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Abstract

:

The reliable simulation of gross primary productivity (GPP) at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn), a linear two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.
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1. Introduction


Efforts to mitigate climate change require the stabilization of atmospheric CO2 concentrations [1], which is significantly regulated by exchanges of carbon between terrestrial ecosystems and the atmosphere. Terrestrial gross primary productivity (GPP) is the largest component of the global carbon flux [2] and about 120 Pg C year−1 globally, considerably larger than the carbon annually emitted by human activities (about 9 Pg C year−1) [3]. Consequently, even a small change in GPP is likely to have a significant impact on atmospheric CO2 concentration. Thus, accurately simulating terrestrial GPP is of great significance to quantifying the global carbon cycle and predicting the future trajectories of the atmospheric CO2 concentration.



Two approaches have been widely employed to investigate the spatial and temporal variability in GPP using remotely sensed data: (i) remote sensing driven process-based models, and (ii) light use efficiency (LUE) models [4]. The former is based on the mechanistic description of the photosynthetic biochemical processes and scales the Farquhar instantaneous leaf-level biochemical model [5] to the canopy level using big-leaf, two-leaf, and multilayer scaling approaches. A number of process-based models have been successfully applied to quantify spatial-temporal variations of GPP at regional and global scales using remotely sensed vegetation parameters, such as leaf area index (LAI) and land cover types, as inputs. However, the application of these process-based models is limited by the complexity and uncertainty of their parameterization [6].



In contrast, LUE models, such as CASA [7], MOD17 [8], EC-LUE [9], and VPM [10], were developed according to the LUE argument of Monteith [11,12] that productivity is linearly related to the amount of absorbed photosynthetically active radiation (APAR). A fundamental assumption underlying LUE models is that plant canopies behave like a big single-leaf and their LUE is independent of the directional nature of solar radiation and vegetation structure [13].



Many studies have indicated that both GPP and LUE vary with both quantity and quality of incoming solar radiation. Gu et al. [14] detected a 20% increase in Harvard Forest photosynthesis after the 1991 Pinatubo eruption owing to the increase of diffuse radiation caused by volcanic aerosols. Flux site data indicated that canopy LUE was enhanced under diffuse sunlight in comparison with that under direct radiation [13,15,16]. Choudhury et al. [17] estimated an increase of 110% in crop LUE under diffuse radiation. Alton et al. [18] conducted a study for three forest sites (two broadleaf and one needleleaf) and found that the canopy LUE was enhanced by 6–33% under diffuse radiation. Alton [19] indicated that the enhancement of canopy LUE due to diffuse radiation varied with vegetation types, most significantly for tundra shrubs. Cai et al. [20] found that a single-leaf LUE model performed very well for a 56-year-old Douglas-fir stand when, instead of using total incident photosynthetically active radiation (PAR), they used the sum of incident diffuse PAR and a relatively small fixed fraction (22%) of incident direct PAR. Recently, Zhang et al. [21] reported that canopy LUE generally decreased with increasing sky clearness index, which is the ratio of solar radiation observed on the ground to radiation received at the top of the atmosphere, over 5 ChinaFLUX sites, including a temperate forest, a subtropical forest, a tropical rain forest, and two grassland sites. Therefore, the assumption that LUE is independent of the quality of radiation and GPP linearly increases with absorbed photosynthetic radiation would induce underestimation/overestimation of GPP in cloudy/clear skies [22,23].



Conceptually, a canopy is composed of clumps of sunlit and shaded leaves exposed to different levels of irradiance and showing variable LUE. Sunlit leaves receive both direct and diffuse radiation while shaded leaves mainly interact with diffuse beams. Under clear skies, solar irradiance is high and dominated by direct beams. Sunlit leaves are easily light saturated, and photosynthesis can even decrease with increasing radiation because of elevated temperature and enhanced photorespiration [13]. Consequently, the overall LUE of sunlit leaves is normally low [23]. In contrast, a large number of shaded leaves are only exposed to diffuse radiation, which is normally much lower than the radiation saturation point. Therefore, the photosynthesis of shaded leaves is typically light-limited. Under cloudy conditions, solar irradiance is dominated by diffuse sunlight, allowing shaded leaves to capture a large fraction of the solar irradiance. Even though the total incident radiation may be lower than that on clear days, the apparent improvement of the LUE for shaded leaves could lead to the enhanced LUE for the whole canopy [15,19].



More and more process models now calculate photosynthesis for sunlit and shade leaves separately [24,25,26]. However, this strategy has not been adopted by LUE models. To remedy this limitation, He et al. [23] recently developed a two-leaf LUE model on the basis of the MOD17 model. This new model considered differences in radiation absorption and in LUE of sunlit and shaded leaves. Validation at 6 ChinaFLUX sites demonstrated the improvement of the two-leaf LUE models over the MOD17 model in simulating GPP, especially at forest sites, with a R2 value increasing about 0.1 and a root mean square error (RMSE) value decreasing about 0.64 g C m−2 day−1 on average.



In the two-leaf LUE model developed by He et al. [23], GPP of sunlit and shaded leaves increases linearly with APAR. However, many studies have shown a nonlinear increase of photosynthesis of sunlit leaves with increasing APAR because of light saturation of photosynthesis, especially at short temporal scales (minutes to hours) [15,27,28,29,30,31]. Recently, Wang et al. [6] developed a two-leaf temperature and vegetation type dependent rectangular hyperbolic model, which links quantum yield (α) and maximum photosynthetic rate (Pm) with the maximum carboxylation rate at 25 °C. The model is able to simulate GPP as accurately as a process-based model.



Previously, linear LUE models have been mostly used to calculate GPP at daily, 8-day, and even longer temporal scales [7,8,9,10,32,33]. Recently, this type of models is used to calculate GPP at short temporal scales. For example, Carbon Tracker, a system to optimize terrestrial carbon flux, uses the Carnegie-Ames Stanford Approach (CASA) biogeochemical model to calculate GPP every three hours as the prior carbon flux [34]. Such application of linear LUE models might induce biases in simulated GPP since observations have indicated the nonlinear response of canopy GPP to incoming PAR at short temporal scales [15,27,28,29,30,31]. Therefore, the assessment of applicability of different types of LUE models in simulating GPP at different temporal scales is of great significance to improving the simulation of GPP using remote sensing data.



In this study, the ability of nonlinear two-leaf LUE, linear two-leaf LUE, and MOD17 to simulate GPP at half-hourly, daily, and 8-day temporal scales were verified using GPP derived from net ecosystem productivity (NEP) measured at globally distributed 58 sites as benchmarks. The main goals of this study are: (1) to compare the performance of the MOD17, linear and nonlinear two-leaf LUE models at three different temporal scales (half-hourly, daily and 8-day); (2) to analyze the possible causes for the different performances of three LUE models. For simplicity, the MOD17, linear two-leaf LUE, and nonlinear two-leaf LUE models will be referred to hereinafter as MOD17, TL-LUE, and TL-LUEn, respectively.




