional 

F-measure (F1 score), the harmonic mean of precision and recall, of each class was also calculated.  
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4. Results  

4.1. Vertical Characteristics of Optically Active Substances 

Chlorophyll-a concentrations (Chla) showed a large range (max/min ratio = 268.78) and variability 

(SD/mean = 2.62) (Table 1). The CV of Chla vertical profiles ranged from 4% to 239% with an average 

value of 67%. In the July campaign, the average CV was 20%, while the average CV was 133% in 

October, when the maximum Chla values at the water surface occurred.  

Concentrations of SPIM and DOC had a lower range and variability compared to Chla (Table 1). 

Mean CVs of their vertical profiles were lower, 28% and 14%, respectively. The nine vertical profiles 

of DOC were regarded as vertically uniform in the May campaign.  

Table 1. Measurements from sampling campaigns in Lake Chaohu in May, July, and 

October 2013: chlorophyll-a concentration (Chla, μg∙L−1), concentration of suspended 

particulate inorganic matter (SPIM, mg∙L−1), Dissolved Organic Carbon (DOC, μg∙L−1) and 

coefficients of variation (CV, %) from the vertical profiles. 

  

  

Water Surface Value CV of Vertical Profile 

N Mean SD Min Max N Mean (%) SD (%) Min (%) Max (%) 

Chla 64 352.68  922.32  26.00  6988.29  64 67  68  4  239  

SPIM 64 31.33  17.47  10.00  88.00  41 28  14  8  64  

DOC 64 27.27  23.21  3.23  126.32  9 14  9  6  34  

Note: Water surface values of DOC are mixed samples from water surface to 0.4 m, CV = SD/mean × 100%. 

The difference of number between vertical samples (SPIM and DOC) and those of water surface samples 

resulted from that SPIM and DOC profiles were not collected in some stations.  

Table 2. Chla vertical profile classes and their fitting functions. R2 is the coefficient of 

determination between the raw data and fitted data. 

Class N 
Average 

CV 

Chla Vertical 

Profile Class 
Fitted Function R2 RMSE 

Class 1 27 19.53% uniform  – 9.57 

Class 2 9 29.25% Gaussian  0.85 3.36 

Class 3 12 97.73% exponential  0.91 23.29 

Class 4 16 163.60% hyperbolic  0.86 20.15 

The Chla vertical profile datasets of the three surveys were processed to determine the most appropriate 

vertical profile class: vertically uniform (Class 1), Gaussian (Class 2), exponential (Class 3), and 

hyperbolic (Class 4) (Table 2). Chla profiles of Class 1 (Figure 2a) showed a featureless shape without 

maximums and with average CV 19.53%, and was classified as vertically uniform (Tables 2 and 3).  

Class 2 profiles (Figure 2b) exhibited a Gaussian distribution (N = 9) with a maximum Chla value at 

water surface, where C0 was the background chlorophyll-a concentration, h was peak height for the 

Gaussian model and σ represented the peak width [31]. Class 3 profiles (Figure 2c) had an exponential 

distribution (N = 12) characterized by the scaling and exponent terms m1 (280.98 ± 146.54) and m2  
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(–3.15 ± 2.79). Class 4 profiles (Figure 2d) followed a negative power function (N = 16) with the scaling 

and power terms, n1 (29.01 ± 19.82) and n2 (–0.71 ± 0.26). In Class 3 and 4, the Chla concentration at 

the water surface was usually higher than 100 μg/L, even up to several thousand μg/L (Table 3). 

 

Figure 2. Selected Chlorophyll-a concentration profiles with original data points and fitted 

curves for the four vertical Chla profile classes: (a) Class 1, vertically uniform; (b) Class 2, 

Gaussian distribution; (c) Class 3, exponential distribution; and (d) Class 4, negative power 

function distribution. 

Table 3. Results of fitted function parameters of chlorophyll-a vertical profile class. 

