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Abstract: Although the MODIS Collection 5.1 Land Cover Type (MODIS v5.1 LCT) 

product is one of the most recent global land cover datasets and has the shortest updating 

cycle, evaluations regarding this collection have not been reported. Given the importance of 

evaluating global land cover data for producers and potential users, the 2010 MODIS v5.1 LCT 

product IGBP (International Geosphere-Biosphere Programme) layer was evaluated based 

on two grid maps at scales of 100-m and 500-m,which were derived by rasterizing the 2010 

data from the national land use/cover database of China (NLUD-C). This comparison was 

conducted based on a new legend consisting of nine classes constructed based on the definitions 

of classes in the IGBP and NLUD-C legends. The overall accuracies of the aggregated 

classification data were 64.62% and 66.42% at the sub-pixel and pixel scales, respectively. These 

accuracies differed significantly in different regions. Specifically, high-quality data were 

obtained more easily for regions with a single land cover type, such as Xinjiang province 

and the northeast plain of China. The lowest accuracies were obtained for the middle of 

China, including Ningxia, Shaanxi, Chongqing, Yunnan and Guizhou. At the sub-pixel scale, 

relatively high producer and user accuracies were obtained for cropland, grass and barren 

regions; the highest producer accuracy was obtained for forests, and the highest user 

accuracy was obtained for water bodies. Shrublands and wetlands were associated with low 

producer and user accuracies at the sub-pixel and pixel scales, of less than 10%. Based on 

dominant-type reference data, the errors were classified as mixed-pixel errors and labeling 

errors. Labeling errors primarily originated from misclassification between grassland and 
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barren lands. Mixed pixel errors increased as the pixel diversity increased and as the 

percentage of dominant-type sub-pixels decreased. Overall, mixed pixels were sources of 

error for most land cover types other than grassland and barren lands; whereas labeling errors 

were more prevalent than mixed pixel errors when considering all of the land cover data over 

China, due to the large amount of misclassification between the pure pixels of grassland and 

barren lands. Next, the accuracy of cropland/natural vegetation mosaics was assessed based 

on the qualitative (a mosaic of croplands, forests, shrublands, and grasslands) and 

quantitative (no single component composes more than 60% of the landscape) parts in the 

definition, which resulted in accuracies of 91.43% and less than 19.26%, respectively. These 

results are summarized with their implications for the development of the next generation of 

MCD12Q1 data and with suggestions for potential users of MCD12Q1 v5.1. 
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1. Introduction 

Land cover research is important, because land is the material base for human activities, particularly 

in countries with large populations, such as China and India. Vegetation growing on land provides 

humans with food, fuel and fiber [1]. Buildings for human habitation are primarily constructed on the 

land surface. Water resources that flow on the land surface are essential for all forms of life. However, 

humans alter the land surface by converting natural vegetation to agriculture, urban development, 

inundated lands, reservoirs and tree plantations [2].The anthropogenic modification of land cover is one 

of the most important sources of global land cover change, particularly due to current rapid population 

growth and economic development [3].Alterations in global land cover also affect the Earth’s climate 

and biogeochemistry patterns, as well as its biodiversity through terrestrial surface processes, such as 

energy exchange, water cycles, carbon cycles, hydrological cycles, biogeochemical cycles and climate, 

which influence the distribution of land cover classes. Thus, land cover will respond to the changing 

climate. To thoroughly analyze the interactions between climate and land cover using regional- to 

global-scale Earth system models, accurate global land cover information is required [4,5]. Land cover 

data are also useful for planning and practicing land use resource management and weather  

forecasting [6]. Accurate and updated land cover data provide important information regarding the state 

of land cover for policy makers and the scientific community. 

Remote sensing has now become a basic source for mapping global land cover data since the first 

global land cover map was compiled and produced from remote sensing data [7]. In the past two decades, 

many remote sensing-based global land cover datasets have been produced for different national or 

international initiatives. These datasets can be divided into three categories based on the resolution of 

the remote sensing data used: (1) coarse resolutions equal to or greater than 1 km [8–13]; (2) moderate 

resolutions between 100 m and 1 km [14–16]; and (3) datasets based on Landsat satellite 30-m data [17]. 

The spatial resolution of the remote sensing data used in global cover mapping gradually increases with 

time. Most coarse spatial resolution global land cover datasets are one-time datasets, and newer datasets 

are mainly derived from the MODIS 1-km monthly product from 2003 [13]. However, the global land 
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cover products that are derived from MODIS 500-m data and MERIS 300-m data are updated annually [18] 

and at four-year intervals [16,19], respectively. Datasets based on Landsat satellite data are considered as 

next-generation global land cover datasets because of their finer spatial resolution and can provide sufficient 

spatial and thematic details for global change studies [20]. Although the first global land cover datasets 

derived from Landsat satellite data have been obtained, several challenges must be overcome before 

producing a high-quality product, such as the unavailability of consistent satellite data with global coverage. 

From the perspective of the land cover user community, land cover data should be current (no more than 10 

years old) and periodically updated and improved [21]. According to these criteria, the two global land cover 

products derived from moderate spatial resolution satellite data are more suitable for real-time applications 

for the user community of global land cover maps than datasets from the other two categories. 