2. Data and Methods


2.1. Data


In this study, we used meteorological data and ecosystem fluxes measured with the eddy covariance (EC) technique at 58 sites pertaining to the FLUXNET network and the processed MODIS leaf area index (LAI) product (MOD15A2) to simulate GPP at half-hourly, daily and 8-day temporal scales. The meteorological and flux data belongs to the LaThuile FLUXNET dataset and can be freely downloaded [35]. The sites were selected on the basis of the availability of key datasets, such as LAI, meteorology, and land surface C fluxes. GPP derived from tower measured NEP was used as benchmarks for model parameter optimization and model evaluation. All flux data were processed in the manner proposed within the Fluxnet project [36,37] as described by [38,39,40,41]. The 58 sites included 21 needle-leaf-forest (NF) sites, with 1 deciduous needle-leaf-forest (DNF) sites and 20 evergreen needle-leaf-forest (ENF) sites, 11 broadleaf-forest (BF) sites, with 2 evergreen broadleaf-forest (EBF) sites and 9 deciduous broadleaf-forest (DBF) sites, 4 mixed-forest (MF) sites, 7 crop (CROP) sites, 7 grassland (GRASS) sites, and 8 shrub (SHRUB) sites, located in Asia, Europe, and North America (Figure 1). The observations covered the period from January 2001 to December 2007 with at least two years of data for each site. In total, 143 site-years of data were used, of which 85 site-years of data were selected for parameter optimization (17 BF, 11 CROP, 10 GRASS, 6 MF, 29 NF, and 12 SHRUB site-years). The remaining 58 site-years of data were used for model evaluation, with one year of data for each site. Detailed information about each site is given in Table 1.
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Figure 1. Distribution of all sites with data used for parameter optimization and validation in this study. The background is the MODIS global land cover product (MCD12C1) in 2003. 






Figure 1. Distribution of all sites with data used for parameter optimization and validation in this study. The background is the MODIS global land cover product (MCD12C1) in 2003.
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Table 1. Name, location, vegetation type, and period of data used for each site.
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Site Name

	
Country

	
Lat. (°)

	
Long. (°)

	
Veg.

Type

	
Opti.

Years

	
Vali.

Years

	
Reference






	
Austin Cary (ACA)

	
USA

	
29.74

	
−82.22

	
NF

	
2003

	
2005

	
Gholz and Clark (2002) [42]




	
ARM_SGP_Main (ASM)

	
USA

	
36.61

	
−97.49

	
CROP

	
2003

	
2004

	
Fischer et al. (2007) [43]




	
Audubon (AUD)

	
USA

	
31.59

	
−110.51

	
GRASS

	
2003

	
2004

	
Wilson and Meyers (2007) [44]




	
BC-DFir1949 (BD49)

	
Canada

	
49.87

	
−125.33

	
NF

	
2003

	
2004

	
Humphreys et al. (2006) [45]




	
Bartlett Experimental (BEP)

	
USA

	
44.06

	
−71.29

	
BF

	
2005

	
2006

	
Jenkins et al. (2007) [46]




	
BC-Harvest Dfir2000 (DF00)

	
Canada

	
49.87

	
−125.29

	
NF

	
2003

	
2004

	
Humphreys et al. (2006) [45]




	
BC-Harvest Dir1988 (DF88)

	
Canada

	
49.53

	
−124.9

	
NF

	
2004

	
2005

	
Humphreys et al. (2006) [45]




	
Bondville (BON)

	
USA

	
40.01

	
−88.29

	
CROP

	
2004,2005

	
2006

	
Wilson and Meyers (2007) [44]




	
Changbaishan (CBS)

	
China

	
42.40

	
128.10

	
MF

	
2003

	
2004

	
Zhang et al. (2006a,b) [47,48]




	
Dinghushan(DHS)

	
China

	
23.17

	
112.53

	
BF

	
2003

	
2004

	
Zhang et al. (2000) [49]




	
Donaldson (DON)

	
USA

	
29.75

	
−82.16

	
NF

	
2003

	
2004

	
Gholz and Clark (2002) [42]




	
El Saler (ES)

	
Spain

	
39.35

	
−0.32

	
NF

	
2001,2002

	
2003

	
Reichstein et al. (2006) [50]




	
Fort Peck (FPE)

	
USA

	
48.31

	
−105.1

	
GRASS

	
2003

	
2004

	
Wilson and Meyers (2007) [44]




	
Fyodorovskoye (FY)

	
Russia

	
56.46

	
32.92

	
NF

	
2001

	
2003

	
Milyukova et al. (2002) [51]




	
Goodwin Creek (GCR)

	
USA

	
34.25

	
−89.87

	
GRASS

	
2004,2005

	
2006

	
Wilson and Meyers (2007) [44]




	
Hainich (HA)

	
Germany

	
51.08

	
10.45

	
BF

	
2001,2002

	
2003

	
Mund et al. (2010) [52]




	
Harvard Forest (HAF)

	
USA

	
42.54

	
−72.17

	
BF

	
2005

	
2006

	
Urbanski et al. (2007) [53]




	
Haibei (HB)

	
China

	
37.67

	
101.33

	
GRASS

	
2003

	
2004

	
He et al. (2013) [23]




	
Hesse (HES)

	
France

	
48.67

	
7.07

	
BF

	
2001,2002

	
2003

	
Granier et al. (2002) [54]




	
Howland Forest (HOF)

	
USA

	
45.2

	
−68.74

	
MF

	
2003

	
2004

	
Hollinger et al. (1999, 2004) [55,56]




	
Hyytiala (HY)

	
Finland

	
61.85

	
24.29

	
NF

	
2001

	
2002

	
Kramer et al. (2002) [57]




	
Kendall (KED)

	
USA

	
31.74

	
−109.94

	
GRASS

	
2006

	
2007

	
Scott (2010) [58]




	
Kennedy (KEN)

	
USA

	
28.61

	
−80.67

	
SHRUB

	
2004

	
2005

	
Powell et al. (2006) [59]




	
Loobos (LOB)

	
Netherlands

	
52.17

	
5.74

	
NF

	
2001,2002

	
2003

	
Dolman et al. (2002) [60]




	
Mead Irrigated (MEI)

	
USA

	
41.17

	
−96.48

	
CROP

	
2003,2004

	
2005

	
Verma et al. (2005) [61]




	
Mead Rainfed (MER)

	
USA

	
41.18

	
−96.44

	
CROP

	
2004

	
2005

	
Verma et al. (2005) [61]




	
Metolius Intermediate (MIN)

	
USA

	
44.45

	
−121.56

	
NF

	
2005

	
2007

	
Law et al. (2003) [62] and Thomas et al. (2009) [63]




	
Mead Irrigated Rotation (MIR)

	
USA

	
41.16

	
−96.47

	
CROP

	
2004

	
2005

	
Verma et al. (2005) [61]




	
Mize (MIZ)

	
USA

	
29.76

	
−82.24

	
SHRUB

	
2003

	
2004

	
Brocha et al. (2012) [64]




	
Morgan Monroe State (MMS)

	
USA

	
39.32

	
−86.41

	
BF

	
2003,2005

	
2006

	
Schmid et al. (2000) [65]




	
Metolius New Young Pine (MNY)

	
USA

	
44.32

	
−121.6

	
NF

	
2004

	
2005

	
Ruehr et al. (2012) [66] and Vickers et al. (2012) [67]




	
Missouri Ozark (MOZ)

	
USA

	
38.74

	
−92.2

	
BF

	
2005,2006

	
2007

	
Gu et al. (2006) [68]




	
North Carolina Loblolly Pine (NCL)

