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Abstract: Satellite Image Time Series (SITS) have recently been of great interest due to the 

emerging remote sensing capabilities for Earth observation. Trend and seasonal components 

are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition 

based on Ensemble Empirical Mode Decomposition (EEMD) is proposed. EEMD is achieved 

by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions 

(IMFs). EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional 

Empirical Mode Decomposition (EMD). Inspired by these advantages, the aim of this work is 

to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the 

separation of seasonal and trend components. In a series of simulations, IMFs extracted by 

EEMD achieved a clear representation with physical meaning. The experimental results of  

16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS), 

Normalized Difference Vegetation Index (NDVI), and Global Environment Monitoring Index 

(GEMI) time series with disturbance illustrated the effectiveness and stability of the proposed 

approach to monitoring tasks, such as applications for the detection of abrupt changes. 

Keywords: satellite image time series; ensemble empirical mode decomposition; seasonal 

component; trend component 
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1. Introduction 

With the development of satellite technology, the amount of historical remote sensing data is 

growing. These long sequences of remote sensing data, which are called Satellite Image Time Series 

(SITS), contain a considerable amount of information, such as land-cover dynamics and disturbances. 

SITS are always considered valuable resources for Earth monitoring [1]. Thus, the study of the 

information of changing patterns, scope, scale, and trends is very meaningful but challenging work. 

SITS usually contain seasonal, trend, and remainder components [2]. Seasonal and trend components 

are key elements for SITS analysis because they contain important information for understanding Earth 

science processes. Seasonal components constitutionally reflect inter-annual periodic fluctuations that 

are usually driven by the annual temperature, weather, seasons of the year, or growth cycles of 

vegetation [3]. Trend components mainly reflect long-term changes. Hence, decomposing SITS into 

different components, especially the seasonal components and trend components, plays an important 

role in SITS analysis. Various techniques were investigated for this purpose (see Kandasamy et al. [4] 

for a review). For example, Jönsson and Eklundh [5] extracted seasonal information based on 

nonlinear least-squares fits of asymmetric Gaussian model functions. A logistic piecewise model was 

used by Zhang et al. [6], and a quadratic model was used by de Beurs and Henebry [7]. Eastman et al. [8] 

introduced the Seasonal Trend Analysis (STA) method based on harmonic analysis. Parmentier and 

Eastman [9] extended this method using multivariate time series via segmentation. 

These methods decompose the seasonal components into a set of predefined functions, which 

simplifies the seasonality comparison across different years. Cleveland et al. [10] proposed a classic 

and effective seasonal-trend decomposition model called the Seasonal-Trend decomposition process 

based on Loess (STL). However, this method is not fully automated and a set of parameters must be 

manually set to guarantee the performance. 

The fitting methods depend on their parameters and may cause some useful information to be 

smoothed. A better strategy for decomposition is based on the inherent nature of the data.  

Singular Spectrum Analysis (SSA) is a subspace-based method that decomposes time series based on 

the inherent oscillation of data [11], especially for decomposing time series into different oscillatory 

components without fitting. Mahecha et al. [12] applied SSA to decompose the remote-sensed fraction 

of Absorbed Photosynthetically Active Radiation (fAPAR) time series into different frequencies, 

including seasonal components. SSA was also employed by Forkel et al. [13] to estimate trend 

component on seasonal-adjusted Normalized Difference Vegetation Index (NDVI) time series.  

One of the drawbacks of SSA is that its performance depends on the choice of the window length. 

Furthermore, it needs extra work to choose a combination for a specific oscillation component because 

the decomposition result depends not on the time scale but the eigenvalues. 

In this study, we note the fact that the seasonal component varies at or near the seasonal frequency 

(i.e., one cycle per year), while the trend component is the low-frequency variation along with  

non-stationary long-term changes in levels. Both the seasonal and trend components were correlated 

with frequency. Thus, we mainly focused on how to extract these two components efficiently and 

automatically based on the time frequency analysis and proposed a framework of decomposing SITS 

based on Ensemble Empirical Mode Decomposition (EEMD). EEMD [14] was first presented to 

improve upon the original Empirical Mode Decomposition (EMD). It is capable of decomposing any 
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complex signal into a series of orthogonal components called Instinct Mode Functions (IMFs). 