Class Parameters Min Max Mean Sd 

Class 2 

C0 7.76 39.81 22.42 10.85 

σ 0.02 0.41 0.20 0.15 

h 1.48 75.59 34.08 26.94 

Class 3 
m1 129.4 613.30 280.98 146.54 

m2 −9.67 −0.64 −3.15 2.79 

Class 4 
n1 12.46 80.63 29.01 19.82 

n2 −1.10 −0.28 −0.71 0.26 
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4.2. Identification of Chla Vertical Profile Classes Using in situ Rrs 

4.2.1. Rrs Response to Algae Vertical Profile Classes 

The spectra curves (400–900 nm) collected in three field surveys were similar in shape and magnitude 

to the reflectance spectra reported for other highly eutrophic waters (Figure 3) [51,57]. In situ Rrs in the 

green region (500–600 nm) was much higher than that in the blue (400–500 nm) and red (600–700 nm) 

ranges with a maximum at around 550 nm. The variability of spectra in the red spectral range was 

associated with the combined effect of pure water absorption, scattering by particles, and the absorption 

and fluorescence of chlorophyll [58]. A minimum reflectance at 675 nm corresponded to the Chla 

absorption maximum. The peak between 690 and 710 nm resulted from both backscattering and a 

minimum in absorption by optically active constituents, including pure water. A much larger peak 

centered at 705 nm has been used as an indicator of dense surface phytoplankton blooms [59]. The 

dominant effect of absorption in determining the form of this spectrum is indicated by the deep minima 

at 550 nm and 665 nm, and the lesser minimum at 630 nm, due to chlorophyll a and auxiliary  

pigments [58]. The reflectance in the near-infrared (NIR) range (700–900 nm) varied widely with a small 

maximum at 814 nm, due to the high backscattering suspended particles with SPIM > 10 mg/L. Floating 

plankton like cyanobacteria increases reflectance at wavelengths > 700 nm, in a similar manner to 

terrestrial plants [58].  

 

Figure 3. Spectral curves of Rrs (λ) from 400 nm to 900 nm of the four vertical Chla profile 

classes ((a) Class 1, vertically uniform; (b) Class 2, Gaussian distribution; (c) Class 3, 

exponential distribution; and (d) Class 4, negative power function) in Lake Chaohu in May, 

July and October 2013.  
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Rrs of Class 3 and 4 showed two minima at 440 and 625 nm, which were associated to Chla and 

phycocyanin absorption, respectively (Figure 3). The Rrs in the NIR range of Class 3 and 4 was 

consistently higher, and was associated to dense surface phytoplankton in bloom conditions [59], and 

scattering by particulate matter [60]. Based on the above characteristics, spectral differences between 

Class 1 and 2 and Class 3 and 4 in characterized bands of blue, red and infra-red range indicated a more 

presence of cyanobacteria and algal blooms in the latter.  

 

Figure 4. (a) Outputs of three algal bloom indices; (b) the corresponding wind speed (m/s); 

and (c) distance of stations to shore (km). NDVI: Normalized Difference Vegetation Index; 

CSI: Chlorophyll Spectral Index; NDBI: Normalized Difference algal Bloom Index. 

Comparing the algal bloom indexes based on in situ Rrs (350–1050 nm), NDBIRrs performed best in 

distinguishing floating algal scum (lower SD) between Class 1 and 2 and Class 3 and 4 with less 

variability with respect to NDVI and CSI (Figure 4a). This may have resulted from variations of Rrs in 

the NIR band using in NDBI and CSI, which was caused by high concentrations of suspended matter 

(Figure 3c,d). There was a general increase of NDBI with the Chla vertical profile classes from Class 1 
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to Class 4 (Figure 4a). At low NDBI values, Chla vertical profiles were vertically uniform (Class 1) or 

had a Gaussian distribution (Class 2). At high NDBI, Chla vertical distributions exhibited exponential 

and negative power function, which were resulted from floating algae gathering near the water surface.  

4.2.2. Wind Speed of Different Chla Vertical Profile Classes 

The classes of Chla vertical profiles were related to wind speed, with a lower wind speed from  

Class 1 to Class 4 (Figure 4b). The results confirmed that the vertical distribution of algae followed a 

uniform distribution (Class 1) at high wind speed, with CV < 30%. At lower wind speeds, there is no 

obvious separation between Chla vertical profile Class 2 and Class 3, hence the need to use both wind 

speed and estimated Chla indices to identify profile classes.  

Additionally, distance to the shore indirectly influenced Chla vertical profiles. For example, samples 

collected in the lee side of the Mushan island showed a Gaussian vertical distribution of Chla (Class 2), 

while Class 1 dominated in the open lake area (Figure 4c). Distance to shore provided an indirect 

influence on Chla vertical distribution, by changing the local wind speed with respect to wind direction 

and position with respect to the shore or island. To overcome this limit, we limited our analysis to those 

stations with a distance of more than 500 meters (2 MODIS pixels at band 1) from the lakeshore in the 

following sections.  