	
USA

	
35.8

	
−76.67

	
NF

	
2005

	
2006

	
Noormets et al. (2009) [69]




	
Neustift (NEU)

	
Austria

	
47.12

	
11.32

	
GRASS

	
2002

	
2003

	
Wohlfahrt et al. (2008) [70]




	
Niwot Ridge (NR)

	
USA

	
40.03

	
−105.55

	
NF

	
2003,2006

	
2007

	
Monson et al. (2002) [71]




	
ON EpeatlandMerBleue (OEM)

	
Canada

	
45.41

	
−75.52

	
SHRUB

	
2001

	
2004

	
Lafleur et al. (2003) [72]




	
Puechabon (PUE)

	
France

	
43.74

	
3.6

	
BF

	
2001,2002

	
2003

	
Allard et al. (2008) [73]




	
QC-Black Spruce (QMB)

	
Canada

	
49.69

	
−74.34

	
NF

	
2004

	
2005

	
Bergeron et al. (2007) [74]




	
Qianyanzhou(QYZ)

	
China

	
26.73

	
115.07

	
NF

	
2003

	
2004

	
Yu et al. (2006) [75]




	
Renon (REN)

	
Italy

	
46.59

	
11.43

	
NF

	
2002

	
2003

	
Montagnani et al. (2009) [76]




	
Rosemount G19 (RG19)

	
USA

	
44.72

	
−93.09

	
CROP

	
2004,2005

	
2006

	
Griffis et al. (2008) [77]




	
Rosemount G21 (RG21)

	
USA

	
44.71

	
−93.09

	
CROP

	
2004,2005

	
2006

	
Bavin et al. (2009) [78]




	
Roccarespampani1 (ROC)

	
Italy

	
42.39

	
11.92

	
BF

	
2002

	
2003

	
Keenan et al. (2009) [79]




	
Sky Oaks New (SON)

	
USA

	
33.38

	
−116.64

	
SHRUB

	
2004,2005

	
2006

	
Luo et al. (2007) [80]




	
Soroe (SOR)

	
Denmark

	
55.48

	
11.65

	
MF

	
2001,2002

	
2003

	
Pilegaard et al. (2001) [81]




	
Santa Rita Mesquite (SRM)

	
USA

	
31.82

	
−110.87

	
SHRUB

	
2004,2005

	
2006

	
Scott (2010) [58]




	
San Rossore (SRO)

	
Italy

	
43.73

	
10.29

	
NF

	
2001,2002

	
2003

	
Migliavacca et al. (2011) [82]




	
Tharandt (THA)

	
Germany

	
50.96

	
13.57

	
NF

	
2001,2002

	
2003

	
Grünwald and Bernhofer (2007) [83]




	
Tomakomai (TMK)

	
Japan

	
42.74

	
141.52

	
NF

	
2001,2002

	
2003

	
Hirano et al. (2003) [84]




	
Tonzi Ranch (TRA)

	
USA

	
38.43

	
−120.97

	
SHRUB

	
2004,2005,2006

	
2007

	
Baldocchi et al. (2004) [85]




	
UCI 1850 (U50)

	
Canada

	
55.88

	
−98.48

	
NF

	
2003

	
2004

	
Goulden et al. (2011) [86]




	
UCI 1989 (U89)

	
Canada

	
55.92

	
−98.96

	
SHRUB

	
2003

	
2004

	
Goulden et al. (2011) [86]




	
UCI 1998 (U98)

	
Canada

	
56.64

	
−99.95

	
SHRUB

	
2003

	
2004

	
Goulden et al. (2011) [86]




	
UMBS (UMBS)

	
USA

	
45.56

	
−84.71

	
BF

	
2003,2004

	
2006

	
Curtis et al. (2005) [87]




	
Vaira Ranch (VRA)

	
USA

	
38.41

	
−120.95

	
GRASS

	
2003,2004

	
2007

	
Baldocchi et al. (2004) [85]




	
Vielsalm (VSA)

	
Belgium

	
50.31

	
6.00

	
MF

	
2001,2002

	
2003

	
Aubinet et al. (2001) [88]




	
Willow Creek (WCR)

	
USA

	
45.81

	
−90.08

	
BF

	
2003

	
2005

	
Bolstad et al. (2004) [89]




	
Wetzstein (WET)

	
Germany

	
50.45

	
11.46

	
NF

	
2002

	
2003

	
Rebmann et al. (2009) [90]










2.2. Methods


2.2.1. Models Used


TL-LUEn, TL-LUE, and MOD17 models were used in this study. The MOD17 algorithm is described in detail in Running et al. [8,91]. It relies on the assumption that GPP is linearly related to APAR [11,12,92]. The TL-LUE model stems from the MOD17 algorithm and discriminates the differences of upper and bottom canopy in receiving direct radiation and diffuse radiation and in their LUE. As a consequence, canopy GPP simulated by TL-LUE nonlinearly changes with incoming PAR. The TL-LUEn adopts the same methodology as the TL-LUE model to separate sunlit and shaded leaves and calculate their APAR. However, it takes the rectangular hyperbolic model to calculate GPP for sunlit and shaded leaves. The MOD17, TL-LUE, and TL-LUEn models are described in Equations (1–3), respectively, i.e.,


   G P P =  ε  max   × PAR × f P A R × f  (  V P D  )  × g  (   T  a min    )    



(1)






   G P P =  (   ε  m s u   × A P A  R  m s u   × L A  I  m s u   +  ε  m s h   × A P A  R  m s h   × L A  I  m s h    )  × f  (  V P D  )  × g  (   T  a min    )    



(2)






   G P P =  (     ε m  × A P A  R  m s u   × β    ε m  × A P A  R  m s u   + β   × L A  I  m s u   +    ε m  × A P A  R  m s h   × β    ε m  × A P A  R  m s h   + β   × L A  I  m s h    )  × f  (  V P D  )  × g  (   T  a min    )    



(3)




where εmax is the maximum LUE in MOD17; fPAR is the fraction of PAR absorbed by vegetation and calculated from LAI using the Beer’s Law (fPAR=1-e−k*LAI, where k is the light extinction coefficient and set as 0.5 as [23]); εmsu and εmsh are the maximum LUE of sunlit and shaded leaves in TL-LUE, respectively; εm is the quantum yield when incident PAR approaches zero and β is the maximum canopy photosynthetic flux density at light saturation in TL-LUEn [13]; f(VPD) and g(Tamin) denote the constrains imposed by atmospheric vapor pressure deficit (VPD) and minimum air temperature, respectively, and are used to downscale the maximum LUE values to real ones. APARmsu and APARmsh are the PAR absorbed by sunlit and shaded leaves per unit LAI; LAImsu and LAImsh are the leaf area index for sunlit and shaded leaves.



In above equations, the two attenuation scalars, f(VPD) and g(Tamin), range from 0 (total inhibition) to 1 (no inhibition) and are calculated using the same formulas for MOD17, TL-LUE, and TL-LUEn. Parameters VPDmax, VPDmin, Tamin_min, and Tamin_max used to calculate f(VPD) and g(Tamin) depend on vegetation types [91] and are listed in Table 2.