Accordingly, the motivation for us is to employ EEMD for decomposing SITS into IMFs and to 

choose relevant IMFs to represent seasonal and trend components. We used 16-day composite 

Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI [15] time series and 16-day 

composition of Global Environment Monitoring Index (GEMI) [16] time series with fire disturbance to 

validate the effectiveness of the proposed framework. 

The organization of the paper is as follows. Section 2 details the two-stage decomposition method 

and the proposed strategy. Section 3 provides the experimental data and the application for detecting 

abrupt changes according to the proposed method. Section 4 addresses several concluding remarks and 

provides an outlook for future work. 

2. Proposed Framework 

The proposed framework contains a two-stage process to decompose SITS. In the first stage, EEMD 

is employed for decomposition to obtain a series of IMFs. Then, the selected IMFs are adopted to 

construct seasonal and trend components. 

2.1. Ensemble Empirical Mode Decomposition 

Before introducing EEMD, a brief introduction to EMD is provided here. EMD is a fundamental 

part of the classic Hilbert-Huang Transform (HHT) [17], which has been successfully applied in many 

research areas [18–20]. EMD relies on the decomposition of the signal under study into IMFs and  

a residue [17]. Each IMF stands for an oscillatory mode of the original data, and the residue stands for 

the overall trend. The process of extracting IMF is called sifting, which defines a local characteristic 

time scale of the data as the time interval of two adjacent extremes. Based on the local time scale, the 

algorithm extracts a finite number of IMFs whose frequencies range from high to low. Here, we define 

a random time series x(t), as shown in Figure 1, and the sifting process can be described as follows. 

Step 1. In x(t), the upper envelope represents all the local maxima using a cubic spline line, and the 

lower envelope is used to connect all the local minima. The mean SITS of the upper and lower 

envelopes is denoted as m1(t) as shown in Figure 2. 

Step 2. Mean envelope m1(t) is subtracted from x(t) to approximate an IMF, as: 

)()()( 11 tmtxth   (1) 

Step 3. View h1(t) as a new time series, and step 1 and step 2 are repeated until the following stop 

criterion is satisfied. 
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Huang et al. [17] further determined a stop criterion using a Cauchy type of convergence test: 
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If 
k

SD  is smaller than a predetermined value, the sifting process is stopped, and the highest 

frequency component of the data is designated as the first IMF: 

)()(1 thtc k  (4) 

Step 4. After the highest frequency IMF is extracted, we subtract c1 from the rest of the data: 

)()()( 11 tctxtr   (5) 

Step 5. From the residue r1, we can extract the second highest frequency IMF c2 and residue r2 by 

the sifting process described above. Similarly, all the IMFs ci can be repeatedly extracted from high to 

low frequency, level by level: 
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When residue ri becomes a monotonic function and there are no more IMFs that can be extracted, 

the process stops. Finally, the time series is decomposed as: 
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Ideally, a signal is considered an IMF if it satisfies two conditions, namely: (1) the number of 

extremes and the number of zeros crossing must either be equal or differ by one at most, and (2) the 

mean value of the upper and lower envelopes must be zero. In fact, the sifting process cannot obtain  

a perfect IMF. It is an approximation of an IMF with repeated siftings. However, EMD has the 

drawback of leading to the “mode mixing” problem [14], which indicates the presence of oscillations 

of extreme disparate amplitudes and scales in a mode or presence of extreme similar oscillations in 

different modes. The motivation for us to employ EEMD is summarized as follows: (1) for SITS, the 

“mode mixing” problem may be more serious, as various noise and clouds cover the Earth’s surface in 

satellite images, which may obscure the data, while EEMD effectively resolves it via an ensemble of 

the signal by adding noise, and (2) EEMD is capable of avoiding single IMF, including multiple 

oscillation components with dramatically disparate time scales, simultaneously preventing components 

with similar time scales from being included in different IMFs. The key difference between EEMD 

and EMD is that EEMD incorporates Gaussian white noise into the original time series to uniformly 

distribute the entire time series in different scales to avoid mode mixing. Due to the randomness of 

white noise, the additive noise can be reduced in the mean of the corresponding IMFs by sufficient 

repeated trials. EEMD has better performance than EMD [21,22] and has been widely applied [23–25]. 

