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Abstract: The distribution of C3 and C4 vegetation plays an important role in the global 

carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at 

a high spatial resolution over local or regional scales helps us to understand their ecological 

functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a 

high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and 

temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging 

Spectroradiometer) and ETM+ (Enhanced Thematic Mapper Plus) data. The blended data 

exhibited a high correlation (R2 = 0.88) with the satellite derived ETM+ data.  

The time-series NDVI (Normalized Difference Vegetation Index) data were then generated 

using the blended high spatio-temporal resolution data to capture the phenological differences 

between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation 

turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 

vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. 

Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 

and C4 classification features. Five features were selected from the 18 classification features 

OPEN ACCESS



Remote Sens. 2015, 7 15245 

 

 

according to the ground investigation data, and subsequently used for the C3 and C4 

classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% 

with a kappa of 0.725 in our study area. 

Keywords: C3 and C4 classification; NDVI time-series; fusion; MODIS; Landsat TM/ETM+ 

 

1. Introduction 

Research on biogeochemical cycling, the global carbon cycle and climate change have shown that the 

spatial distribution of C3 and C4 vegetation is relevant to atmospheric CO2 and temperature changes [1–4]. 

C4 plants tend to favor warmer environments (warm season plants), and C3 plants thrive in areas with 

lower temperatures (cool season plants) in the mid-latitudes [3,5]. The balance between C3 and C4 plants 

changes with the atmospheric CO2 content variation [6,7]. Therefore, mapping of C3 and C4 plants is 

important for the study of regional climate change and carbon cycle. 

Previous studies have attempted to map C3 and C4 plants using remote sensing data. Hyperspectral 

data have proven to be effective in mapping C3 and C4 plants. Irisarri claimed that the hyperspectral 

data could discriminate C3 and C4 plants inside a laboratory [8]. Hyperspectral remote sensing data with 

bands centered at 470 nm, 530 nm, 600 nm, 660 nm, 700 nm, 720 nm, 820 nm, 1540 nm, 2060 nm,  

2280 nm, 2300 nm, 2450 nm and 2470 nm showed potential for classifying C3 and C4 plants, and 

features selected from these bands were used to classify C3 and C4 plants [9]. The chlorophyll fluorescence 

derived from hyperspectral remote sensing data was used for discriminating C3 and C4 plants [10–12]. 

A later study showed that chlorophyll fluorescence could be detected from space [13], which indicated 

that it is possible to classify C3 and C4 vegetation using space borne remote sensing data. However, 

satellite borne sensors, such as the Thermal And Near-infrared Sensor for carbon Observation-Fourier 

Transform Spectrometer (TANSO-FTS) on the Japanese Greenhouse gases Observing SATellite (GOSAT), 

the MEdium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency’s (ESA’s) 

ENVIronmental SATellite (ENVISAT), and the TOMS (Total Ozone Mapping Spectrometer) aboard the 

Orbiting Carbon Observatory-2 (OCO-2) launched by NASA have coarse spatial resolutions (300 m for 

ENVISAT, 10.5 km for GOSAT and 1.29 × 2.25 km for OCO-2). The coarse spatial resolution of satellite 

data leads to a large number of mixed pixels, especially for fragmented landscapes. This implies that the 

chlorophyll fluorescence derived from satellite remote sensing data is not yet suitable for high spatial 

resolution C3 and C4 plant classification over the regional scale. 

Physiologically, C3 and C4 lifeforms are distinguished by their different photosynthetic pathways 

through which carbon is fixed into carbohydrates. Vegetation utilizing C3 and C4 photosynthetic pathways 

exhibit physiological and morphological differences that result in dissimilar responses to environmental 

conditions, such as light saturation, maximum rate of net photosynthesis, optimum temperature for net 

photosynthesis, transpiration rate and growth rate [14,15]. Although, with their sensitivity to varying 

environmental disturbances, C3 and C4 species exhibit markedly different seasonal activity cycles [16]. 

Compared to C4 species, C3 species green up earlier and are more active under the cooler temperature 

conditions of spring and early fall. In contrast, C4 species green up later in the growing season and are 

more active under the warmer, drier conditions of mid to late summer [17]. These contrasts in phenological 
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characteristics make the C3 and C4 vegetation types exhibiting asynchronous seasonality in their pattern 

of greenness. 