In Equations (2) and (3), APARmsu and APARmsh are calculated as:


   A P A  R  m s u   = ( 1 − α ) ×  [  P A  R  d i r   ×   cos ( φ )   cos ( θ )   +   P A  R  d i f   − P A  R  d i f , u     L A I   + C  ]    



(4)






   A P A  R  m s h   = ( 1 − α ) ×  [    P A  R  d i f   − P A  R  d i f , u     L A I   + C  ]    



(5)




where α is the albedo varying with vegetation types (Table 2), PARdif and PARdir are the diffuse and direct components of incoming PAR, respectively, and they are empirically calculated (see Equation (6)); PARdif,u is the diffuse PAR under the canopy and calculated following [24]; (PARdif – PARdif,u)/LAI denotes the absorbed diffuse PAR per unit leaf area within the canopy; C indicates multiple scattering of total PAR within the canopy [24]; φ is the mean leaf-sun angle and set as 60º[24]; θ is the mean solar zenith angles of half an hour, a day, and 8 days. The average solar zenith angle in each half an hour is calculated according to latitude, Julian day, and local time [93]. The average solar zenith angle in a given day is calculated according to latitude and Julian day [24]. The 8-day average solar zenith angle is the mean of the daily average solar zenith angles during the 8 days period.



Diffuse and direct PAR are empirically partitioned as [24]:


   P A  R  d i f   = ( 0.943 + 0.734 R − 4.9  R 2  + 1.796  R 3  + 2.058  R 4  ) × P A R   



(6)




where PARdif is the estimated diffuse PAR; R is the sky clearness index (R=S/(S0cosθ)), S and S0 are the incoming solar radiation on the ground surface and solar constant (1367 Wm−2), respectively. In the conversion of incoming solar radiation into PAR, a constant of 0.5 is used [23] (PAR=0.5S).



LAImsu and LAImsh in Equations (2) and (3) are calculated as [24]:


   L A  I  m s u   = 2 × cos ( θ ) ×  (  1 − exp  (  − 0.5 × Ω ×   L A I   cos  ( θ )     )   )    



(7)






   L A  I  m s h   = L A I − L A  I  m s u     



(8)




where Ω is the clumping index, which changes with land cover types, season and solar zenith angle. It was only assigned according to vegetation types here (Table 2) since spatially and temporally variant data are not available for this parameter.
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Table 2. Model parameters used for different vegetation types.
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Vegetation Type*

	
DBF

	
ENF

	
EBF

	
MF

	
GRASS

	
CROP

	
savannas

	
OS

	
WS






	
εmax (g C/MJ)**

	
1.044

	
1.008

	
1.259

	
1.116

	
0.604

	
0.604

	
0.888

	
0.774

	
0.768




	
Tamin_max (°C)

	
7.94

	
8.31

	
9.09

	
8.5

	
12.02

	
12.02

	
8.61

	
8.8

	
11.39




	
Tamin_min (°C)

	
−8

	
−8

	
−8

	
−8

	
−8

	
−8

	
−8

	
−8

	
−8




	
VPDmax (kpa)

	
4.1

	
4.1

	
4.1

	
4.1

	
4.1

	
4.1

	
4.1

	
4.1

	
4.1




	
VPDmin (kpa)

	
0.93

	
0.93

	
0.93

	
0.93

	
0.93

	
0.93

	
0.93

	
0.93

	
9.3




	
Albedo

	
0.18

	
0.15

	
0.18

	
0.17

	
0.23a

	
0.23b

	
0.16

	
0.16

	
0.23




	
Clumping index (Ωc)

	
0.8

	
0.6

	
0.8

	
0.7

	
0.9

	
0.9

	
0.8

	
0.8

	
0.8








*DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; GRASS: grassland; CROP: cropland; savannas: savannas; OS: open shrublands; WS: woody savannas; a Tang et al. [94]. b Grant et al. [95]. c Singarayer et al. [96]; ** Running et al. [91].








2.2.2. Parameter Optimization


The derived GPP in 85 calibration site-years was used to optimize parameters in MOD17, TL-LUEn, and TL-LUE models. The optimization was implemented using the Markov chain Monte Carlo (MCMC) method [97,98]. In the optimization, three models were driven using the same locally measured meteorological data and smoothed MODIS LAI. The MCMC simulation, as a stochastic simulation method, is based on Bayesian Theory, in which parameters are random variables instead of deterministic, but unknown constants in the classic thoughts. The fundamental formula of Bayesian Theory is:


   π  (  θ | x  )  =   p ( x | θ ) π ( θ )      ∫  − ∞  ∞   p ( x | θ ) π ( θ ) d θ        



(9)




where π(θ | x) is the posterior density of parameter   θ   (a term distribution under the condition of given sample x); π(θ) is the prior distribution of parameter   θ   (the knowledge possessed before measurement); and p(x | θ) is a likelihood function.



To determine the posterior density π(θ|x), the prior density and the likelihood function should be given in advance. We specified the prior density function as a uniform distribution over the following ranges:


     0 <  ε m  < 20     0 < β < 1500     0 <  ε  m s u   ,  ε  m s h   ,  ε  max   < 10     



(10)







The lower and upper limits of εm (unit: g C MJ−1) and   β   (unit: µg C m−2 s−1) were set according to the values compiled from 100 published datasets by Ruimy et al. [99]. The upper limits of εmsu, εmsh and εmax (unit: g C MJ−1) were assigned on the basis of previous findings [32,100]. In the optimization, these parameters were assumed uniformly distributed in the given limits with equal probability for all possible values.



The likelihood function was specified according to the distribution of simulation errors, which were assumed following a multivariate Gaussian distribution with a zero mean. This assumption is commonly made in many studies [101,102,103]. With this assumption, the likelihood function can be written as:


   p  (  x | θ  )  =   ∏  i = 1  n    1    2 π  σ i         e  −   (  P i  −  O i  )  2  / 2  σ i 2      



(11)




where Oi and Pi are the tower-derived GPP and simulated GPP, respectively;     σ i     are the standard error of tower-derived GPP.



The sampling of parameters was implemented using the Metropolis-Hastings (M-H) algorithm. To find an effective proposal distribution, we first made a test run of the algorithm with 50,000 simulations. Based on the test run, a Gaussian distribution N(0, cov0(θ)) was constructed (cov0(θ) is a diagonal matrix with its diagonal elements equal to the estimated variances of parameters θ). Then, the following proposal distribution was adopted to execute the consecutive MCMC simulations formally for 30,000 times:


    θ k  =  θ  k − 1   + N ( 0 ,   cov  0  ( θ ) )   



(12)




where θk is the new parameters generated from its predecessor θk−1.



The running means and standard deviations of parameter samples need time to approach stable. For bettering the statistical analysis of parameters, we discarded the initial 10,000 samples in the burn-in period and only used the remaining 20,000 samples for further analysis of each parameter. The histograms of the samples for each parameter indicate these parameters were well constrained in most situations because the posterior density functions were near the normal distribution (see Figure A1 in Appendix). Uncertainties of estimated parameters were quantified with a 95% highest-probability density interval. Means of parameter θi were estimated as followings and used for model validation:


   E (  θ i  ) =  1 N    ∑  k = 1  N    θ i  ( k )       



(13)




where N is the number of samples in the M-H algorithm.