The description of the EEMD algorithm is addressed below. 

Step 1. A random white noise series wm(t) is added to the original time series x(t): 

)()()( twtxtx mm   (8) 

Step 2. xm(t) is decomposed by EMD: 
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Step 3. Step 1 and Step 2 are repeated M times with different white noise series. 
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Step 4. The means of the corresponding IMFs are calculated: 
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It is clearly observed that in each trial of EMD, the noise is added, leading to a data analysis robust 

against noise, and EEMD treats the average of the ensembles of EMD as the optimum choice of IMFs. 

Figure 3 illustrates the decomposition results of EEMD using the random time series shown in Figure 1. 

In this experiment, we employ white noise of an amplitude 0.2 times the standard deviation of the 

original data and 100 trials for EEMD, as recommended in the existing literatures [14,26]. 

 

Figure 1. An example of a random time series. 

 

Figure 2. For the above random time series (blue line), the upper and lower envelopes 

(dot-dashed lines) and the mean curve (green line) are provided. 
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Figure 3. For the above random time series, an illustration of the decomposed components 

using Ensemble Empirical Mode Decomposition (EEMD) is provided. The original time 

series (blue line) is decomposed into six Intrinsic Mode Functions (IMFs) (red line) and a 

residue (green line). 

2.2. EEMD for SITS 

As shown in Figure 3, different IMFs from various time-frequency domains can be extracted.  

For example, IMF1 contains the highest frequency and always represents the noise [27]. 

Wu and Huang [28] implemented numerical experiments on white noise time series. They found 

that for the IMFs of white-noise series, the energy density kE , and the averaged period kT  can be 

expressed as: 

ln ln{ }k kE T const   (11) 

where kE  represents the energy density and kT  means the average period. The energy density function 

is 
2 -distributed. They further established a test method to assign the statistical significance of an IMF 

for noisy data. Figure 4 illustrates the statistical significance test for the IMFs in Figure 3. The green 

dots from left to right on the x-coordinate illustrate the energy density as a function of the averaged 

period of IMFs 1 to 6. The green dots closer to the red line indicate that the IMFs are closer to the 

Gaussian white noise. From the results, it is verified that IMF1 is the closest to the noise.  

As a consequence, IMF1 is usually subtracted from the original time series when extracting seasonal 

and trend components. 
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Figure 4. Statistical significance test between the energy density and the averaged period. 

Note that the green dots from left to right show the energy density as a function of the 

averaged period. 

2.2.1. Seasonal Component Extraction 

In SITS, the crucial characteristic of the seasonal component is that it has a regular cycle (i.e.,  

one cycle per year). For geographic data, the seasonal cycle is usually one year. Thus, we considered 

the IMF with a one-year period cycle as the seasonal component, but it this was not always true for 

SITS. Sometimes there were oscillations with a double peak in a year (an example is shown in Section 3.1). 

Therefore, more IMFs are needed to express the seasonal component in SITS: 





c

bi

i tcS )(  (12) 

where the c-th IMF has an oscillation of one year, the b-th to the c-th IMFs have annual cycles, and b 

may be identical to c when there is just one IMF containing annual variation. This is similar to a band 

pass filter based on EEMD. Three steps are needed for choosing IMFs. 

Step 1. Seasonal averaged data are obtained by calculating the periodical average of the time series 

data. Take one particular time series as an example, which consists of data over 10 years.  

One oscillation was acquired by averaging the values of 10 years, and the averaged seasonal data were 

obtained by duplicating the oscillation over 10 years. 