Because of the seasonal differences between C3 and C4 plants, measurement of vegetation greenness 

(e.g., NDVI) derived from time series of remote sensing data have the potential to discriminate C3 and C4 

plants. Studies have been conducted to determine the temporal offsets of photosynthetic activity for these 

two types of vegetation [5,17–19]. Foody et al. proved the possibility of mapping C3 and C4 vegetation 

composition in South Dakota, US by capturing the asynchronous seasonal profile from time series of 

MTCI (MERIS terrestrial chlorophyll index) data product [19]. Wang et al. classified C3 and C4 type of 

grasses using time-series MODIS derived phenology metrics in the U.S. Great Plains [5]. Compared to the 

satellite remote sensing data with many mixed pixels and the airborne data that are economically-costly 

for the regional scale C3 and C4 distribution mapping, the high temporal resolution data products that can 

be used as time-series data are more suitable. The high temporal resolution data products, including 

AVHRR, MODIS and MTCI MERIS, etc. are usually used to capture the phenological asynchronicity of 

C3 and C4 vegetation. However, the existing high temporal resolution data, such as MODIS and 

AVHRR data, are not suitable to be used for mapping C3 and C4 plants in regions with fragmented 

landscapes due to their coarse spatial resolutions. Remote sensing data with finer spatial resolutions, such 

as Landsat TM/ETM+, however, could not capture the fine dynamics of the vegetation due to their long 

revisiting cycles. 

Data with both high spatial and temporal resolutions are still not available to extract the time-series 

features for C3 and C4 classification at a regional scale. To generate time-series satellite data with high 

spatial and temporal resolutions, several data fusion models have been proposed and have been proven 

to be practicable. Gao et al. developed a Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM) for blending the Landsat and MODIS data to generate daily surface reflectance data at a 30 m 

spatial resolution [20]. To overcome the shortcoming of STARFM in inaccurate prediction of the surface 

reflectance over heterogeneous landscapes, an Enhanced Spatial and Temporal Adaptive Reflectance Fusion 

Model (ESTARFM) has been proposed to generate more accurate land surface reflectance in 

heterogeneous regions [21]. 

The aim of this study is to propose a framework for mapping C3 and C4 vegetation types in spatially 

heterogeneous landscapes using high spatio-temporal resolution remote sensing data. The high spatial 

resolution time-series data was derived from fusing daily MODIS land surface reflectance data and 

Landsat ETM+ data. The study area is the middle reaches of the Heihe River Basin, Gansu Province, 

China, where the landscape is fragmented and the vegetation distribution is complicated. The proposed 

framework includes: (1) to generate daily 30m resolution land surface reflectance data by fusing MODIS 

and Landsat ETM+ data using the ESFARFM and to evaluate the accuracy of the fused data; (2) to 

generate the NDVI time-series data using the fused land surface reflectance data, and to extract 

classification features from the NDVI time-series data for C3 and C4 plant classification; and (3) to 

classify the C3 and C4 plants in the middle reaches of Heihe Watershed, China, using the SVM (Support 

Vector Machine) classifier with selected classification features. 

This paper is organized as follows. In Section 2, we describe the study area and the dataset used in 

the analysis. In Section 3, we present our methods for the data pre-processing, data fusion accuracy 

assessment, C3 and C4 vegetation seasonality feature extraction and the C3 and C4 vegetation classification. 
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The results are presented and analyzed in Section 4. A summary of the whole study and the conclusions 

are provided in Section 5. 

2. Study Area and Data 

2.1. Study Area 

The study area is located in the middle reaches of the Heihe River basin (north corner: 40°19′31′′N, 

99°9′34′′E; east corner: 38°39′23′′N, 101°45′34′′E; south corner: 101°4′26′′N, 38°6′24′′E; west corner: 

39°33′16′′N, 98°21′33′′E), Gansu Province, northwest of China (Figure 1). The study area is characterized 

by its fragmented landscapes: sparse natural vegetation and artificial oasis across the area, such as trees, 

shrubs, grassland, irrigated crops, riparian ecosystem, and desert. The field investigation revealed that there 

are both natural and planted C3 and C4 plants in the study area (List 1). 

 

Figure 1. Location of the study area. The image is the false color composition of Landsat 

ETM+ data (R: band 4, G: band 3, B: band 2). The yellow triangles represent the field 

investigated C4 vegetation and the blue squares represent the C3 vegetation. The bright green 

line is the field vegetation survey routine. 
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List 1. C3 and C4 plants in the study area. 

C3 Plants C4 Plants 

Bulrush (Phragmites australis L.), Rice (Oryza sativa L.),  

Castor (Ricinus communis L.), Sugar Beet (Beta vulgaris L.),  

Sunflower (Helianthus annuus L.), Soybean (Glycine max L.),  

Wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.),  

White Poplar (Populus alba L.), Potato (Solanum tuberosum L.), 

Rape (Brassica napus L.), Rape (Hippophae rhamnoides L.), 

Barley (Hordeum vulgare L.) 

Sacsaoul (Haloxylon Aammodendron L.),  

Sorghum (Sorghum bicolor L.), Maize (Zea mays L.), 

Calligonium (Calligonum arborescens L.), 

SalsolaCollina (Salsola collina Pall L.),  

Pteridophyta (Suaeda dendroides (C. A. Mey.) Moq. L.) 

2.2. Data 

The MODIS and ETM+ reflectance data have long been acknowledged as being of good quality and 

continuity. The MODIS data we used was the Surface Reflectance product (MOD09GQ) of the fifth 

version (downloaded from: http://reverb.echo.nasa.gov/reverb). The MOD09GQ is daily land surface 

reflectance data with red (R) and near infrared (NIR) spectral bands, and its spatial resolution is 250 m. 