2.2.3. Parameter Sensitivity Analysis


Sensitivity of simulated GPP to parameters in three LUE models was analyzed using the factorial approach [104,105,106]. This method facilitates the statistically based representation of combinations of errors in several parameter sets. For a two-level complete factorial design, each of the model parameters is assigned upper and lower values based on specified perturbations of the magnitudes of the parameters, and the model is run using all combinations of parameter values. For n different parameters, this would require 2n simulation runs. Each parameter here was perturbed by an arbitrary magnitude ±10% [105].



The main effect of a parameter, which is also referred to the parameter sensitivity, is calculated as the average difference between a run in which the parameter is at its upper level (+10%) and a run in which the parameter at its lower level (−10%), but other parameters remain unchanged. For example, there are 4 simulation runs for TL-LUEn when considering the parameters εm and β. They are both εm and β at their lower levels (simulation #1), εm at its upper level and β at its lower level (simulation #2), εm at its lower level and β at its upper level (simulation #3), and both εm and β at their upper levels (simulation #4). The main effect of εm in TL-LUEn are the average of the difference between simulation #2 and simulation #1, and the difference between simulation #4 and simulation #3. A larger value of main effect indicates higher sensitivity of simulated GPP.




2.2.4. Model Performance Assessment


The performance of TL-LUEn, TL-LUE, and MOD17 was assessed using root mean square error (RMSE) and determination coefficient (R2). The paired t test was then conducted to evaluate the significance regarding the differences in R2, RMSE between TL-LUEn and TL-LUE, TL-LUEn and MOD17, and TL-LUE and MOD17 when all vegetation types lumped together at three temporal scales for model evaluation, respectively [13].






3. Results


3.1. Optimized Model Parameters


Table 3 shows the averages of optimized εm, εmax, εmsu and εmsh for 6 different vegetation types at half-hourly, daily and 8-day temporal scales, respectively. εm was generally larger than εmsh, εmsu, and εmax. It increased sizably when the temporal scales increasing from half-hourly to 8-day, especially for CROP. CROP always had the highest εm in all the three temporal scales. At the half-hourly scale, three forest types, including BF, MF and NF, had lower εm values than CROP and SHRUB, but higher than GRASS. Through metadata analysis for more than 100 published datasets, Ruimy et al. [99] reported that CROP has the highest εm (about 5.17 g C MJ−1) at the half-hourly scale, followed by forests (about 4.37 g C MJ−1, mainly BF sites), and GRASS has the smallest one (about 2.71 g C MJ−1), similar to the identified changes of εm with vegetation types here.



Optimized εmax was in between εmsh and εmsu for all vegetation types and at all temporal scales. εmsh is larger than εmsu and εmax due to the fact that shaded leaves are only exposed to diffuse radiation, which enters a canopy from all directions and distributes more evenly than direct radiation within the canopy [107,108]. The intensity of light absorbed by shaded leaves is normally lower than light saturation point. Thus, they have higher light use efficiency than sunlit leaves. The values of εmax, εmsu and εmsh showed smaller variations than εm across three temporal scales (Table 3). As expected, CROP had the highest εmax, εmsu, and εmsh values, which are 1.78, 1.21 and 5.23 g C MJ−1 at the half-hourly scale, 1.80, 0.95 and 4.67 g C MJ−1 at the daily temporal scale, and 1.80, 0.96 and 4.26 g C MJ−1 at the 8-day scale, respectively. MF had the second largest ones, followed by BF and NF. GRASS had the lowest εmax, εmsu and εmsh values among all 6 vegetation types. The εmax, εmsu and εmsh of GRASS were lower than half of the corresponding values of CROP at the three temporal scales, respectively. In general, the average optimized εmax was close to the default values used in the MOD17 algorithm (Table 2) for all vegetation types except CROP, which had much higher optimized εmax than the default (0.604 g C MJ−1). Many studies have indicated that the underestimation of CROP GPP by the MOD17 algorithm is mainly due to the low value of εmax used [109]. It has been reported that the mean LUE of croplands can approach 2.80 g C MJ−1 [110,111,112], slightly higher than the average value of about 2.0 g C MJ−1 optimized in this study.



The parameter β in the TL-LUEn model showed complex changes with temporal scales and vegetation types. At the half-hourly scale, non-forest types had a relatively higher β value than forests, which is consistent with the findings reported by Ruimy et al. [99] and Wang et al. [6]. At the daily temporal scale, GRASS had the highest β (286.28 µg C m−2 s−1), followed by CROP, NF, MF, SHRUB and BF. At the 8-day temporal scale, the β values of BF, CROP, GRASS, MF, NF and SHRUB were 163.58, 214.64, 483.41, 267.39, 335.02, and 369.31 µg C m−2 s−1, respectively
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Table 3. Average, standard deviation, variation of coefficient (CV), and uncertainties range of optimized εm, β, εmsu, εmsh and εmax for 6 different vegetation types at half-hourly, daily and 8-day temporal scales (εm, β in TL-LUEn, εmsu, εmsh in TL-LUE, and εmax in MOD17). The uncertainty was quantified with a 95% highest-probability density interval and averaged over each biome.
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εm (g C MJ−1)

	
β (µg C m−2 s−1)

	
εmsu (g C MJ−1)

	
εmsh (g C MJ−1)

	
εmax (g C MJ−1)




	

	
Mean

	
STD

	
CV (%)

	
Uncertainty

	
Mean

	
STD

	
CV(%)

	
Uncertainty

	
Mean

	
STD

	
CV(%)

	
Uncertainty

	
Mean

	
STD

	
CV(%)

	
Uncertainty

	
Mean

	
STD

	
CV(%)