Step 2. The seasonal averaged dataset generally represents one average oscillation of all periodic 

oscillations, and it also represents the most fundamental and consistent oscillations of all periods. 

Accordingly, we obtained the IMFs of this fundamental oscillation by decomposing the seasonal 

average data acquired in Step 1 using EEMD. 
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Step 3. We selected the IMFs of the decomposition outcome of the original series corresponding to 

the IMFs of the seasonal averaged model to formulate the actual seasonal term. 

2.2.2. Trend Component Extraction 

In [27], Wu et al. noted that the most common trend component was extrinsic and predetermined 

and gave an intrinsic and adaptive trend definition for nonlinear and non-stationary data: “The trend is 

an intrinsically fitted monotonic function or a function in which there can be at most one extremum 

within a given data span” [14]. The residue of EEMD is a monotonic function that intrinsically presents 

the overall trend of a time series. Trends are also generated with different time scales using the sum of 

the IMFs, which present oscillations for multiple years as well as the residue [27]. Therefore, the trend 

component generated from EEMD satisfies this definition and can be expressed as: 

)()( trtcT
n

ai

i 


 (13) 

where the IMFs with frequency lower or equal to the a-th IMF are selected to add to the residue to 

construct the trend. The selection of a is affected by the time scale of the trend and is flexible 

according to the need of the application. 

The seasonal-trend decomposition method can be summarized as follows. 

Step 1. Decompose the original SITS by EEMD introduced in Section 2.1. 

Step 2. Subtract IMF1 from the original SITS to de-noise SITS. 

Step 3. Decompose the periodical average of the time series data obtained from Step 2 by EEMD, 

select the IMF component corresponding to the decomposition outcome from Step 1, and construct the 

seasonal component using Equation (12). 

Step 4. Construct the trend component with Equation (13). 

2.2.3. Trend Component for Change Detection 

In this subsection, we aim to apply the extracted trend component for abrupt change detection. 

Theoretically, high-frequency IMFs are required to increase the accuracy of the change detection. 

However, based on the analysis in Section 2.2.2, high-frequency IMFs may bring strong waves, which 

lead to false change detection that obscures the real change point rather than increasing the detection 

accuracy. Hence, the trend component formulation for disturbance detection via the incorporation of 

high-frequency IMFs should seek to limit the strong waves of IMFs. In this work, the selection of 

IMFs is based on the intensity of the IMF wave [29], evaluated by calculating the IMF wave energy: 





N

t

ii tcG
1
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where ci(t) represents the i-th IMF and Gi represents the IMF wave energy, which is the aggregation of 

the mean deviations of the series elements. Clearly, the energy increases proportionally to the wave 

intensity. For the residue r(t) of a nonzero-mean series, the energy Gr can be further defined as: 
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The use of intensity to limit the strong waves can avoid the incorrect detection of the positions of 

change points. In addition, if there is no change, the energy of the residue will be small.  

Higher-frequency IMFs are not added to construct the trend component with the limitation, and false 

change points will not be detected. 

To achieve an effective trend component for change detection purposes, we implement the 

following two steps: 

Step 1. Calculate the energy of the residue using Equation (15), and empirically set the threshold as 

the residue energy ratio (less than 1). 

Step 2. Calculate the wave energy using Equation (14) from the IMF with the lowest frequency.  

If the energy is no greater than the threshold, then the wave intensity is less than the ratio of the residue 

wave, and its variation does not obscure the structural variation in the residue. Accordingly, this IMF is 

added to the residue and formulates the trend component. These steps are repeated using the IMF with 

infra-low frequency until the energy of this IMF is greater than the threshold. Finally, the resulting 

trend component, which only contains IMFs with low frequency and energy, is taken as the output. 

3. Experiment and Discussion 

Field Study: The study area is located in the Yinan River Forest in the northeast of Heilongjiang 

Province, China. A disastrous fire occurred in this area on 27 April 2009 and was not put out until  

2 May 2009. Figure 5 shows a false-color-composite image of Landsat TM shot on 23 May 2009 of the 

burned area. In this experiment, SITS were generated from MODIS 250 m 16-day composite gridded 

vegetation index products (MOD13Q1) from 1 January 2001 to 31 December 2009. We converted the 

original data to a projection of WGS 84/UTM zone 52N. 