In comparison with the eight-day or 16-day products, the daily reflectance data can better capture the 

phenological differences between the C3 and C4 plants, especially during the critical growth and senescence 

stages in early spring and fall. Plants in this study area begin to green-up during the middle of April and 

senesce in the middle of October. The data used in this study was from 13 April 2012 (103rd day of the 

year) to 31 October 2012 (304th day of the year), which covered the entire C3 and C4 vegetation growth 

period of the study area. 

The 30m resolution Landsat 7 ETM+ data were downloaded from the USGS Land Processes Distributed 

Active Archive Center. There are three scenes of ETM+ data to cover the study area. They are 134_32, 

134_33, and 133_33. The 134_32 and 134_33 were acquired on the same day because they are on the 

same orbit from north to south. After the removal of the cloud-covered images, eight scenes of ETM+ 

data (DOY 112 to DOY 304) were remaining for 133_33, and 10 scenes of ETM+ data for for 

134_32/134_33 (Table 1). We used the Landsat ecosystem disturbance adaptive processing system 

(LEDAPS) to create the Landsat-based surface reflectance data. Through the LEDAPS system, the 

Landsat data were calibrated, converted to Top-of-Atmosphere (TOA) reflectance, and atmospherically 

corrected using the 6S model [22]. The geometric correction to the ETM+ and MODIS data was based 

on the GCPs (Ground Control Points) collected by the HiWATER (Heihe Water Allied Telemetry 

Experimental Research) project [23], using the rational polynomial model. 

The temperature decreases due to high elevation will affect the distribution of C4 vegetation, and 

therefore must be considered. The GDEM (Global Digital Elevation Model) data (the 2nd version) with 

30 m spatial resolution and 20m vertical resolution was used to present the elevation. The GDEM data 

was downloaded from http://gdem.ersdac.jspacesystems.or.jp/. 

The ground investigation was performed from 8 July to 9 August 2012 by the HiWATER team.  

The field investigation route and the investigation points are shown in Figure 1. The field investigation 

was intensified in areas where the distribution of vegetation was fragmented, and each of the vegetation 

types were covered in the field survey. The vegetation being investigated includes natural and artificial 

plant for their species, height, and acreage of crop stands. We then categorized each vegetation type into 
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C3 or C4 vegetation. Only patches larger than 25 ha (equivalent to approximately four 250 m pixels in 

area) in size were chosen as the C3 and C4 “ground truth” data to be used in the classification and 

accuracy assessment process. The chosen ground truth investigation points include 682 points for C3 

and 499 points for C4. 

Table 1. Remote sensing data used for generating the high spatial and temporal resolution 

Normalized Difference Vegetation Index (NDVI) data. 

Data 
MODIS ETM+ 

h25_v04/h25_v05 134_32/134_33 133_33 

Spatial Resolution 250 m 30 m 30 m 

DOY 103–304 (daily) 

103 -- 

119 112 

135 176 

151 192 

167 224 

215 240 

231 272 

247 288 

279 304 

295 -- 

3. Methodology 

Two main steps were performed for the C3 and C4 vegetation classification: generating the time-series 

NDVI data at a 30m resolution, the classification of the C3 and C4 vegetation based on the time-series 

NDVI data and its accuracy assessment (Figure 2). 

ETM+
MODIS

(MOD09GQ)

Data Correction

Data Fusion
(ESTARFM)

Time-series NDVI Data

Feature Extraction for 
C3 and C4 Classification 

Classification
Classification Accuracy 

Assessment

Resampling

Feature Selection

Accuracy 
Assessment

Generation of NDVI 
Time-series Data

C3 and C4 Classification 
and Accuracy Assessment

C3 and C4 Field 

Investigation Data

Gap-filling (GNSPI)

C3 and C4 

Classification Result

 

Figure 2. Flowchart of the C3 and C4 vegetation classification process. 
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3.1. High Temporal and Spatial Resolution NDVI Data Generation 

We employed the ESTARFM data fusion algorithm to derive the high spatial and temporal resolution 

data. The ESTARFM was proven to be able to accurately predict the surface reflectance and preserve 

the details in high resolution, especially for heterogeneous landscapes[21]. To predict the daily 30 m 

spatial resolution land surface reflectance, we employed the MODIS and Landsat ETM+ data for the 

antecedent and subsequent date. 

However, the ETM+ data used included SLC-off (Scan Line Corrector-off) images as only SLC-off 

images were available for the Landsat series data during 2012. The un-scanned pixels roughly occupy 

22% of an ETM+ image, limiting the application of the ETM+ data [24]. Fortunately, a few algorithms 

were presented to solve this problem [25–27]. Here, we used GNSPI (Geostatistical Neighborhood 

Similar Pixel Interpolator), an algorithm based on the geostatistical theory and NSPI (Neighborhood 

Similar Pixel Interpolator) [28], to fill the gaps of the ETM+ SLC-off images before data fusion. 