	
Uncertainty






	
Half-hourly

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
BF

	
3.52

	
1.72

	
48.93

	
±1.32

	
147.84

	
112.19

	
75.88

	
±77.50

	
0.58

	
0.15

	
25.20

	
±0.10

	
2.37

	
0.68

	
28.94

	
±0.39

	
0.88

	
0.24

	
27.39

	
±0.09




	
CROP

	
4.34

	
1.07

	
24.64

	
±1.46

	
470.48

	
235.03

	
49.96

	
±177.09

	
1.21

	
0.39

	
32.06

	
±0.16

	
5.23

	
1.90

	
36.34

	
±0.91

	
1.78

	
0.62

	
35.07

	
±0.16




	
GRASS

	
2.14

	
1.35

	
63.22

	
±1.13

	
273.55

	
333.25

	
121.83

	
±143.44

	
0.48

	
0.23

	
48.42

	
±0.16

	
1.69

	
1.06

	
62.74

	
±0.70

	
0.64

	
0.37

	
58.17

	
±0.14




	
MF

	
3.59

	
0.97

	
27.14

	
±1.27

	
214.63

	
83.46

	
38.89

	
±91.48

	
0.78

	
0.18

	
22.77

	
±0.13

	
3.33

	
0.83

	
24.91

	
±0.45

	
1.26

	
0.24

	
19.20

	
±0.11




	
NF

	
2.79

	
2.19

	
78.67

	
±0.92

	
308.14

	
272.11

	
88.31

	
±161.84

	
0.66

	
0.22

	
33.20

	
±0.16

	
2.35

	
0.79

	
33.57

	
±0.56

	
0.88

	
0.29

	
33.24

	
±0.11




	
SHRUB

	
2.41

	
3.48

	
144.64

	
±0.94

	
540.16

	
481.89

	
89.21

	
±242.72

	
0.53

	
0.17

	
32.29

	
±0.20

	
1.70

	
0.63

	
37.08

	
±0.95

	
0.65

	
0.24

	
36.44

	
±0.21




	
Daily

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
BF

	
4.39

	
3.10

	
70.56

	
±1.05

	
99.88

	
93.92

	
94.04

	
±16.16

	
0.47

	
0.16

	
34.76

	
±0.02

	
2.06

	
0.63

	
30.47

	
±0.06

	
0.95

	
0.29

	
30.23

	
±0.02




	
CROP

	
12.02

	
5.05

	
42.06

	
±2.85

	
189.06

	
79.53

	
42.06

	
±23.26

	
0.95

	
0.30

	
31.47

	
±0.02

	
4.67

	
1.55

	
33.27

	
±0.12

	
1.80

	
0.58

	
32.19

	
±0.03




	
GRASS

	
6.06

	
5.94

	
98.14

	
±3.46

	
286.28

	
399.60

	
139.58

	
±143.94

	
0.44

	
0.26

	
58.18

	
±0.05

	
1.56

	
0.98

	
62.91

	
±0.17

	
0.69

	
0.44

	
63.51

	
±0.04




	
MF

	
3.41

	
0.73

	
21.48

	
±0.32

	
147.65

	
53.43

	
36.19

	
±14.80

	
0.61

	
0.14

	
22.19

	
±0.02

	
2.97

	
0.65

	
21.98

	
±0.06

	
1.40

	
0.26

	
18.76

	
±0.02




	
NF

	
2.69

	
1.79

	
66.53

	
±0.59

	
152.09

	
77.61

	
51.03

	
±36.93

	
0.54

	
0.15

	
28.38

	
±0.05

	
2.21

	
0.74

	
33.31

	
±0.11

	
0.98

	
0.32

	
32.24

	
±0.02




	
SHRUB

	
5.60

	
3.86

	
68.87

	
±5.13

	
105.57

	
51.30

	
48.59

	
±25.56

	
0.44

	
0.15

	
33.76

	
±0.05

	
1.84

	
0.64

	
34.68

	
±0.26

	
0.75

	
0.21

	
28.66

	
±0.05




	
8-day

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	




	
BF

	
4.64

	
2.78

	
59.92

	
±1.37

	
163.58

	
271.85

	
166.19

	
±84.65

	
0.53

	
0.18

	
34.42

	
±0.11

	
1.83

	
0.59

	
32.27

	
±0.19

	
0.97

	
0.30

	
31.04

	
±0.05




	
CROP

	
14.79

	
5.21

	
35.26

	
±2.28

	
214.64

	
197.90

	
92.20

	
±82.78

	
0.96

	
0.27

	
27.95

	
±0.09

	
4.26

	
1.59

	
37.44

	
±0.31

	
1.80

	
0.58

	
32.00

	
±0.09




	
GRASS

	
3.19

	
3.93

	
123.31

	
±1.20

	
483.41

	
489.70

	
101.30

	
±192.63

	
0.48

	
0.29

	
59.81

	
±0.14

	
1.33

	
0.79

	
58.88

	
±0.28

	
0.70

	
0.45

	
64.58

	
±0.10




	
MF

	
2.39

	
0.38

	
15.97

	
±0.71

	
267.39

	
172.78

	
64.62

	
±150.71

	
0.79

	
0.18

	
22.48

	
±0.23

	
2.51

	
0.63

	
24.95

	
±0.31

	
1.45

	
0.27

	
18.64

	
±0.07




	
NF

	
2.31

	
1.66

	
71.68

	
±0.79

	
335.02

	
341.62

	
101.97

	
±206.24

	
0.68

	
0.25

	
36.09

	
±0.17

	
1.81

	
0.63

	
34.79

	
±0.28

	
1.01

	
0.34

	
33.65

	
±0.07




	
SHRUB

	
2.08

	
1.61

	
77.58

	
±1.19

	
369.31

	
399.01

	
108.04

	
±242.47

	
0.47

	
0.14

	
30.39

	
±0.14

	
1.62

	
0.77

	
47.12

	
±0.33

	
0.74

	
0.22

	
29.68

	
±0.13










3.2. Model Performance in Calibration Site-Years


At the half-hourly scale, TL-LUEn showed slightly better performance than TL-LUE when data in all 85 calibration site-years were lumped together (Figure 2). With the increase of temporal scales from half an hour to 8 days, the difference of TL-LUEn and TL-LUE became almost indistinguishable. The improvement of both TL-LUE and TL-LUEn over MOD17 was obvious at all three temporal scales. At the half-hourly scale, the average RMSE of MOD17 were larger than that of TL-LUEn by 8.1 mg C m−2 (30min)−1, and the corresponding average R2 was lower than that of TL-LUEn by 0.050 (Figure 2a,b). At the daily scale, MOD17 output an average RMSE higher by 0.3 g C m−2 day−1 and R2 lower by 0.051 than TL-LUEn (Figure 2c,d). As to the 8-day scale, the average RMSE of MOD17 was 1.0 g C m−2 8days−1 larger than that of TL-LUEn, and the corresponding average R2 was 0.025 lower than that of TL-LUEn (Figure 2e,f).
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Figure 2. The number of site-years within different root mean square error (RMSE) and R2 classes (left) and the averages of RMSE and R2 (right) of GPP simulated using the TL-LUEn, TL-LUE, and MOD17 models in 85 calibration site-years at half-hourly (a,b), daily (c,d), and 8-day (e,f) temporal scales, respectively. 






Figure 2. The number of site-years within different root mean square error (RMSE) and R2 classes (left) and the averages of RMSE and R2 (right) of GPP simulated using the TL-LUEn, TL-LUE, and MOD17 models in 85 calibration site-years at half-hourly (a,b), daily (c,d), and 8-day (e,f) temporal scales, respectively.



[image: Remotesensing 07 02238 g002]





At three different temporal scales, the number of site-years in the same RMSE and R2 classes was similar for TL-LUEn and TL-LUE, confirming their similar ability to simulate GPP (see Figure 2). MOD17 performed poorer than TL-LUEn and TL-LUE in most site-years, indicated by larger RMSE and smaller R2. For example, at the half-hourly temporal scale, the number of site-years with small RMSE values (below 60 mg C m−2 (30min)−1), was 29 for MOD17, 40 for TL-LUEn, and 41 for TL-LUE, respectively. The R2 of GPP simulated by MOD17 was mostly in the range of 0.5–0.8 (in 58 site-years) while the R2 of GPP simulated by the TL-LUEn and TL-LUE mostly ranged from 0.7 to 0.9 (58 site-years for TL-LUEn and 59 site-years for TL-LUE).