4.2.3. Decision Tree  

The vertical profiles decision tree was developed based on data from remote sensing reflectance 

indices and wind speed (Figure 5). The initial separation was based on Chla concentrations,  

NDBIRrs < 0.25, where Chla vertical profiles followed either a vertically uniform (Class 1) or Gaussian 

(Class 2) distribution. When NDBIRrs was greater than 0.25, profiles were well represented by either an 

exponential (Class 3) or hyperbolic (Class 4) distribution. Surface wind speeds were then used to further 

separate vertical profile classes. Class 1 profiles occurred when wind speed was >2.75 m/s, while  

Class 2 profiles occurred when wind speeds were <2.75 m/s. Class 3 profiles occurred for wind  

speeds > 1.75 m/s, while Class 4 profiles occurred for wind speeds < 1.75 m/s.  

 

Figure 5. Decision tree (CART) of identifying Chla vertical profile class based on NDBIRrs 

and wind speed, where NDBIRrs is the NDBI index derived from in situ measurements, and 

“w” represents wind speed.  
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Results for the analyses followed a confusion matrix, where numbers on the diagonals corresponded to 

correctly classified cases, and off-diagonal entries represent misclassification. The classification accuracy of 

the decision trees was evaluated (Table 4) using 10-fold cross validation method with overall accuracy 79%, 

and Kappa coefficient 0.71. The F1-measure of each class is 88%, 47%, 80% and 84%, respectively. 

Thresholds of the decision tree were evaluated with changing value, and the results showed that the NDBI 

and wind speed in the decision tree (Figure 5) derived the highest accuracy (Figure 6).  

 

Figure 6. Sensitivity analysis of threshold value of the CART decision tree: (a) classification 

accuracy (%) with changing NDBI; and (b) classification accuracy (%) with changing wind 

speed. The red markers (NDBI = 0.25, w1 = 2.75 m/s, w2 = 1.75 m/s) are the thresholds used 

in this study with highest classification accuracy. 

As the most important environmental force of Chla vertical distribution, wind speed had a direct and 

rapid influence on Chla vertical profile. Lake Chaohu has few surrounding land masses with high 

elevations, allowing the assumption that the wind speed across the lake remained relatively uniform over 

two hours, the association of measurements and satellite overpass (±1 h) was made. After analyzing the 

wind speed measured in June 2014, we found that the variation of wind speed was small and wind 

direction was similar throughout the lake. Average wind speed value obtained from in situ measurements 

was 2.8 m/s (2.4–4 m/s) and 0.58 m/s (0–1.4 m/s) on 11 and 13 June, respectively.  
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Table 4. Confusion matrix for Chla vertical profile classes of Chaohu Lake, 2013. Note that 

“Overall Acc.” is overall accuracy of validation, “Kappa” represents Kappa coefficient.  

  Actual User’s  

Accuracy   Class 1 Class 2 Class 3 Class 4 Totals 

Predicted 

Class 1 19 3 0 0 22 86% 

Class 2 2 4 1 2 9 44% 

Class 3 0 0 6 1 7 86% 

Class 4 0 1 1 13 15 87% 

Totals 21 8 8 16 53  

Producer’s Accuracy 90% 50% 75% 81% Overall Acc. 79% 

F1-measure 88% 47% 80% 84% Kappa 0.71 

4.3. Identification of Chla Vertical Profile Classes Using MODIS Rrc Data 

The relationship between Rrs of MODIS images and in situ Rrs requires information on the spectral 

response of MODIS wavebands and the atmospheric conditions above the study lake. The correlation 

between in situ NDBIRrs and NDBIRrs,MODIS was high, R2 = 0.98 (N = 67, Figure 7a, Equation (12)). 

Converting the in situ NDBI threshold (0.25) to a MODIS Rrs threshold, the value of 0.15 was  

determined (Equation (12)).  

,MODISNDBI 0.72 NDBI 0.03Rrs Rrs    (12) 

MODIS Rrs was difficult to determine due to complex atmospheric conditions and the lack of 

available atmospheric data necessary for atmospheric correction. Non-coupling ocean-atmosphere 

radiative transfer simulation using different aerosol types and optical thicknesses (extracted from 

SeaDAS LUTs, τa(555) = 0.1, 0.5, 1.0) was used to explore the relationships between NDBIRrc,MODIS and 

NDBIRrs,MODIS. For NDBIRrs,MODIS = 0.15, the NDBIRrc,MODIS was 0.125, indicating a near independence 

of aerosol types and thicknesses (Figure 7b). This threshold of 0.125 was used to detect algal blooms in 

Rrc data from MODIS images.  