Evaluation is important for obtaining accurate and credible applications of global land cover  

products [22,23] and is a continuous process that must be performed in parallel with the derivation of 

new global land cover datasets. The evaluation of global land cover products was usually conducted in 

three ways: data was evaluated by producers, who selected sample sites all over the world [24]; different 

datasets were compared without any reference data [25]; and regional subsets of global land cover data 

were evaluated by regional scientists based on regional land cover data [26].This paper adopted the third 

method. Existing research has primarily focused on evaluating coarse resolution global land cover 

datasets. Those studies have provided significantly useful information for the user community and for 

producers [27–30], including accuracy assessments, spatial agreements and spatial disagreements 

between different datasets, as well as error source analysis. Therefore, these studies are essential for 

users and producers [31–35]. However, research regarding the evaluation of two moderate resolution 

global land cover products is relatively scarce. 

The MODIS v5.1 LCT product is one of the most recently available global land cover products and 

has the shortest updating cycle. A comprehensive accuracy assessment of the MODIS v5.1 LCT product 

is required to highlight regional differences in its overall accuracy and in thematic accuracies. This 

assessment is also important to allow producers and potential users to understand the strengths and 

weaknesses of this product. For example, differences between data quality from different regions can be 

remarkable. Furthermore, while the total areas for different land cover types in the classification and 

reference data may be similar, the spatial distribution of one land cover type in two datasets can be vastly 

different. This difference varies for different land cover types, leading to differences in the class-specific 

accuracies. For the producers of MODIS LCT products, it is useful to obtain related information 

regarding the spatial agreement and disagreement between the MODIS land cover data and the reference 

data. The areas of spatial disagreement may require additional training data to generate the next 

collection of the MODIS LCT product. However, users could directly utilize the data from the areas of 

agreement and for some classes with high thematic accuracies. However, users might have to replace 

these data with other available and more accurate datasets when considering areas of disagreement or 

when using data with low class-specific accuracies. 

The goal of this paper is to highlight the general patterns of disagreement between the MODIS v5.1 LCT 

product IGBP (International Geosphere-Biosphere Programme) layer over China and the national land 

use/cover database of China (NLUD-C) and to analyze how and where mixed pixels influence mapping 

accuracy in support of future efforts to provide improved land cover mapping of China in the next 

collection of the MODIS LCT product. In this study, we used the evaluation results from the MODIS land 
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cover data to explore specific challenges in global land cover mapping with moderate spatial resolution 

remote sensing images that are primarily based on class accuracy statistics and the qualitative analysis of 

the error distribution over China. 

2. Data and Methods 

2.1. Classification Data 

The MODIS Land Cover Type product was derived for scientific applications that require land cover 

information at regional to global scales [11].The MODIS v5.1 LCT product (MCD12Q1 v5.1) provides 

global land cover maps with a spatial resolution at 500-m using five types of classification systems and 

with annual time steps from 2001 to 2011[15]. In this research, we used the IGBP layer of the MODIS 

land cover data, which contains 17 land cover classes. 

The MODIS LCT data were downloaded from NASA [36]. We acquired data that were available in 

the Hierarchical Data Format (HDF) on the MODIS sinusoidal grid and projected them to an Albers 

projection system (Table 1), which was adapted in the NLUD-C. The data were downloaded as 40 tiles 

and mosaicked together using the MODIS Re-projection Tool. Then, the mosaic tile was clipped according 

to a polygon boundary of China to include Mainland China, Hainan and Taiwan. 

Table 1. Parameters of Albers projection. 

False Easting 0.00000000 

False Northing 0.00000000 

Central Meridian 105.0000000 

Standard Parallel_1 25.00000000 

Standard Parallel_2 47.00000000 

Latitude of Origin 0.00000000 

Linear Unit Meter 

Geographic Coordinate System GCS Krasovsky 1940 

Datum D Krasovsky 1940 

Prime Meridian Greenwich 

Angular Unit  Degree data 

The validation of land cover data requires similar classification data derived from independent 

sources. These independent products must be considerably more accurate than the products that are being 

evaluated. The reference data used in this research were from 2010 and were obtained from the NLUD-C. 

The NLUD-C was constructed to provide accurate statistics for 25 Level 2 land cover classes using the 

NLUD-C nomenclature with a scale of 1:100,000. The database was produced by experts who visually 

interpreted the Landsat MSS/TM/ETM+ images and manually delineated the boundaries of the objects 

in a GIS environment (similar to the CORINE Land Cover Project) [37]. All experts were from the 

institutes of the Chinese Academy of Science (CAS) from different provinces and were familiar with the 

local land cover conditions with extensive experience in visual interpretation. The NLUD-C provides 6 

land cover datasets from the 1980s to 2010. The NLUD-C is updated by manually observing the land cover 

changes [38]. According to the sampled field investigations, both the overall and Level 1 class accuracy 

of land cover changes exceed 90% [39]. The classification errors in the extraction of land cover changes 
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were modified after the field investigation. More information regarding the NLUD-C is provided in [38]. 