Prior to implementing the ESTARFM data fusion algorithm, we used MODIS Reprojection Tools 

(MRT) to reproject and resample the MODIS data to the spatial resolution of the ETM+ imagery.  

The clouded images were excluded according to the QC (Quality Control) data along with the 

MOD09GQ data. A bilinear algorithm was used in the resampling process to reduce the effect of the 

georeferencing error. The ESTARFM requires at least two pairs of fine- and coarse-resolution images 

that were acquired on the same date and a set of coarse-resolution images for desired prediction dates. 

There are 10 scenes of cloud-free ETM+ data for 134_32/134_33 and 8 scenes for 133_33, as listed in 

Table 1. To minimize the uncertainty caused by human activity or environmental changes, the temporally 

closest available data were set as a pair. Hence, there were nine pairs for 134_32/134_33 and 7 pairs for 

133_33. In the following data fusion process, the study area was divided into two  

sub-areas according to the ETM+ data coverage, as is shown in Figure 1. 

To derive the phenological parameters for C3 and C4 vegetation classification, the widely used 

Normalized Difference Vegetation Index (NDVI) was employed [29–31]. The time-series NDVI were 

calculated using the predicted time-series surface reflectance data of red (R) and infrared (NIR) spectral 

bands at 30 m resolution. 

NDVI =
NIR - R
NIR + R

 (1)

The time-series NDVI profile of vegetation over the growing season is shown in Figure 3. There are 

abrupt shifts in the raw time-series NDVI profile, which may be caused by climate and atmospheric 

variability, bi-directional of reflectance, and sun zenith angle changes that occur all around a year [32–35]. 

The removal of noise and disturbances are critical for the extraction of the C3 and C4 vegetation 

phenological features [30,31]. To remove noises in the time-series data, there are many algorithms 

available [36–39]. 

In this study, three different noise removal methods, symmetric Gaussian functions, double logistic 

functions and Savitzky-Golay filtering, were tested with the original time-series data using the TIMESAT 

program [36]. As shown in Figure 3a,c, the asymmetric Gaussian function and double logistic functions 

changed the NDVI value unexpectedly before DOY180. This result agreed with the previous research in 

which the asymmetric Gaussian and double logistic functions were problematic for application to the 

irregular VI time-series [29,40]. Although the Savitzky-Golay filtering performed better, there was still 
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some undesirable noise in the curve (Figure 3b). Thus, we performed a second Savitzky-Golay filtering to 

the first Savitzky-Golay filtered result, and we named it as “Double Savitzky-Golay filtering (Double  

S-G)”. The Double S-G result was improved compared with the other three results in our test, even 

though it fits to the mean of the NDVI data rather than to the upper envelope. 

110 176 192 208 224 240 272 288 300
0.0

0.2

0.4

0.6

0.8

1.0

N
D

VI

DOY

 Raw             
 Double S - G

(d)

Figure 3. Removal of noise in time-series NDVI profile. (a) asymmetric Gaussian function; 

(b) Savitzky-Golay filtering; (c) double logistic functions; (d) Double Savitzky-Golay filtering. 

3.2. Feature Extraction for C3 and C4 Vegetation Classification 

As shown in Figure 4, C3 and C4 plants have distinguishable spatial distribution trends according to 

altitude. Based on the field investigation points, we found that there were hardly any C4 plants in areas 

with altitude higher than 2000 m above sea level. Thus, we divided the study area into two areas: the 

area above 2000 m a.b.s.l. and the area below 2000 m a.b.s.l. (Figure 4). Vegetation in the area above 

2000 m a.b.s.l. was classified as C3 functional plant type. 

Each C3 or C4 field survey point was plotted as a time-series NDVI profile (Figure 5). Figure 5a,b 

revealed that within the heterogeneous geographical environment, C3 and C4 vegetation have similar 

seasonality characteristics. Most of the C3 and C4 NDVI values are similar during the entire growing 

season. Uncertainties exist in both the C3 and C4 time-series NDVI profiles, and the values increased in 

summer when the plants were thriving. However, the time-series profile of mean NDVI (solid line in 
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Figure 5a,b) shows that the NDVI values of the C4 plants were higher than those of C3 plants during the 

summer. For the green-up and the senescence phases of a season, the NDVI values of the C3 plants were 

higher than those of C4. 

 

Figure 4. C3 and C4 vegetation distribution as a function of the elevation in the study area. 

 

Figure 5. Time-series NDVI profile plotted according to field investigation points. Shaded 

areas indicate the variance of the C3 and C4 NDVI. (a) time-series NDVI profile of 

134_32/33 sub-area; (b) time-series NDVI profile of 133_33 sub-area. 

According to the seasonality differences presented in the time-series NDVI profile, 18 features were 

extracted (Table 2). These features were used to characterize the differences between the C3 and C4 plants. 

Some of the features are depicted in Figure 6. 
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Table 2. The 18 features that were extracted for the classification of the C3 and C4 vegetation. 