There were eight cloud free MODIS images coincident with the sampling campaigns on 28 May,  

24 July, and 10–12 October, 2013. The MODIS NDBIRrc,MODIS threshold value (0.125) with the average 

wind speed in a two hour window around the satellite data acquisition were used to determine the Chla 

vertical profile class throughout the lake (Figure 8a–f). Class 1 distributions were observed nearly all 

parts of the lake on 24 July 2013 with wind speed 5 m/s. The wind speed at 5:30 a.m. GMT had fallen 

to 1.75 m/s, which produced a reduction in mixing and increased stability of water column. This 

increased stability would have been essential to enable algae to migrate back to near-surface waters, and 

the Chla vertical distribution of large part of MODIS images changed from Class 1 to Class 2  

(Figure 8d). On 10 October 2013, Class 4 dominated nearly 80% of the lake in the morning, changing 

to Class 3 with increased wind in the afternoon. The Chla vertical profile class was similar for both Terra 

and Aqua images taken on the same day in similar wind conditions, and dominant class changed over 

two consecutive days when wind conditions changed.  
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Figure 7. Relationships between (a) NDBIRrs and NDBIRrs,MODIS; and (b) NDBIRrc,MODIS and 

NDBIRrs,MODIS at different atmospheric conditions (seven aerosol types and three optical 

thickness) through model simulations based on SeaDAS Look up table. τa(555) is the aerosol 

optical thickness at 555 nm. Threshold value of NDBIRrs,MODIS to detect algal bloom is 0.15, 

while the corresponding average NDBIRrc value is 0.125, which is independent of aerosol type 

and optical thickness. Note that NDBIRrs is NDBI index derived from in situ measurements, 

NDBIRrs,MODIS is resampled NDBIRrs according to spectral response function of MODIS, and 

NDBIRrc,MODIS is NDBI index derived from MODIS images. 

 

Figure 8. Cont. 
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Figure 8. Chla vertical profile class for Lake Chaohu estimated from MODIS measurements 

using NDBIRrc,MODIS (0.125) and measured wind speed on (a,b) 28 May 2013, (c,d) 24 July 

2013, (e,f) 10 October 2013, (g) 11 October 2013, and (h) 12 October 2013. 

Previous studies used a narrow time window for coincident in situ and satellite data records (i.e. no 

more than ±3 h) [61]. Considering the effects of temporal variability on Chla vertical distribution, nearly 

concurrent measurements (±1 h) of satellite and in situ measurements were used to validate the assigned 

Chla vertical distribution class. Of the 12 matching pairs, 10 samples had the same Chla vertical profile 

class as in situ measurements (Table 5). For two samples belonged to Class 2 in situ measurements, the 

MODIS estimated Chla vertical class was incorrectly assigned (Class 1), indicating an error related to 

wind speed. These two stations were located on the lee side of Mushan island, where wind speed value 

is lower over than that measured in the other areas of the lake.  

Table 5. Validation of Chla vertical profile class derived using concurrent in situ and 

MODIS based measurements with different wind speed on 28 May, 24 July, and 

11–12 October 2013.  

Day GMT Time 
Wind Speed  

(m/s) 
NDBIRRC,MODIS 

Chla Vertical Class 

in situ Class Estimated Class 

28 May 2013 1:00 2.25  0.118  2 2 

28 May 2013 2:25 2.25  0.159  4 4 

28 May 2013 3:25 2.25  0.160  4 4 

24 July 2013 1:55 5.00  0.101  2 1 

24 July 2013 2:25 5.00  0.101  2 1 

24 July 2013 2:55 5.00 0.101  1 1 

11 October 2013 2:30 0.43  0.135  4 4 

11 October 2013 3:10 0.43  0.135  4 4 

11 October 2013 3:50 0.43  0.135  4 4 

12 October 2013 1:30 2.20  0.101  2 2 

12 October 2013 2:05 2.20  0.101  2 2 

12 October 2013 2:40 2.20  0.101  2 2 

4.4. Relationships of Structure Parameters to Remotely Sensed Data 

Open ocean studies show that it is possible to extract and then parameterize typical profiles as 

a function of surface Chla concentration (Chlas) [35]. We built the relationships of vertical 

structure parameters to surface Chla concentration (using remote sensing reflectance) and tried 
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deriving the vertical profile parameters using remote sensing data or easily obtained optical 

parameters. Figures 9 and 10 showed the best relationships. For Class 2, C0 was difficult to retrieve 

from water surface parameters, but had good correlations with absorption coefficient of CDOM 

(ag(443)). This relationship required additional information to further explore (Figure 9a,b). 