Two grid maps at spatial resolutions of 100 m and 500 m were obtained by rasterizing the 2010 data from 

NLUD-C and were used as reference data for evaluating the IGBP layer of the 2010 MODIS v5.1 LCT 

product over China. The 100-m reference data were derived because the smallest polygon size in  

NLUD-C was approximately 4 × 4 pixels. During this process, the value of the grid was decided by 

using the maximum area principle, in which the class type of the pixel possesses the highest area 

percentage according to the sub-pixels within the extent of the pixel. 

2.2. Generalized Land Cover Legend 

Table 2. Generalized land cover legend. NLUD-C, national land use/cover database of 

China; IGBP, International Geosphere-Biosphere Programme. 

Class New Legend NLUD-C IGBP 

1 Croplands 
Paddy Field 

Crop Dryland 
Croplands 

2 Shrublands Shrublands 
Closed Shrublands 

Open Shrublands 

3 Forests 

Forest 

Sparse Woodland 

Other Woodland 

Evergreen Needleleaf Forests 

Evergreen Broadleaf Forests 

Deciduous Needleleaf Forests 

Deciduous Broadleaf Forests 

Mixed Forests  

Woody Savannas 

Savannas 

4 Grass 

High Coverage Grass 

Medium Coverage Grass 

Low Coverage Grass 

Grasslands 

5 Water Bodies 
River/CanalLake 

Reservoir/Pond 
Water Bodies 

6 Snow and Ice Glacier/Perpetual Snow Snow and Ice 

7 Wetlands 

Tide Flats 

Bottomland 

Swampland 

Permanent Wetlands 

8 Urban and Built-Up 

Urban 

Rural 

Construction/Traffic 

Urban and Built-Up 

9 Barren 

Sandy Land 

Gobi 

Saline Land 

Bare Soil 

Bare Rock 

Other Unused Land 

Barren 

10 - - Croplands/Natural Vegetation Mosaics 

The data were evaluated by comparing the classification and reference data. This comparison can 

only be accomplished when the two types of data use an identical legend. However, the legend for the 
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classification data included the IGBP classification system, which was composed of 17 categories. In 

contrast, the legend for the reference data consisted of 25 categories. Thus, a new legend comprised of 

10 categories was constructed, as shown in Table 2. The new legend reduces the thematic details of the 

two original legends. The greatest change that occurred when converting between the IGBP 

classification system and the new legend occurred in the vegetation classes. Seven natural vegetation 

classes in the IGBP system were aggregated into one class, namely the forest class. Among these classes, 

woody savannas and savannas are unique and cannot be found in the NLUD-C classification system. 

Based on the definition of forests (natural or artificial forests with forest canopy cover greater than 30%) 

and sparse woodlands (lands with forest canopy cover of 10%–30%) in the NLUD-C nomenclature and 

the definition of woody savannas and savannas in the IGBP legend, aggregating woody savannas and 

savannas into forests was optimal. Croplands/natural vegetation mosaics are common in low-resolution 

land cover maps. A category corresponding to this mixed category cannot be found in the NLUD-C 

classification system; thus, the mosaic type was evaluated separately. The new legend was specifically 

established for comparison; thus, classification based on this new legend is not suggested. The 

aggregated classification and reference data are presented in Figure 1. 

 

Figure 1. Classification and 100-m reference data after aggregation. 

2.3. Dominant-Type and Sub-Pixel Confusion Matrices 

A confusion matrix can provide a site-specific assessment of the classification data that corresponds 

to the ground conditions [40] and is the most commonly used validation method. However, forming a 

reliable confusion matrix is difficult, because this matrix is related to several factors, such as sample 

design, reference data accuracy and the registration of the datasets [41]. Sample design is not required 

in this research, because reference data cover the entire country. As previously indicated, the accuracy 

of the reference data is sufficiently high for evaluating the MODIS land cover data.  
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The establishment of a confusion matrix is based on pixels, the size of which is generally identical to 

the spatial resolution of the classification map. However, conditions differed such that the spatial 

resolution of classification data is 500 m, while the resolution of the reference data is 100 m. Under these 

conditions, two types of confusion matrices were established, namely a dominant-type confusion matrix 

and a sub-pixel confusion matrix. The pixel size in the dominant-type confusion matrix is 500 m, while 

that in the sub-pixel confusion matrix is 100 m. The processing flow of a dominant-type confusion matrix 

and a sub-pixel matrix is presented in Figure 2. Therefore, two types of overall accuracies, producer 

accuracies and user accuracies, were derived from the two matrices. The overall accuracy at the  

sub-pixel level cannot achieve 100% as long as mixed pixels exist, because the resolution of 

classification data (500 m) is lower than that of the 100-m reference data. Reference-dominant land cover 

type accuracy presents the maximum accuracy that the overall accuracy at the sub-pixel level can 

achieve, namely the accuracy that is obtained by comparing the 500-m dominant land cover type 

reference data and 100-m reference data (RDA).  

 

Figure 2. Flow chart for deriving the dominant-type and sub-pixel confusion matrices. 