TL-LUEn performed better than TL-LUE for most vegetation types except CROP at the half-hourly and daily scale. However, it performed no better than TL-LUE for MF, NF and SHRUB at the 8-day scale (see Figure 3). Both TL-LUEn and TL-LUE outperformed MOD17 for most vegetation types at three temporal scales except for CROP at the half-hourly scale. The superiority of TL-LUEn and TL-LUE over MOD17 was most significant at forest sites.
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Figure 3. Average RMSE and R2 of GPP simulated using calibrated TL-LUEn, TL-LUE and MOD17 in the calibration site-years at half-hourly (the first and second columns), daily (the third and fourth columns), and 8-day (the last two columns) scales for individual vegetation types. Note: Broadleaf forest (BF); Mixed forest (MF); Needleleaf forest (NF); Crop (CROP); Grass (GRASS); Shrub (SHRUB). Solid black circles are the means and horizontal error bars denote standard deviations. 
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3.3. Model Performance in Evaluation Site–years


3.3.1. Model Performance at the Half-hourly Scale


Model evaluation shows that TL-LUEn performed slightly better than TL-LUE in simulating half-hourly GPP when data in all 58 validation site-years was lumped together (Figure 4a,b). The RMSE and R2 of GPP simulated using TL-LUE against measurements averaged 64.3 mg C m−2 (30min)−1 and 0.732, respectively, while the corresponding values of TL-LUEn were 63.9 mg C m−2 (30min)−1 and 0.735, respectively. However, the differences in RMSE value between TL-LUEn and TL-LUE were not significant (p = 0.45) as well as the differences in R2 between the two models (p = 0.27) (Table 4). The performance of MOD17 was the poorest, with average RMSE and R2 values equaled to 70.1 mg C m−2 (30min)−1 and 0.690, respectively. In addition, the differences in both the two statistics (RMSE, R2) between TL-LUEn and MOD17, and TL-LUE and MOD17 were significant, with p values smaller than 0.0001 (Table 4).
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Figure 4. The number of site-years within different RMSE and R2 classes (left) and the averages of RMSE and R2 (right) of gross primary productivity (GPP) simulated using the TL-LUEn, TL-LUE, and MOD17 models in 58 validation site-years at half-hourly (a,b), daily (c,d), and 8-day (e,f) temporal scales, respectively. 
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In 58 evaluation site-years, the RMSE of GPP simulated using TL-LUEn, TL-LUE, and MOD17 was larger than 80 mg C m−2 (30min)−1 at 10, 11 and 17 sites, respectively. The R2 of GPP simulated using MOD17 mostly ranged from 0.5 to 0.8 (at 42 sites) while the R2 of GPP simulated using TL-LUEn and TL-LUE was in the range from 0.7 to 0.9 at 39 and 40 sites, respectively (Figure 4a,b). TL-LUEn performed better than TL-LUE at 31 sites. The poorer performance of TL-LUEn relative to TL-LUE occurred at CROP, GRASS, SHRUB and NF sites. MOD17 only performed better than TL-LUE and TL-LUEn at 9 sites (Table A1 in the Appendix).
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Table 4. Statistics of the Paired t Tests on the differences between TL-LUEn and TL-LUE, TL-LUEn and MOD17, and TL-LUE and MOD17 in RMSE and R2 for model validation when all vegetation types lumped together at half-hourly, daily and 8-day scale.
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RMSE

	

	
R2




	

	

	
TL-LUEn − TL-LUE

	
TL-LUEn − MOD17

	
TL-LUE − MOD17

	

	
TL-LUEn − TL-LUE

	
TL-LUEn − MOD17

	
TL-LUE − MOD17






	
Half-hourly

	
t stat

	
−0.75

	
−4.33

	
−5.09

	
t stat

	
1.12

	
6.10

	
7.13




	
p

	
0.45

	
0.00

	
0.00

	
p

	
0.27

	
0.00

	
0.00




	
Daily

	
t stat

	
0.33

	
−4.88

	
−7.63

	
t stat

	
0.53

	
7.61

	
9.30




	
p

	
0.75

	
0.00

	
0.00

	
p

	
0.60

	
0.00

	
0.00




	
8-day

	
t stat

	
2.24

	
−1.35

	
−5.96

	
t stat

	
0.98

	
4.70

	
0.98




	
p

	
0.03

	
0.18

	
0.00

	
p

	
0.33

	
0.00

	
0.33









Overall, TL-LUEn performed better than TL-LUE for BF, GRASS, MF and SHRUB, but poorer than TL-LUE for CROP and NF (see Figure 5). TL-LUEn and TL-LUE outperformed MOD17 for all vegetation types but CROP. The improvement of TL-LUE and TL-LUEn over MOD17 was most significant for forests (BF, MF and NF). Averaged over all forest sites, the RMSE of MOD17 was larger than those of TL-LUEn and TL-LUE by 10.1 mg C m−2 (30min)−1 and 8.8mg C m−2 (30min)−1, respectively. The corresponding average R2 of MOD17 was 0.063 and 0.060 lower than those of TL-LUEn and TL-LUE, respectively.




3.3.2. Model Performance at the Daily Scale


TL-LUEn showed better performance than TL-LUE at the daily scale when 58 validation site-year data was lumped together (Figure 4c,d). The average RMSE of GPP simulated by TL-LUEn and TL-LUE was both 1.7 g C m−2 day−1. The average R2 of GPP simulated by TL-LUEn was slightly larger than that of TL-LUE. Results of the paired t test on the differences in average RMSE value between TL-LUEn and TL-LUE were not significant (p = 0.75), as well as the differences in average R2 value between the two models (p = 0.60) (Table 4). The average RMSE value of MOD17 was 1.9 g C m−2 day−1. The average R2 value of MOD17 was smaller than the corresponding values of TL-LUEn and TL-LUE by 0.046 and by 0.045, respectively. In addition, the differences in average RMSE value and R2 value between TL-LUEn and MOD17, and TL-LUE and MOD17 were significant, with p values were all smaller than 0.0001.



In 58 validation site-years, MOD17 produced larger RMSE and lower R2 than TL-LUE and TL-LUEn at most sites. The RMSE of GPP simulated using MOD17, TL-LUE, and TL-LUEn was larger than 2.0 g C m−2 day−1 at 28, 15, and 15 sites, respectively. The values of R2 above 0.9 occurred at only 3 sites for MOD17, at 13 sites for TL-LUE, at 16 sites for TL-LUEn, respectively (Figure 4c,d). TL-LUEn showed better ability to simulate GPP than TL-LUE at 29 sites. MOD17 only outperformed TL-LUEn and TL-LUE at 12 and 8 sites, respectively, mainly CROP, SHRUB and GRASS sites (Table A2 in the Appendix).



As to MF, NF and SHRUB, TL-LUEn performed with a higher RMSE and R2 than TL-LUE. TL-LUEn only outperformed TL-LUE for BF, but performed poorer for CROP and GRASS (see Figure 5). Overall, TL-LUEn and TL-LUE outperformed MOD17 for forests and SHRUB. For three forest types, both TL-LUEn and TL-LUE outperformed MOD17. The average RMSE of both TL-LUEn and TL-LUE was 0.4 g C m−2 day−1 smaller than that of MOD17 while the average R2 of TL-LUEn and TL-LUE was 0.063 and 0.057 higher than that of MOD17, respectively. As to CROP and GRASS, both average RMSE and R2 of GPP simulated by TL-LUEn were higher than those of MOD17, while TL-LUE outperformed MOD17 with a smaller RMSE and a higher R2 (see Figure 5).
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Figure 5. Average RMSE and R2 of GPP simulated using calibrated TL-LUEn, TL-LUE and MOD17 in the validation site-years at half-hourly (the first and second columns), daily (the third and fourth columns), and 8-day (the last two columns) scales for individual vegetation types. Note: Broadleaf forest (BF); Mixed forest (MF); Needleleaf forest (NF); Crop (CROP); Grass (GRASS); Shrub (SHRUB). Solid black circles are the means and horizontal error bars denote standard deviations. 
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3.3.3. Model Performance at the 8-day Scale


When data in all 58 validation site-years was lumped together, TL-LUEn performed similarly with TL-LUE at the 8-day scale (Figure 4e,f). The differences between the two models were significant (p < 0.05) in average RMSE value but was not significant (p = 0.33) in average R2 value (Table 4). TL-LUEn outperformed MOD17 with significant differences (p < 0.05) in their average R2 value but not significant differences in their RMSE value (p = 0.18), while TL-LUE outperformed MOD17 with significant differences (p < 0.0001) in their average RMSE value but not significant differences in their average R2 value (p = 0.33) (Figure 4e,f, Table 4). However, the improvement of both TL-LUE and TL-LUEn over MOD17 was smaller in comparison with the improvement at half-hourly and daily temporal scales. MOD17 produced an average RMSE value of 13.0 g C m−2 (8days)−1 and an average R2 value of 0.755. The average RMSE and R2 of TL-LUE were 12.0 g C m−2 (8days)−1 and 0.775, respectively.