Experiment Setup: We first validated our decomposition model by a 16-day composition NDVI 

time series of forest type. SITS were collected from a normal region (denoted as yellow block 1 in 

Figure 5), which was used to illustrate and discuss the time series decomposition procedure. Second, 

the decomposition mode was validated by a 16-day composition GEMI time series with disturbance.  

In this experiment, SITS were from a burned area (yellow block 2 in Figure 5), which was used to detect 

the fire disturbance, and we also analyze a method of selecting IMFs to generate the trend component. 

3.1. 16-Day Composite NDVI Time Series of Forest Type 

One SITS is generally equivalent to one pixel in a remote sensing image. However, this curve 

sometimes exhibits particularity for the existing noise. Here, the mean values of 100 SITS in a frame 

were calculated to obtain a mean time series. Figure 6 illustrates the mean time series of block 1, 



Remote Sens. 2015, 7 15592 

 

 

shown in Figure 5. The EEMD decomposition result of this mean time series is further illustrated in 

Figure 7, and it was decomposed into seven IMFs and one residue. 

 

Figure 5. False-color-composite image of Landsat TM in the field study region. 

 

Figure 6. Normalized Difference Vegetation Index (NDVI) mean time series. 

3.1.1. Seasonal-Trend Decomposition 

First, the statistical significance test described in Section 2.2 for IMFs is shown in Figure 8. IMF1, 

which was close to white noise, was subtracted from the original SITS, acquiring one oscillation by 
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averaging the values of a 12-year period. Then, the average seasonal data were obtained by duplicating 

the oscillation over 12 years, as shown as the blue line in Figure 9. Second, the average seasonal data 

were decomposed by EEMD and two IMFs were obtained with one-year and half-year oscillations, as 

illustrated by the red line in Figure 9. From the result, it is apparent that the half-year oscillation is  

an important component in the seasonal average data. These two IMFs correspond to IMF2 and IMF3, 

as illustrated in Figure 7. Thus, the seasonal component of this SITS was composed of the original 

IMF2 and IMF3. 

 

Figure 7. NDVI mean time series decomposed using EEMD. The time series (blue line) is 

decomposed into 7 IMFs (red line) and a residue (green line). 

 

Figure 8. Statistical significance test between the energy density and the averaged period. 

Note that the green dots from left to right indicate the energy density as a function of the 

averaged period. 
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To further validate this conclusion, the Hilbert marginal spectrums introduced by Huang et al. [17] 

were generated for comparison. The comparison is shown in Figure 10. The similarity of the Hilbert 

marginal spectrums also validated that the two IMFs of the average seasonal data correspond to IMF2 

and IMF3 of the original data in frequency. 

 

Figure 9. Average seasonal data decomposed using EEMD. 

 

(a) 

Figure 10. Cont. 
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(b) 

Figure 10. Comparison of the Hilbert marginal spectra between the real time series and its 

average seasonal data. (a) Hilbert marginal spectrum of the data shown in Figure 7;  

(b) Hilbert marginal spectrum of the data shown in Figure 9. 

As discussed in Section 2.2.2, the trend component with different time scales is generated using the 

sum of IMFs. This is similar to the traditional seasonal-trend decomposition model of selecting 

parameters. For this NDVI time series, the trend component was generated by summing IMF5, IMF6, 

IMF7, and the residue component. The final seasonal-trend composition result is illustrated in Figure 11. 