2.4. Mixed Pixel and Pure Pixel 

Mixed pixels are a primary source of error when classifying low-resolution remote sensing images, 

and the number of mixed pixels generally increases with decreasing spatial resolution. In theory, a pixel 

is determined to be a mixed pixel from the field of information that corresponds to the pixel. In practice, 

obtaining field information for classifying all of the data is impossible; thus, the mixed pixel in this 

research was determined from the pixels in the reference data at 100 m within the extent of the pixels in 

the classification data. The pixels in the classification data were considered as a mixed pixel when the 
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corresponding pixels in the 100-m reference data belonged to more than one land cover type. Mixed 

pixels were extracted by calculating the local diversity of each pixel in a classification map according to 

the reference data. The local diversity of a pixel in a classification map was measured by the number of 

land cover classes that occur in the corresponding reference sub-pixels within the extent of the classification 

pixel. In addition, a mixed pixel was defined based on the number of dominant-type sub-pixels within a 

classification pixel. If the number of land cover types that occurred in the reference data are greater than 

1 or the number of dominant-type sub-pixels is less than 25, then this pixel is labeled as a mixed pixel. 

Theoretically speaking, the number of land cover classes that occur in the 100-m reference data must be 

greater than 1 if fewer than 25 dominant-type pixels occur. However, an exception occurs for pixels that 

are located on the boundary of China, for which the number of corresponding pixels in the reference 

data that have a value may be less than 25. For these exceptions, a pixel is considered as a mixed pixel 

when the number of dominant-type pixels is less than 25. The opposing concept to a mixed pixel is a 

pure pixel. All corresponding pixels within the scope of a pure pixel should belong to one type of land 

cover. The distributions of the two types of pixels are presented in Figure 3A. According to the  

dominant-type reference data or the 500-m reference data, correctly-classified pixels were divided into 

correctly-classified mixed pixels (CMs) and correctly-classified pure pixels (CPs). In addition, 

misclassified pixels were divided into misclassified mixed pixels (WMs) and misclassified pure pixels 

(WPs). The four types of pixels are presented in Figure 3B, C. In this paper, the mixed pixel error was 

computed as (WMs/sum) × 100%, whereas the labeling error was computed as (WPs/sum) × 100%, and 

the sum is the number of total pixels in the 500-m classification data. 

 
(A) 

Figure 3. Cont. 

? 
 1 1 1 1 1  

1 
1 1 1 1 1 



Remote Sens. 2015, 7 1989 

 

1 1 1 1 2 If Pixel A is classified as Class 1, 

then Pixel A is a correctly classified 

mixed pixel (CM). 

If Pixel A is classified as any other 

class type other than Class 1, 

including Class 2 and Class 3, then 

Pixel A is a misclassified mixed 

pixel (WM).  

1 1 2 2 3 

2 2 2 2 3 

Pixel A in 

classification data 

Reference data  

at 100 m 

Dominant-type 

reference data 

(B) 

? 

 1 1 1 1 1  

1 

If Pixel B is classified as Class 1, 

then Pixel A is a correctly classified 

pure pixel (CP). 

If Pixel A is classified as any other 

class type than Class 1, then pixel B 

is a misclassified pure pixel (WP).  

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

Pixel B in 

classification data 

Reference data at 

100m 

Dominant-type 

reference data 

(C) 

Figure 3. Types of pixels in the aggregated classification data. (A) Distribution of pure and 

mixed pixels in the dominant-type reference data. (B) Mixed pixel. (C) Pure pixel. 

3. Results and Discussion 

This section discusses a sub-pixel level comparison of the classification data and 100-m reference 

data, including spatial agreement/disagreement and class-specific accuracies. Then, a pixel-by-pixel 

comparison of the classification data and dominant-type reference data is performed with an analysis of 

the factors that are related to classification error. These discussions are implemented for regions where 

crop/natural vegetation mosaics are eliminated. Finally, the mosaic type of croplands and natural 

vegetation is evaluated independently. 

3.1. Spatial Agreement and Disagreement Analysis  

The spatial agreement between the aggregated classification and reference data can be measured by 

the overall classification accuracy in the sub-pixel confusion matrix, which is 64.62%. However, overall 

accuracy is a national average result and does not reflect regional differences. A direct comparison of 

the classification and reference data is presented in Figure 4A. The accuracies in different regions 

differed considerably. High agreement was observed for regions with a single land cover type, such as 

the vast barren lands in northwest China, the vast forestlands in northeast China and the croplands of the 

Chengdu plain. By contrast, high disagreement was observed for regions with varied types, such as the 

barren grasslands in the northwestern Tibetan plateau, the agro-pastoral zone in the southeastern region 

of Inner Mongolia and the crop/natural vegetation mixing region in the second steppe of China (an area 

with an elevation of 2000 m to 4000 m). An accuracy map of different provinces was derived to indicate 

specific regional differences. The overall accuracies ranged from 36.11% to 76.52% (Figure 4B). The 
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highest accuracy was obtained for Xinjiang Province due to its vast barren lands. The most obvious  

low-accuracy region was comprised of five provinces in the middle of China, namely Ningxia, Shaanxi, 

Chongqing, Guizhou and Yunnan. All five provinces are located in the second steppe of China, a region 

that features varied land cover types. The low accuracies of the varied-type regions are caused by mixed 

pixels, and an analysis of mixed pixels is presented in Section 3.3. 