Parameters h and σ changed inversely with Rrs(709) (R2 = 0.56, 0.55, Figure 9c,d). For Class 3 and 

4, the quantitative relationships between vertical structure parameters and Rrs did not perform well 

(R2 < 0.5), while the relationships between m1, n1, n2 and surface Chla concentrations performed 

relatively well (Figure 10).  

 

Figure 9. Relationships between structure parameters of Chla vertical Class 2 and surface 

variables: (a) C0 versus ag(443), (b) C0 versus Chlas, (c) h versus Rrs(709), and (d) σ versus 

Rrs(709). Note that Chlas is average Chla concentration from water surface to 0.4 m. 

 

Figure 10. Cont. 
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Figure 10. Relationships between structure parameters of Chla vertical Class 3 and 4 and 

surface variables: (a) m1 of Class 3 versus Rrs(709), (b) m2 of Class 3 versus Chlas, (c) n1 of 

Class 4 versus Chlas, and (d) n2 of Class 4 versus Chlas. Note that Chlas is average Chla 

concentration from water surface to 0.4 m.  

5. Discussion  

Identifying the vertical distribution of phytoplankton is essential to accurately access biomass and 

evaluate lake trophic conditions. Four Chla vertical profile classes with different structure parameters 

were observed in Lake Chaohu, and the results indicated that the Chla vertical class may change in 

short times. As different Chla vertical profile classes may occur at the same time across the lake, 

understanding the Chla vertical profile classes is necessary to estimate the vertical profile of Chla in 

complex inland waters. Remote sensing reflectance spectra contain information about the optical 

properties of components within the effective upwelling depth, below which the optical properties of 

the water body no longer directly influence the water leaving radiance [62]. Typical of eutrophic 

shallow lakes, the effective upwelling depth in Lake Chaohu was limited, requiring additional  

non-optical information to determine Chla vertical profile classes. By combining NDBI and wind 

speed, a decision tree was developed to estimate the vertical distribution profile of phytoplankton 

biomass. In the decision tree, optical conditions of the surface water were the first parameter to 

distinguish the classes, with wind speed as the key parameter in final classification of the Chla vertical 

profiles. The results suggested that Chla vertical distribution was spatially heterogeneous and also 

helped to explain why the area and intensity of algal blooms changed over a short time.  

Ideally, the Rrs of every pixel should initially be derived from the satellite images by 

atmospheric correction, and then used in the NDBIRrs algorithm to detect algal blooms. 

Unfortunately, the assumption of black water at NIR [63] or SWIR [64] bands is invalid in many 

eutrophic inland lakes, which leads to the difficulty in correcting aerosol effects. There is currently 

no reliable aerosol correction that can be used to derive Rrs accurately in optically complex inland 

lakes [52]. Moreover, the mixed pixel problem is complicated in MODIS images with 250 m spatial 

resolution, which results in uncertainty of comparing NDBIRrs derived from in situ measurements 

to MODIS images directly.  

A robust index to detect and quantify floating algae must be relatively stable against changing 

environmental and observational conditions. The FAI is the difference between Rayleigh-corrected 

reflectance in the NIR and a baseline formed by the red and SWIR bands, and has been shown to be an 

effective index to detect floating algae by removing most of the atmospheric effects [52]. Due to the 
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limitations of spectral range of Rrs data measured by ASD field spectrometer (350–1050 nm), FAI of 

each sample could not be derived by in situ Rrs. We developed the NDBI based on in situ Rrs data and 

MODIS Rrc images. The sensitivity of NDBIRrc,MODIS was compared to FAI estimates of algal boom 

coverage. The left panels in Figure 11 show the representative RGB images where blooms are present, 

and the middle and right panels show the corresponding NDBI and FAI distributions, respectively. 

NDBIRrc,MODIS and FAI provided similar patterns (Figure 11), especially when blooms occur. However, 

in high turbid waters (Figure 11j), FAI provided an erroneous bloom coverage, indicating that 

NDBIRrc,MODIS is more robust when high suspended inorganic matter is present. For example, in the 

northwest of the MODIS images on 14 April 2013, areas circled in red with high FAI (Figure 11k) and 

low NDBI (Figure 11l) appear to be caused by high turbidity.  