 

Figure 11. Seasonal-Trend decomposition using EEMD. 
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3.1.2. Validation of the Seasonal Component 

To validate the effectiveness of the seasonal component, we analyzed the correlation between the 

biophysical characteristics of vegetation, and IMF2 and IMF3 considering that the NDVI is derived 

from the red and near-infrared reflectance ratio. From Figures 12 and 13, it is easy to observe that the 

oscillation of the spectral reflectance time series of near-infrared and red are closely related to IMF2 

and IMF3, which were obtained by decomposing the NDVI time series. It was noted that the spectral 

reflectance time series of the near infrared (red) bands had similar wave characteristics. In particular, 

the half-annual wave of IMF2 was incurred by the half-annual wave of the near infrared band 

reflectance, whereas the annual wave of IMF3 was the joint result of the near infrared and red bands. 

As the red line shown in Figure 12 illustrates, there were two peaks in a year in the spectral 

reflectance time series of the near-infrared band. One was in the summer due to the high reflection of 

vegetation, and the other was in the winter due to the high reflection of soil and snow. Comparing the 

curves of the spectral reflectance time series of the near-infrared band and IMF2 (blue line), the 

oscillations of these two series are more or less consistent, as shown in Figure 12. Additionally, as 

illustrated in Figure 13, there is only one peak in the spectral reflectance time series of the red band in 

a year. The valley was in the summer due to the strong absorption of the vegetation. The oscillations of 

IMF3 were similar to those of the red band, and both of them had one regular cycle per year. The 

peaks and valleys were reversed between the two time series because the red band reflectance is the 

subtraction of the vegetation indices. 

It should be noted that, by definition, the mean value of the upper and lower envelopes of an IMF is 

zero. However, it is almost impossible for the spectral reflectance time series to have a mean of zero. 

Hence, the IMF is a frequency component of the original time series, and can be related only to the 

frequency of the spectral reflectance, but hardly reflect the information of the amplitude or phase. 

 

Figure 12. Spectral reflectance time series of near-infrared band and IMF2. 
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Figure 13. Spectral reflectance time series of red band and IMF3. 

3.2. Sixteen-Day Composition GEMI Time Series with Disturbance 

In this experiment, we further examined the application of the trend component in disturbance 

information detection. A 16-day GEMI time series of block 2 as shown in Figure 14 (blue line), was 

employed. A bushfire led to vegetation deterioration and a slump in biomass. A slump also occurred in 

the time series in the vegetation index. These changes were usually structural changes. It was difficult 

to directly determine the disturbance in the 16-day GEMI time series. EEMD was applied to 

decompose the SITS. The red lines show the IMFs from high to low frequencies, respectively, which 

are illustrated in Figure 14, and the green line indicates the residue. 

 

Figure 14. Global Environment Monitoring Index (GEMI) time series decomposed 

using EEMD. 
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Once the effects of seasonal variation and high-frequency information (as noise) were removed, the 

observation of a large variation scale in structural changes compared to that in the moderate yearly 

variations was expected. These changes were also holistic changes and reflected in the IMFs with the 

lowest frequency and the residue. Figure 15a illustrates the trend component formulated using residue 

and the IMF7 decomposed from the GEMI time series using EEMD. Despite the descending tendency 

in the trend component, it was difficult to accurately locate the change point. We performed change 

point detection on the trend component using the cumulative sum (CUSUM) algorithm [30,31]; the 

detected change point had an obvious deviation from the actual time a drastic change occurred.  

As illustrated in Figure 16a, the detected change point represented by the red dashed line corresponded 

to scene 18 of year 2007 (30 September–15 October), whereas the actual occurrence of the fire was 

scene 8 of year 2009 (21 April–7 May). 

 

Figure 15. (a,b) Trend components with different time scales of the GEMI time series. 