 
(A) 

 
(B) 

Figure 4. The distributions of the spatial consistencies between the classification and 

reference data and the overall accuracies of the 32 provinces based on the 100-m reference 

data. (A) Agreement and disagreement. (B) Accuracies for the 32 provinces. 
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To classify the data derived from pixel-based algorithms, the difference between the RDA and  

sub-pixel accuracy is superior for evaluating the classification results, because the RDA represents the 

maximum that can be achieved at the sub-pixel level of this classification. The RDA is 88.78%, which was 

24.16% greater than the sub-pixel accuracy. The conditions of the provinces are depicted in Figure 5, where 

the sub-pixel accuracies gradually decreased from left to right. The RDA values of nearly all 32 provinces 

were approximately 80%, with an obvious decrease in the sub-pixel accuracies, which implied that 

considerable differences occurred between sub-pixel accuracies in the different provinces due to  

the pixel-based algorithm, and not the RDA, which represents the physical conditions of the landscape. 

 

Figure 5. Accuracies at the sub-pixel scale and differences with the reference data (RDA) for 

the 32 provinces. 

3.2. Spatial and Class Distributions of the Error in the Sub-Pixel Confusion Matrix 

The user accuracies of different classifications have significant values that enable users and scientists 

from different fields to determine if the data for different classes are high-quality data. For each 

aggregated class in the classification map, Table 3 shows the percentages of pixels that belonged to each 

of the nine classes in the 100-m reference data. The water body and shrubland land cover types had the 

best and the worst qualities, respectively. Shrublands, most of which were actually grass, had a user 

accuracy at the sub-pixel level of 3.74%, which was the largest commission error. In addition, wetlands 

had low user accuracy due to the misclassification of croplands, forests and water bodies as wetlands. 

Misclassification between water bodies and wetlands is serious and may result from time series of images 

used in the MODIS LCT IGBP product and NLUD-C, which did not use multi-temporary images. Paddy 

fields, which belong to croplands in aggregated classes, may be a source of error for the misclassification 

of croplands and wetlands. Forests may be classified as wetlands, because some wetlands may have 

vegetation growing on them. The data for the different classes, such as shrublands and wetlands, were 

used with caution, because most of the pixels in these classes were misclassified. Barren regions 
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accounted for a high percentage of snow and ice due to the similar spectral features of  

these classifications.  

Table 3. Error matrix for aggregated classification at the sub-pixel level. 

User Accuracy (%) 

Aggregated  

Classification  

at 100 m 

Reference Data at 100 m 

Croplands Shrublands Forests Grass 
Water 

Bodies 

Snow 

and Ice 
Wetlands 

Urban and 

Built-Up 
Barren 

Croplands 68.38 2.21 8.20 8.26 1.79 0.00 2.75 7.96 0.46 

Shrublands 10.77 3.74 7.89 60.98 1.36 0.30 1.47 1.59 11.90 

Forests 12.11 12.23 61.83 11.30 0.95 0.02 0.87 0.47 0.22 

Grass 9.52 3.89 4.72 62.88 0.78 0.31 2.28 0.96 14.67 

Water bodies 1.33 0.17 1.28 2.05 82.92 0.18 5.98 3.49 2.59 

Snow and ice 0.21 0.27 0.79 6.58 0.58 47.01 0.24 0.08 44.23 

Wetlands 26.70 2.44 25.57 3.46 31.39 0.00 7.45 2.84 0.16 

Urban and  

built-up 
35.44 0.78 4.81 3.23 2.57 0.00 0.76 51.92 0.50 

Barren 0.22 0.19 0.22 24.83 0.60 0.21 0.88 0.21 72.63 

Table 3 presents the commission errors for each class in the classification data, and the spatial 

distribution of the commission errors for the six classes are depicted in Figure 6. The classes 

misclassified as croplands were primarily urban and built-up, forestlands and grasslands (Table 3) that 

were dispersed in cropland regions (Figure 6A). Among them, the misclassified urban and built-up pixels 

in the North China Plain were mainly rural settlements that were dispersed and small in area. The 

grasslands that were misclassified as shrublands occupied 60.98% of the shrublands and were likely 

responsible for the low user accuracy of shrublands. This result indicated that the spectral features of the 

grasslands and shrublands could easily be confused. Classes that were misclassified as forests primarily 

consisted of croplands, shrublands and grasslands distributed in southwestern China (Figure 6C). These 

types of lands were relatively dispersed and intermixed. Other regions, such as the northeastern plains 

of China and Taiwan were mostly correctly classified (Figure 6C). Classes misclassified as grasslands, 

primarily consisted of croplands and barren areas. These types of land were located in relatively 

concentrated areas, with distinct borders between them. Misclassification between croplands and 

grasslands occurred in the agro-pastoral zone of China (Figure 6D), where croplands and grasslands are 

distributed alternately, resulting in numerous mixed cropland and grassland pixels. Classes that were 

misclassified as urban and built-up primarily consisted of croplands, potentially due to mixed pixels. The 

regions around the cities were primarily occupied by croplands in China. Thus, mixed pixels of the two 

categories were common in these regions. Misclassification between built-up and croplands were intensive 

in the plain of North China, where rural residential areas were densely distributed (Figure 6E). For barren 

areas, the misclassification between barren and grassland is notable due to the broad distribution of the 

barren regions. The considerably low overall accuracy in northwestern Tibet is likely the main source of 

misclassification between the grasslands and barren lands, as shown in Figure 6F. 