No. Classification Features 
Value 

Range 
Description 

1 Max NDVI value −1, 1 Maximum NDVI value 

2 Min NDVI value −1, 1 Minimum NDVI value  

3 Max NDVI value date 0, 86 DOY when maximum NDVI value achieved 

4 Min NDVI value date 0, 86 DOY when minimum NDVI value achieved 

5 Integral D35-D45 0, 10 Integral between DOY35 and DOY45 

6 Integral of NDVI 0, 86 Integral of NDVI time-series curve 

7 Max_NDVI/Integral −∞, +∞ Ratio of maximum NDVI to NDVI curve integral 

8 Max derivative −∞, +∞ Maximum derivative value of NDVI profile 

9 Min derivative −∞, +∞ Minimum derivative value of NDVI profile 

10 Min_derivative NDVI value −1, 1 NDVI value when Minimum derivative achieved 

11 
Integral between max and min 

derivatives 
0, 86 

Integral between maximum and minimum 

derivatives 

12 
Integral between D_SOS and 

D_max 
0, 86 

Integral between the start of the season and 

maximum NDVI 

13 Number of local max NDVI value 0, 86 Number of local maximum NDVI values 

14 
Integral between max and first local 

max 
0, 86 

Integral between maximum and first local 

maximum NDVI 

15 D_SOS 0, 86 Date of the start of the season 

16 D_EOS 0, 86 Date of the end of the season 

17 EOS NDVI value −1, 1 NDVI value at the end of the season 

18 SOS NDVI value −1, 1 NDVI value at the start of the season 
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Figure 6. C3 and C4 time-series NDVI curve and extracted features. Time-series NDVI curve 

features: Start of Season (SOS), green-up ratio, peak, withering ratio, End of Season (EOS), 

Length of Season (LOS), integral of growing season, and their corresponding dates. 
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It is our concern that whether all features were needed to be used in the classification process, if not, 

how should a subset be chosen that minimizes any loss of information essential to the C3 and C4 

vegetation classification? That indicates that a feature selection process for features listed in Table 2 

should be conducted to discard those features that are not effective in C3 and C4 vegetation 

discrimination [41]. Feature selection was conducted in two steps: (1) feature values were plotted in a 

box plot to compare their separability, referring to the mean value and the variance of the C3 and C4 

classes; (2) the Jeffries-Matusita (J-M) distance statistic [41], which could quantify the separability 

between two classes effectively, was employed. The J-M distance between a pair of class specific 

probability functions is given by: 

1/2
2

( | ) ( | )ij i j

x

JM p x p x dxω ω
  = −   
  (2)

In this study,	ݔ denote the values of the selected C3 and C4 classification features, and ߱௜ and ௝߱ 
denote the C3 and C4 classes, respectively. Under normal conditions, Equation (2) reduces to: 

( )2 1 e ijB

ijJM −= −  (3)

where 

( ) ( )
1

1 1 1
μ μ μ μ ln

8 2 2 2

T i ji j
ij i j i j

i j

B
−   + +   = − − +        

 (4)

In Equation (4), ߤ௜and ߤ௝ correspond to the C3 and C4 NDVI mean values, and ∑i and ∑j are unbiased 

covariance matrices of C3 and C4. The J-M distance, which ranges between 0 and 2, provides a general 

measure of the separability between two classes based on the average distance between their class density 

functions [42]. 

The SVM classifier, which is available in the software ENVI 5.0 (ITT-Visual Information Solutions, 

USA) was employed in the classification process. SVM is based on the statistical machine learning theory 

and determines the location of decision boundaries that produce an optimal separation of classes. ENVI’s 

implementation of SVM uses the pairwise classification strategy for multiclass classification. For the training 

of the SVM classifier, 2/3 of the field investigation points were randomly chosen, and the remaining 1/3 

of the points were used as the “ground truth” to assess the classification accuracies. 

4. Results and Discussion 

4.1. NDVI Prediction Accuracy Assessment 

4.1.1. NDVI Prediction Accuracy within the Growing Season 

The predicted NDVI was calculated using the blended reflectance at red (R) and near infrared (NIR) 

bands. The surface reflectance blending accuracies are shown in Figures 7 and 8, which were similar to 

results of [20,21]. The blended red bands had higher correlation with the observed ETM+ data. Lower 

blending accuracy may be caused by farming activities at the end of the growing season. For the 

134_32/33 sub-area, the blending accuracies of the DOY 215 and DOY 231 were lower because there 
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were clouded areas in these ETM+ scenes (although not very large). The R2 of the blended and ETM+ 

reflectance were mostly higher than 0.73 for red band, and higher than 0.47 for near infrared band, 

respectively in the sub-area of 133_33. In the area of 134_32/33, the R2 of the blended and ETM+ 

reflectance were mostly higher than 0.7 for red bands, and higher than 0.5 for the near infrared bands. 