Hence, more high frequency IMFs need to be added to the trend component to obtain a more precise 

position of the change point. Based on the analysis in Section 2.2.3, an energy ratio of the IMF and the 

residue less than one should be used to avoid a false change point. The ratio of the threshold should be 

selected depending on the intensity of the change. The more intense change that occurs, the less 

influence it has on the change detection by high-frequency IMFs, and a wider range of threshold could 

be chosen. A large number of experiments showed that, in this case, a threshold value between 0.4 and 

0.8 was recommended. In this work, we set the ratio of the threshold to the residue as 0.5, and IMF7, 

IMF6, and IMF5 should be added to the residue to form the trend component according to their energy 

values shown in Table 1. The final trend component is illustrated in Figure 15b, where it can be clearly 

observed that the structural variation appeared after the year 2009. We then performed change point 

detection on the trend component using the CUSUM algorithm. The detected discontinuity represented 

by the red dashed line corresponds to scene 13 of year 2009 (12–27 July), as in Figure 16b. The change 

point in Figure 16a is obviously more precise; where the position of the change point is closer to the 

real change point. 
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Figure 16. (a,b) The results of change point detection of different trend components. 

Table 1. Energy of the residue and IMFs illustrated in Figure 14. 

 IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 Residue 

Energy 0.878 2.606 6.860 1.522 0.370 0.002 0.212 0.760 

The Breaks for Additive Season and Trend (BFAST) method [32–34] may also be used to detect the 

precise change point, although it needs proper parameters. Otherwise, a false change point would be 

found. For example, two false change points were detected in the same SITS, as illustrated in Figure 17. 

 

Figure 17. The results of change point detection of Breaks for Additive Season and Trend 

(BFAST) algorithm. 
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For the time scale of the trend component, there is an offset between the detected change point and 

the actual point. Thus, the change point is sometimes substituted by the change range, and we assess 

the precise point in the change range. Figure 18 further illustrates the detection results. The detected 

change point was represented by the blue dashed line, and the change range is represented by the green 

dashed line with the threshold of 0.1. The actual occurrence of the fire is represented by the red dashed line. 

 

Figure 18. The results of change point detection and change range detection. 

Disturbances usually cause abrupt changes in time. In this instance, the value should be lower than 

the values in the previous and next years. Furthermore, vegetation recovery is a gradual process. 

Hence, compared with the adjacent years, the lowest values should last for a period. According to this 

phenomenon, Figure 19 further illustrates the comparison between the adjacent years during the interval 

between the green lines in Figure 18. The lowest values start from the 8th point in 2009, and last for  

a period. Therefore, the change position can be updated to the 8th point (23 April to 8 May) in 2009. 

 

Figure 19. Comparison with adjacent years. 
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Finally, the overall process described was applied to the MODIS data pixel by pixel, as shown in 

Figure 20. A burned area was detected, as illustrated in Figure 20b. The red area represents the burned 

area, and the green indicates unburned area. A Landsat TM image shot in 23 May 2009 was used as  

a reference map in Figure 20a. Compared to the reference map, the detection results clearly show the 

efficiency of the proposed method. 

 

(a) (b) 

Figure 20. Detection map of the proposed method. (a) Landsat TM image shot on 23 May 2009. 

(b) Burned area detection map. 

4. Conclusions 

We presented a decomposition approach for SITS based on EEMD. The proposed method first 

decomposed time series into several IMFs and a residue, and then chose appropriate IMFs to make up 

the seasonal component according to the spectral characteristics of the targets and the trend component 

according to the time scale. From experimental analysis, the proposed decomposition approach was 

proven to be simple and flexible for the construction of seasonal and trend components according to 

the applications. It provided robust trend and seasonal components that were not distorted by transient, 

aberrant behavior. It should be noted that the method is easy for computer implementation and can 

quickly finish computation, even for long time series, which fulfills the criteria of the  

seasonal-trend decomposition model proposed by Cleveland et al. [10]. In addition, the seasonal and 
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trend components from this decomposition were intrinsic with clear meanings. Furthermore, the 

decomposition with the basis function was derived from the data by EEMD sifting procedures, instead 

of a priori functional basis, and the procedure was truly adaptive. 

Based on the investigation of this work, the considerations for further research fall into  

two main categories: 

(1) Further algorithm improvement should consider the sensitivity of change point detection of the 

seasonal or trending component. 

(2) Further research is necessary to incrementally update an event database when new observations 

are available and to enhance the prediction algorithm to achieve real-time change detection (see 

Schnebele, et al. [35]). 
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