This result does not indicate that most of the water bodies in the reference data were correctly 

classified, because the user accuracy only indicates the probability that a pixel from a land cover map 
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matches the real-world or reference data. In fact, water bodies had high user accuracy and lower producer 

accuracy (Figure 7), which indicates that many of the water bodies in the reference data were 

misclassified (i.e., as wetlands). A similar class is the urban and built-up land class. The shrubland and 

wetland classes both had low user and producer accuracies, which indicated that the two categories were 

easily confused with the other classes. The classes with higher producer accuracies than user accuracies 

(i.e., forests and snow and ice) may include a considerable percentage of pixels that belong to other land 

cover types. Overall, the highest producer accuracy was obtained for forests, and the highest user 

accuracy was obtained for water bodies, both of which exceeded 80%.  

 
(A) 

 

(B) 

Figure 6.Cont. 
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(C) 

 

(D) 

 

(E) 

Figure 6.Cont. 
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(F) 

Figure 6. Distribution of the six land cover types in the aggregated classification and the 

distribution of the main misclassified classes that correspond to land cover types. (left) The 

picture for each land-cover type shows the distribution of the aggregated class in the 

classification map; (right) the picture represents the distribution of the primary misclassified 

class that corresponds to that class. (A) Distribution of croplands and the primary classes 

that were misclassified as croplands. (B) Distribution of shrublands and the primary classes 

that were misclassified as shrublands. (C) Distribution of forests and the primary classes that 

were misclassified as forests. (D) Distribution of grasslands and the primary classes that 

were misclassified as grasslands. (E) Distribution of urban and built-up lands and the 

primary classes that were misclassified as urban and built-up lands. (F) Distribution of barren 

lands and the primary classes that are misclassified as barren lands. 

 

Figure 7. Comparison of the producer and user accuracies in a sub-pixel confusion matrix 

based on a generalized legend. 
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3.3. Analysis of Error According to the Dominant-Type Reference Data 

The overall accuracy in a dominant-type confusion matrix is generally greater than that in a  

sub-percentage confusion matrix [26]. In this research, the overall accuracy at the pixel scale was 

66.42%, which was 1.8% higher than that at the sub-pixel level. The class-specific producer accuracy 

according to the dominant-type reference data differed greatly for different aggregated classes (Figure 8). 

At the sub-pixel scale, shrublands and wetlands possess the lowest producer accuracy due in part to the 

low percentage of pure pixels in the two classes.  

The omission error, which is 100% minus the producer accuracy, can be divided into two parts, mixed 

pixel error and the labeling error at the pixel scale. Figure 8A presents the labeling error (WPs/sum), the 

mixed pixel error (WMs/sum) and the producer accuracy (the sum of WPs/sum and WMs/sum) for each 

land cover type. The greatest mixed pixel error was obtained for shrublands, followed by wetlands and 

urban and built-up lands. This result can be attributed to the high percentage of mixed pixels in the three 

land cover types (74.22% for shrublands, 64.32% for wetlands and 69.82% for urban and built-up).  

In addition, this result reflects the high percentage of WPs in the mixed pixels (Figure 8B). The lowest 

mixed pixel error was obtained for barren regions, because they had the lowest percentage of mixed 

pixels (17.31%). In contrast with the mixed pixel error, wetlands had the greatest labeling error, followed 

by shrublands, primarily due to the high percentage of WPs in the pure pixels (97.72% for wetlands and 

98.63% for shrublands) (Figure 8C). The smallest labeling error was obtained for the forests, primarily 

due to the low percentage of WPs in the pure pixels (Figure 8C). A high percentage of pure pixels do 

not assure a high labeling error. For example, the barren class had the highest percentage of pure pixels 

(up to 82.69%), whereas the labeling error for the barren class was much lower than those of the wetlands 

and shrublands. For all types of land cover, except the grasslands and barren lands, the mixed error was 

greater than the labeling error. Although the difference was small, these exceptions resulted from the 

high percentage of pure pixels. The classification error in low spatial resolution remote sensing images 

should be primarily caused by mixed pixels; however, the mixed pixel error was lower than the labeling 

error for the entire aggregated classification, with a percentage of WPs of 20.18% and a percentage of 

WMs of 13.4%. Overall, mixed pixels were sources of error for most of the land cover types, whereas 

labeling errors were the main classification error for the MODIS land cover data over China, due to the 

large number of misclassified pure pixels in the grasslands and barren lands. 