A comparison between the predicted NDVI and the observed ETM+ NDVI is provided in Figures 9 

and 10. The accuracy assessment shows most of the predicted data are closer to the 1–1 line, (R2 > 0.74). The 

higher R2 were achieved during the middle of the growing season, whereas smaller R2 appeared during 

the withering phase. The minimum R2 were 0.53 and 0.74 at the end of the 133_33 and 143_32/33  

sub-areas, respectively, which may be due to the seasonal farming activities in the crop area. 

The NDVI derived from the blended reflectance data were more closely matched with data calculated 

from the ETM+ reflectance during the summer. The average R2 between the predicted NDVI and the NDVI 

from ETM+ was larger than 0.88 for 133_33 and larger than 0.76 for 134_32/33 sub-area in summer. 

 

 

Figure 7. Scatterplots of the blended and the ETM+ data for the 133_33 sub-area.  

(a) scatterplots of the red band; (b) scatterplots of the near infrared band. 
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Figure 8. Scatterplots of the blended and the ETM+ data for the 134_32/33 sub-area.  

(a) scatterplots of the red band; (b) scatterplots of the near infrared band. 
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Figure 9. Scatterplots of the predicted NDVI and the actual ETM+ NDVI for the 133_33 

sub-area. (Predicted NDVI by blending MODIS and ETM+ data of: (a) DOY 112, DOY 192; 

(b) DOY 176, DOY 224; (c) DOY 192, DOY 240; (d) DOY 224, DOY 272; (e) DOY 240, 

DOY 288; (f) DOY 272, DOY 304. 

 

Figure 10. Scatterplots of the predicted NDVI and the actual ETM+ NDVI for the 134_32/33 

sub-area. (Predicted NDVI by blending MODIS and ETM+ data of: (a) DOY 119, DOY 151; 

(b) DOY 135, DOY 167; (c) DOY 151, DOY 215; (d) DOY 167, DOY 231;  

(e) DOY 215, DOY 247; (f) DOY 231, DOY 279; (g) DOY 247, DOY 295. 

The NDVI prediction accuracies for the ETM+ 134_32/33 sub-area are a bit lower than for the 133_33 

sub-area. The ESTARFM algorithm was less accurate for the prediction of the near-infrared data, and 

the field investigation revealed that there was a larger area of desert and Gobi in the 143_32/33 sub-area. 
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Additionally, there were more frequent farming activities occurring in the 143_32/33 sub-area and more 

vegetable cultivation fields. Fortunately, the C4 crops in both sub-areas have similar farming seasonality, 

which means that the lower NDVI prediction accuracy over the 143_32/33 area will not significantly 

affect the C3 and C4 classification. 

4.1.2. Time Interval Effect to the NDVI Blending Accuracy 

In the ESTARFM data fusion algorithm, the time interval has a considerable effect on data fusion 

accuracy [21] because vegetation types or sun zenith angle changes will occur during the long time span. 

Thus, a long time interval for an input data pair will cause the NDVI prediction accuracy to decrease. 

The results in Figure 11 show the NDVI blending accuracy at different time intervals of the input data. 

The results indicated the accuracies of blended NDVI will decrease as the time interval increases. An R2 

of 0.73 between the blended NDVI and the NDVI from ETM+ data was achieved at the time interval of 

96 days over homogeneous farming land. 

 

Figure 11. Input data time interval and the NDVI blending accuracy. Blending accuracy 

with a time interval of: (a) 48 days; (b) 96 days; and (c) 176 days. 

However, the time intervals for the data fusion in Figures 9 and 10 are at least twice as long as our 

conducted data fusion. For example, for the NDVI prediction of DOY 176 in the 133_33 sub-area, the 

input data pairs include the MODIS and ETM+ data in DOY 112 and DOY 192. For the data between DOY 

112 and DOY 176 to be predicted, we used the MODIS and ETM+ data in DOY 112 and DOY 176. The 

time intervals were 80 days (192–112) and 64 days (176–112) for the accuracy assessment and the actual 

data fusion, respectively. This indicated that the NDVI data prediction accuracy may be higher than the 

accuracy given above. 

4.2. Feature Selection for C3 and C4 Vegetation Classification 

Figure 12 are the boxplots of the 18 C3 and C4 classification features that were extracted from the 

time-series NDVI data. The boxplots were generated using the data derived from the 18 features according 

to the field investigation points, which illustrate the C3 and C4 data distribution of each feature, including 

the maximum/minimum values, the 75th percentile, 50th percentile (median), mean (in circle), and 25th 

percentile. From these statistical data, it is easy to determine the five distinguishable features of C3 and C4 

plants: Max NDVI value, Min NDVI value, Integral D35–D45, Integral of NDVI, and Max_NDVI/Integral 

(Table 3). Figure 13 shows the spatial distribution of the selected 5 features listed in Table 3. 
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Figure 12. Boxplots of the 18 C3 and C4 classification features. (1–18) are boxplot of every 

classification feature listed in Table 2. 
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Figure 13. The maps of the selected features for the C3 and C4 vegetation classification. (a) 

the maximum NDVI value of the growing season; (b) the minimum NDVI value of the 

growing season; (c) the integral of NDVI between DOY 35 and DOY 45; (d) integral of 

NDVI for the growing season; and (e) the ratio between maximum NDVI and the integral of 

NDVI within the growing season. 