 

Figure 11. Comparison of FAI and NDBI derived by MODIS images on (a–c) 14 October 

2011, (d–f) 10 October 2013, (g–i) 03 February 2012, and (j–l) 14 April 2013, respectively. 

The high NDBI and FAI values (dimensionless) in the middle of the lake in (b) and (c) indicate 

a cyanobacterial bloom. Areas circled in red with high FAI (k) and low NDBI (l) appear to be 

caused high turbidity. The dashed lines represent MODIS detector error. 
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An increased spatial resolution of the wind field would provide a more accurate estimation of vertical 

algal distribution. Satellite based microwave scatterometers, SCATs, have a limited spatial resolution 

(25 km) with an accuracy of wind speed of ±2 m/s [65]. SARs have higher spatial resolution  

(sub-kilometer) with all-weather capability and large spatial coverage [66]. However, the accuracy of SAR 

wind speed at low winds (<5 m/s) is low, as low wind speeds produce little backscatter [65]. Our wind speed 

thresholds were below this minimum value, thus, these approaches are unlikely to provide better information 

than shore-based measurements. In-lake meteorological stations were not available in Lake Chaohu at the 

time of this study. Measurements from a station located at the north shore of Lake Chaohu were the best 

source of continuous data. A two-hour average wind speed from in situ measurement would be the most 

accurate information to estimate Chla vertical distribution classes in this shallow eutrophic lake.  

Vertical mixing in lakes is strongly influenced by wind direction topography and bathymetry. This 

spatial variability represents a limit to this approach, in particular when applied to other lakes. For lakes 

where nearshore topography, local bathymetry or internal waves create mixing conditions that are not 

directly wind related [67,68], an accurate determination of local wind conditions should be determined.  

The determination of vertical profile classes based on Rrs and wind speed showed accurate results in 

Lake Chaohu, but was based on a relatively small dataset of 64 profiles. A larger in situ dataset would help 

to better define the functional coefficients for the nonlinear profiles. Radiative transfer models  

(e.g., Hydrolight) or other modeling approaches (e.g., optimal algorithm, artificial neural network) could 

be used to further study relationships between upwelling irradiance and vertical conditions, and will be 

further explored. The capability to associate non-homogeneous Chla profiles to water surface Chla 

concentration from satellite color sensors would improve the estimates of phytoplankton biomass in large 

lakes and coastal areas.  

6. Conclusion 

Identification of vertical profile class of phytoplankton is essential to evaluate the vertical distribution 

of phytoplankton, algal biomass, and explain the short-term changes of algal bloom conditions. Our 

dataset, acquired over three surveys (28 May, 19–24 July and 10–12 October) in Lake Chaohu, China, 

showed vertical profiles of Chla with four different profile classes (vertically uniform, Gaussian, 

exponential and hyperbolic). Using the combined information provided by the NDBI index and local 

wind conditions, a decision tree was built to identify the vertical profile classes using both in situ Rrs 

data and MODIS Rrc images. The threshold value was 0.025 and 0.125 for NDBIRrs and NDBIRrc,MODIS, 

respectively. Threshold value of wind speed to distinguish vertically uniform from Gaussian distribution 

was 2.75 m/s, and to distinguish exponential from hyperbolic distribution was 1.75 m/s. The 

classification accuracy of the decision tree was evaluated using 10-fold cross validation method with 

overall accuracy 79%, and Kappa coefficient 0.71. The dominant Chla profile class of each pixel varies 

with time, and can be determined by the above rules.  

The NDBI index uses commonly available green and red wavebands and is therefore easily applied 

to other satellite data. By using the same approach with Geostationary Ocean Color Imager (GOCI), 

Visible Infrared Imaging Radiometer (VIIRS) or other satellite data, continuous assessment of the lake’s 

algal biomass and primary production can be made. In broadly similar hydrological (shallow, open lake), 

trophic (eutrophic) and topographic (non-mountain) conditions, the approach used in this study can be 
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applied. Application to new lakes requires that similar decision tree can be developed and calibrated 

using local in situ datasets. For lakes where nearshore morphometry or internal waves create mixing 

conditions that are not directly wind related [67,68], higher resolution data of local wind conditions and 

hydrology would be required.  

Qualitative and quantitative relationships between vertical parameters and surface variables provide 

new insights, but more in situ data or simulated large dataset are required to determine Chla 

concentrations at different water depths. Further validation is required to test the applicability of the 

thresholds developed for Lake Chaohu for other satellite sensors and other waterbodies, and to validate 

the robustness of NDBI in the effects of atmosphere, cloud and mixed pixels.  
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