The higher labeling error than mixed error just implied that the number of WPs was bigger than the 

number of WMs occurring in the 500-m classification data, whereas WPs/pure was higher than 

WMs/mixed for all land cover types. Figure 9 presents the percentages of the CPs in the pure and mixed 

pixels. The lowest percentages were obtained for the shrublands and wetlands. In addition, the blue line 

was always above the red line, which indicated that mixed pixels were more likely classified incorrectly 

than pure pixels. Among these pixels, the differences between the blue and red points for the water 

bodies and barren regions were greater than those for the other land cover types. Specifically, the effects 

of the mixed pixel are particularly obvious for water bodies and barren regions relative to the other types 

of land cover.  
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(B) 

 
(C) 

Figure 8.The percentages of four types of pixels in the dominant-type confusion matrix and 

the ratios between WMs and the mixed pixels and between WPs and the pure pixels.  

(A) Percentages of the four types of pixels in the dominant-type confusion matrix.  

(B) Percentages of the mixed pixels, misclassified mixed pixels and their ratios.  

(C) Percentages of the pure pixels, misclassified pure pixels and their ratios. 
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Figure 9. Proportions of correctly classified pixels in the pure and mixed pixels for the  

nine classes. 

Labeling errors can provide important information for improving classification accuracy. Although 

up to 70 types of labeling errors are possible when comparing the aggregated classification and 

dominant-type reference data, the main source of labeling errors includes two types of misclassification, 

the misclassified grassland as barren land, representing up to 33.82% of the error, and the 

misclassification of barren land as grassland, representing up to 18.67%. Figure 10 presents the spatial 

distributions of these two types of misclassification over China. The regions that are encircled by two 

rectangles in Figure 10A represent the regions where most of the labeling errors occurred. Both of these 

regions are transition regions between grassland and barren land, which were referred to as barren 

grasslands. A continuous classification approach may be more suitable for classifying land cover 

transition zones, because land cover types tend to exhibit continuous, rather than categorical or discrete, 

variations in transition zones [20]. The percentages of the other misclassifications were all relatively 

small (less than 10%). However, the misclassification between croplands and grasslands should be 

highlighted, because this misclassification mainly occurred in the agro-pastoral zone of China  

(Figure 10B). The algorithm used in MODIS Collection 5.1 consists of a decision tree technique that is 

highly sensitive to the training data used in the classification estimation stage [11]. For these regions 

with a high labeling error, more training samples are required to improve the classification accuracy. 

The mixed pixel effect is an important source of error for classifying remote sensing images with low 

spatial resolution. However, the influences of mixed pixels on accuracy are particularly important. 

Figure 11 shows the relationship between accuracy at the pixel scale, the local diversity of the pixels and 

the relationships between the accuracy and the number of dominant-type sub-pixels within a 

classification pixel. The accuracy decreased as the diversity value increased, which could imply that more 

complex classification pixels correspond with a greater probability of misclassification (Figure 11A). 

Figure 11B shows that the accuracy increases as the number of dominant-type sub-pixels within the 
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extent of a classification pixel increases. This finding indicates that dominant-type areas with high 

percentages with a classification pixel are more likely to be classified correctly. 

 
(A) 

 

(B) 

Figure 10. Distribution of misclassified pure pixels. As shown in the legends, the land cover 

type before “-” stands for the class in the reference data, and the land cover type after  

“-” stands for the class in the classification data. (A) Misclassification between grassland 

and barren land. (B) Misclassification between croplands and grasslands. 
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(A) 

 
(B) 

Figure 11.The relationships between the accuracy and pixel diversity and between the accuracy 

and the number of dominant pixels in the corresponding 100-m reference data (referred to as  

sub-pixels) within the extent of a classification pixel. (A) Relationship between the accuracy 

and pixel diversity. (B) Relationship between the accuracy and percentage of dominant types. 

3.4. Validation of Croplands/Natural Vegetation Mosaics 

The croplands/natural vegetation mosaic land is a special category, because it generally exists in the 

classification system as a low spatial resolution image. Pixels that are composed of several land cover 

types may have different spectral and texture features than single-type pixels. Therefore, the mosaic 

category is considered as an independent class.  

The proportion of mosaic pixels in the aggregated classification was 3.82%, most of which were 

distributed in northeastern and southwestern China (Figure 1). In contrast with the single-type classes, 

the croplands/natural vegetation mosaic land is defined as land with a mosaic of croplands, forests, 
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shrublands and grasslands, in which no one component composes more than 60% of the landscape [42]. 

This definition can be divided into qualitative and quantitative parts. The qualitative definition indicates 

that the land cover types of the sub-pixels cannot be any land cover types other than cropland and the 

three vegetation categories. In contrast, the quantitative definition indicates that the percentages of these 

types should not exceed 60%. The percentage of classes other than croplands and natural vegetation in 

the reference data of the mosaics region is 8.57%, which is very low. Thus, according to the qualitative 

definition, the accuracy is relatively high. However, according to the quantitative definition, these results 

are not optimistic. In this paper, we applied three indices to assess the quantitative qualities of the 

mosaics class, pixel diversity, the dominant land-cover type and the area percentage of the dominant 

type of land cover. The pixel diversity, which is the number of land cover types that occur in the 

corresponding reference sub-pixels within a classification pixel, should be 2, 3 or 4, according to the 

quantitative definition. The percentage of pixels that satisfies this condition in the aggregated 

classification is 67.61%. Again, the dominant land cover type of the mosaic pixels should be one of the 

four land cover classes, and the percentage of pixels with one of the four classes as the dominant land 

cover type is 92.92%. A pixel in the aggregated classification corresponds to 25 pixels in the reference 

data (which is called a sub-pixel). Thus, the number dominant-type sub-pixels cannot exceed 15 

according to the condition that no single component composes more than 60% of the landscape. 