To test the separability of the selected features for the C3 and C4 vegetation classification, the J–M 

distance was employed. The J-M distance between the C3 and C4 classes was based on each feature and 

combination of features to evaluate the overall separability of the selected features (Table 4).  

As shown in Table 4, larger J-M distances were found for more combination of more features.  

The combination between any two features of the five selected features selected was lower than three, 
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and the combination of four features was better than three, etc. The J-M distance was 1.93 when all the 

five features were all used to classify the C3 and C4 plants, which indicates that the C3 and C4 plants 

could most distinguishable by using the combination of the five selected features. 

Table 3. The 5 features selected from the 18 features that were extracted from the  

time-series NDVI data. 

No. Classification Features Valve Range Description 

1 Max NDVI value −1, 1 Maximum NDVI value 

2 Min NDVI value −1, 1 Minimum NDVI value  

3 Integral D35–D45 0, 10 Integral between DOY35 and DOY45 

4 Integral of NDVI 0, 86 Integral of NDVI time-series curve 

5 Max_NDVI/Integral −∞, +∞ Ratio of maximum NDVI to NDVI curve integral 

Table 4. The J-M distances between different feature combinations (1: Max NDVI value,  

2: Min NDVI value, 3: Integral D35-D45, 4: Integral of NDVI, 5: Max_NDVI/Integral). 

Feature 

Combination 

J-M 

Distance 

Feature 

Combination 

J-M 

Distance 

Feature 

Combination 

J-M 

Distance 

Feature 

Combination 

J-M 

Distance 

1,2 1.55 1,2,3 1.82 1,2,3,4 1.78 1,2,3,4,5 1.93 

1,3 1.6 1,2,4 1.77 1,2,3,5 1.89 -- -- 

1,4 1.6 1,2,5 1.75 1,3,4,5 1.87 -- -- 

1,5 1.6 1,3,4 1.74 2,3,4,5 1.84 -- -- 

2,3 1.6 1,3,5 1.81 -- -- -- -- 

2,4 1.6 1,4,5 1.72 -- -- -- -- 

2,5 1.6 2,3,4 1.74 -- -- -- -- 

3,4 1.29 2,3,5 1.76 -- -- -- -- 

3,5 1.6 3,4,5 1.74 -- -- -- -- 

4,5 1.6 -- -- -- -- -- -- 

The two-sample Kolmogorov-Smirnov test was employed to test whether the five selected features 

for C3 and C4 vegetation classification are significantly different. The two-sample Kolmogorov-

Smirnov test is one of the most widely used nonparametric statistical test methods for comparing two 

independent samples with no assumption made concerning the distribution of the variables, and is 

sensitive to differences in both location and shape of the empirical cumulative distribution functions of 

the two samples [43]. The two-sample Kolmogorov–Smirnov statistic is given by:  

, ' 1, 2, 'sup ( ) ( )n n n n
x

D F x F x= −   (5)

where ܨଵ,௡	 and ܨଶ,௡ᇲ	 are the empirical distribution functions of the first and the second sample 

respectively, ݊ and ݊ᇱ are the numbers of samples for the first and the second sample, and		݌ݑݏ	is the 

supremum function. The null hypothesis is rejected at level α if: 

, 'n n critD D>  (6)

where 
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The value of ܿ(α) in Equation (7) for each level of α is given in [44]. The ܿ(α)	is 1.95 at the α = 0.001 

level. We used the MATLAB software to conduct the two-sample Kolmogorov-Smirnov test of every 

chosen classification feature, where the p-value was used to represent the probability of accepting the ܪ଴ hypothesis at level α There are 682 C3 samples and 499 C4 samples, respectively. The null hypothesis 

at the α = 0.001 level is that: ܪ଴: samples derived from the C3 and C4 classification feature are not significantly different; ܪଵ: samples derived from the C3 and C4 classification feature are significantly different. 

The Kolmogorov-Smirnov test results for the five selected C3 and C4 vegetation classification 
features are shown in Table 5. For each feature, the ܦ௡,௡ᇱ	is much larger than Dcrit (α = 0.001), which 

means that each of the K-S test result rejects the ܪ଴ hypothesis at the 99.9% confidence level. These 

results indicate that the distributions of the selected features for C3 and C4 vegetation classification are 

significantly different at the 99.9% confidence level. 

Table 5. Kolmogorov-Smirnov tests for C3 and C4 classification features. 

Features ࢔,࢔ࡰᇱ Dcrit (α = 0.001) p-Value 
Integral 35–45 0.6433 0.1149 1.00 × 10−7 
Integral 0.6104 0.1149 9.97 × 10−64 
Ratio 0.3660 0.1149 3.50 × 10−23 
Max 0.6177 0.1149 3.07 × 10−65 
Min 0.3239 0.1149 3.03 × 10−18 

4.3. Accuracy Assessment of C3 and C4 Vegetation Classification 

To compare the C3 and C4 plant classification accuracy at different spatial resolutions, we classified the 

C3 and C4 in both the time-series MODIS data at 250m resolution and the predicted data at 30 m resolution 

with the same selected five features. The classification results are shown in Figure 14. Figure 14a is the 

classification result based on the time-series MODIS NDVI data (250 m resolution), and Figure 14b is 

the classification result using the blended time-series NDVI data (30 m resolution). The classification 

accuracy assessments were conducted using the ground investigation data (205 points for C3 and 224 

points for C4). 

The classification accuracy measurements of the time-series MODIS NDVI and blended time-series 

NDVI data are shown in Tables 6 and 7, respectively. The classification accuracy of the blended high 

spatial resolution data is noticeably higher than that of the MODIS data. The overall accuracy and kappa 

coefficient of the former are 85.75% and 0.7235 respectively, whereas the overall classification accuracy 

of the time-series MODIS NDVI data is 69.65% with a kappa coefficient of 0.4. According to the 

MODIS data classification confusion matrix, many C3 plants were classified as C4. The possible reason 

is that the C3 vegetation having a more fragmented distribution than the C4 vegetation, and MODIS data 

at coarser resolution contained more mixed-pixels that to be easily misclassified. As shown in  

Figure 14, there is much difference between the classification results from MODIS and the blended data. 
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Because the major difference between the MODIS and the blended data is that they have different spatial 

resolutions, the differences between the classifications based on MODIS and the blended data are largely 

due to the spatial heterogeneity of the vegetation type distribution. The ground investigation had revealed 

there was a large number of small parcels of vegetable and maize with a fragmented distribution around 

Jiuquan city, northwest of the study area. 

 

 

Figure 14. The C3 and C4 vegetation classification results over the study area. (a) the C3 

and C4 vegetation classification result of MODIS data; (b) the C3 and C4 vegetation 

classification result of MODIS and ETM+ blended data. 
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Table 6. C3 and C4 classification accuracy of moderate resolution imaging spectroradiometer 

(MODIS) time-series data. 

-- Ground Truth 

Classification 
Results 

Class C3 C4 Total User’s Accuracy 
C3 183 110 293 62.46% 
C4 19 113 132 85.61% 
Total 202 223 425 -- 
Producer’s Accuracy 90.59% 50.67% -- -- 

Overall Accuracy: 69.65% 
Kappa: 0.4041 

Table 7. C3 and C4 classification accuracy of blended time-series data. 

-- Ground Truth 

Classification 
Results 

Class C3 C4 Total User’s Accuracy 
C3 179 31 210 85.24% 
C4 17 188 205 91.71% 
Total 205 223 428 -- 
Producer’s Accuracy 87.32% 84.3% -- -- 

Overall Accuracy: 85.75% 
Kappa: 0.7235 

5. Conclusions 

We presented a framework for high spatial resolution C3 and C4 vegetation classification in regions 

with fragmented landscapes. In this framework, daily land surface reflectance data at 30 m spatial 

resolution was generated by fusing MODIS and Landsat ETM+ data using the ESFARFM algorithm. 

Based on the time-series NDVI data generated from the fused land surface reflectance data, features for 

C3 and C4 vegetation classification were extracted and selected. C3 and C4 vegetation was classified using 

the selected features and the nonparametric machine learning classifier, SVM. 

The C3 and C4 classification framework was tested in the middle reaches of Heihe Watershed that 

locates in Gausu Province, China. The result indicated that the average R2 between the predicted NDVI 

and the ETM+ derived NDVI was more than 0.88. The combination of 5 selected classification features 

(minimum/maximum NDVI value, integral of time-series NDVI, the ratio between maximum NDVI 

value, and the integral of time-series NDVI) could better capture the differences between C3 and C4 

vegetation. Compared to the C3 and C4 vegetation classification using the time-series MODIS data with 

250m spatial resolution, the fused time-series data with 30m spatial resolution achieved a higher C3 and 

C4 vegetation classification accuracy (16% higher than those of MODIS C3 and C4 classification 

accuracy). The fused time-series NDVI data could map C3 and C4 vegetation distribution better over regions 

with fragmented landscapes. 

Compared to the previous study of C3 and C4 grasses classification in the U.S. Great Plains [5,19], 

the classification results in this study by using blended finer resolution time-series remote sensing data 

shows more spatial details of C3 and C4 vegetation distribution. This is a critical advantage for C3 and 

C4 vegetation mapping in regions with spatially heterogeneous landscape. 
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Long time interval between Landsat TM/ETM+ data may introduce large uncertainties in the blended 

data. To achieve accurate classification of C3 and C4 using the methodology presented in this paper, one 

should collect time series Landsat TM/ETM+ data with as short time interval as possible. 

C3 and C4 vegetation within the same climate zone show markedly different seasonal activity cycles. 

Thus, we suggest our method to be used in the same climate zone. The methodology presented in this 

paper also has the potential to map land cover types with a high spatial resolution time-series remote 

sensing data. 
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