Although the percentage of pixels that satisfied the former two conditions are was now sufficiently low, 

the percentage of pixels satisfying the third condition should be the considered. Only 21.14% of pixels 

in the mosaic region satisfied the condition that the percentage of the dominant land cover type is less 

than or equal to 60%. The third condition in the definition of the crop/natural vegetation mosaics is the 

main factor that limits the accuracy of the mosaic type. This result suggests that the pixel-based algorithm 

used in the extraction of quantitative land cover type is not likely to obtain high accuracy. The percentage 

of pixels that simultaneously satisfied the three conditions was 19.26%. However, the percentage of 

pixels that completely satisfied the definition of crop/natural vegetation mosaics should be less than 

19.26%, because the compositions of the land cover types of the pixels were not considered. In addition, 

the non-dominant type may include land cover types other than the four certain types. 

4. Conclusions 

The results of its evaluation of the MODIS LCT product IGBP layer from 2010 provide important 

information for producers and potential users. For potential users, the agreement and disagreement 

analyses present regions with high-quality and low-quality data, and the sub-pixel error matrix provides 

type-specific accuracy and the distribution of commission errors for each land cover type. The producer 

accuracies at the pixel level indicate land cover types with considerably low producer accuracy, which 

requires the producer’s focus. The spatial and class distribution of labeling errors is important for 

producers to improve the classification accuracy during the production of the next generation of MODIS 

land cover data. 

In this study, a comprehensive evaluation of the IGBP layer of the MODIS Collection 5.1 Land Cover 

Type product over China was conducted. A new cover-type legend was constructed that includes nine 

land cover classes without including the mosaics type in the IGBP legend. Forestland is a general 

category that contains seven land cover types, as shown in the IGBP legend. Savannas and woody 
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savannas are included in forests based on their definitions. All of the comparative results presented in 

this paper were based on this new legend. 

The overall accuracy was 64.62% at the sub-pixel level, which was higher than that of the Version 2 

land cover data of MODIS [30]. However, the sub-pixel accuracies differed significantly in different 

regions. The most accurate provinces were Xinjiang, which features vast barren lands, and Heilongjiang 

and Jilin, which feature vast forestlands. The lowest accuracy provinces included five provinces in the 

middle of China with varied land cover types. Shrublands and wetlands both had low producer and user 

accuracies at the sub-pixel scale. Misclassifications between croplands and grasslands were mainly 

distributed in the agro-pastoral zone. Mixing between croplands and residential settlements was 

concentrated in the North China Plain. Misclassified forests were concentrated in Yunnan Province, and 

misclassifications between barren lands and grasslands occurred in barren grasslands, such as those in 

northwestern Tibet. 

Based on the dominant-type reference data, we sorted the omission error into the mixed pixel error, 

which is the percentage of WMs, and the labeling error, which is the percentage of WPs at the pixel 

level. At the pixel level, shrublands and wetlands exhibited the lowest producer accuracies. For all land 

cover types, except the grasslands and barren lands, the mixed pixel errors were higher than the labeling 

error, partly because of the high percentage of pure pixels for these two land cover types, which increased 

the overall labeling error. The classification error increased as the number of land cover types in the 

reference data increased and as the patch size of the dominant land cover type decreased. Specifically, 

the classification error increased as the landscape heterogeneity increased. Although it was easier to 

misclassify mixed pixels than pure pixels, the labeling error was still greater than the mixed pixel error 

due to the high percentage of pure pixels. The main source of labeling errors was the misclassification 

between grasslands and barren lands in the transition zones. This finding suggests that flexible 

techniques based on continuous field characteristics may be preferable to “hard” classification 

approaches in transition zones. Another important source of labeling errors was the misclassification 

between croplands and grasslands in the agro-pastoral zone. Thus, more training samples should be 

selected in regions with high labeling errors. For regions where mixed pixel error are located, higher 

resolution data are preferable to coarse resolution images in regions with large heterogeneity, if more 

training samples cannot improve the accuracy in those regions.  

Croplands/natural vegetation mosaics are a special type of land cover in the IGBP legend that are not 

found in the reference data. Based on the definition of the mosaic class in the IGBP legend, its accuracy 

should be less than 19.26%. The primary factor that limits the accuracy of the mosaic type is that by 

definition, no one component can compose more than 60% of the landscape. Definitions of land cover 

types are intended to be quantitative; however, such low accuracy raises questions regarding whether a 

quantitative condition is considered in the classification of the MODIS land cover data. Classification 

technologies that are based on quantitative definitions of land cover types should be the primary focus. 

This paper is focused on an evaluation of the 2010 MODIS v5.1 LCT product. Thus, confidence scores 

of the MODIS LCT product itself and comparisons among the different evaluation results for different years 

are not considered in this paper. However, these types of comparison are very important for the producers 

and users, and future research should be conducted to evaluate the MODIS v5.1 LCT product. 
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