The RMSE of GPP simulated by TL-LUEn, TL-LUE and MOD17 were smaller than 12 g C m−2 (8days)−1 at 35, 34 and 27 sites. The three models had similar numbers of sites in each R2 class. TL-LUEn performed poorer than TL-LUE at 32 sites, while MOD17 outperformed TL-LUEn and TL-LUE at 20 and 13 sites, respectively, which were mainly non-forest and NF sites (Table A3 in the Appendix).



TL-LUEn only performed better than TL-LUE for BF. As to non-forest types (CROP, GRASS and SHRUB), TL-LUEn performed similarly with MOD17. The average RMSE and R2 of the former were larger than those of the latter by 1.0 g C m−2 (8days)−1 and 0.012, respectively. TL-LUE outperformed MOD17 in all the three non-forest types. As to forests, both TL-LUEn and TL-LUE showed a better performance than MOD17 with an average RMSE smaller than that of MOD17 by 1.5 g C m−2 (8days)−1 and 1.6 g C m−2 (8days)−1 and corresponding average R2 larger than that of MOD17 by 0.030 and 0.022, respectively.






4. Discussion


4.1. The Ability of the Three LUE Models to Simulate GPP


At the half-hourly temporal scale, TL-LUEn and TL-LUE performed better than MOD17 for three types of forests (MF, BF, and NF), GRASS and SHRUB and their differences between these vegetation types are significant. With the increase of temporal scales, the improvement of TL-LUEn and TL-LUE over MOD17 gradually became less distinct. The changes in the ability of TL-LUEn, TL-LUE, and MOD17 to simulate GPP with vegetation types and temporal scales are, at least in part, related to the different structure of various vegetation types and the different response of canopy GPP to incident PAR described by three models. It was found that scaling up in time tended to linearize the relationship between CO2 flux and PAR [99]. Observations also showed that changes in canopy GPP with incident PAR are nonlinear at the half-hourly scale and become approximately linear at the daily and 8-day scales [29]. GPP simulated by MOD17 always linearly increase with incident PAR while the increase of GPP with incident PAR is nonlinear in both TL-LUEn and TL-LUE. The non-linearity of TL-LUEn and TL-LUE can be modified through changing parameters εm, β, εmsu, and εmsh. For example, if εmsu equals εmsh in the TL-LUE model, the response of simulated canopy GPP to incident PAR would be close to linear. This is the reason why the improvement of TL-LUEn and TL-LUE over MOD17 is much smaller at the 8-day scale than at the half-hourly temporal scale.



The better performance of TL-LUEn and TL-LUE models over MOD17 changed with vegetation types, most significantly for forests, then for SHRUB, GRASS. Leuning et al. [113] pointed out that the canopy CO2 exchange rates of crops is a quasi-linear function of absorbed PAR. In contrast, forests and sparse vegetation often show a markedly nonlinear response of canopy CO2 exchange rates to absorbed PAR [99,113,114]. TL-LUEn and TL-LUE are able to capture both the nonlinear and linear responses of GPP to incident PAR while MOD17 is only able to describe the linear change of canopy GPP with incident PAR. Therefore, TL-LUEn and TL-LUE outperform MOD17 for forests, shrub and grass sites. The higher performance is the most significant for forests at the half-hourly scale.



The linear response of GPP to PAR in MOD17 led to the underestimation/overestimation of GPP under conditions of low/high incident PAR, which has been confirmed by Propastin et al. [22] and He et al. [23]. TL-LUEn and TL-LUE were, at least partially, able to correct this weakness. Figure 6, Figure 7 and Figure 8 show the RMSE of simulated GPP as a function of incident PAR at three different temporal scales. Under medium PAR conditions, TL-LUEn, TL-LUE, and MOD17 performed similarly. The improvement of TL-LUEn and TL-LUE over MOD17 mainly occurred under low or high incident PAR conditions.
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Figure 6. The RMSE of modeled GPP against tower-derived GPP within different photosynthetically active radiation (PAR) classes for six different vegetation types: (a) BF, (b) CROP, (c) GRASS, (d) MF, (e) NF and (f) SHRUB, at the half-hourly scale. 
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Figure 7. The RMSE of modeled GPP against tower-derived GPP within different PAR classes for 6 different vegetation types: (a) BF, (b) CROP, (c) GRASS, (d) MF, (e) NF and (f) SHRUB, at the daily scale. 
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The ratio of diffuse to direct PAR changed with clearness index. Under conditions of low clearness index, canopy LUE is high [23] owing to more diffuse PAR being absorbed by shaded leaves with high LUE. MOD17 did not differentiate the different effects of diffuse and direct PAR on GPP and tended to underestimate/overestimate GPP under low/high clearness index conditions (Figure 9). In TL-LUEn and TL-LUE, incident PAR is first decomposed into diffuse and direct components according to clearness index. Under conditions of low clearness index, increased diffuse PAR will be mainly absorbed by shaded leaves, which have high LUE. Thus, GPP simulated by TL-LUEn and TL-LUE is higher than that simulated by MOD17 (Figure 9). In contrast, when clearness index is high, increased direct PAR will be mostly absorbed by sunlit leaves, which have low LUE. Consequently, GPP simulated by TL-LUEn and TL-LUE is lower than that simulated by MOD17. Therefore, the systematic biases of GPP simulated by MOD17 model under low and high clearness index can be alleviated by TL-LUE and TL-LUEn.
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Figure 8. The RMSE of modeled GPP against tower-derived GPP within different PAR classes for 6 different vegetation types: (a) BF, (b) CROP, (c) GRASS, (d) MF, (e) NF and (f) SHRUB, at the 8-day scale. 






Figure 8. The RMSE of modeled GPP against tower-derived GPP within different PAR classes for 6 different vegetation types: (a) BF, (b) CROP, (c) GRASS, (d) MF, (e) NF and (f) SHRUB, at the 8-day scale.
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4.2. The Applicability of Different Models


The different performances of three LUE models at different temporal scales and for different vegetation types suggest that it should be selective when using them. Prior to regional simulations of GPP using these models, we must be careful with the applicability of the optimized parameters.



In this study, optimized parameters changed significantly among different vegetation types. The across-site variability of these parameters is also sizeable even for a specific vegetation type (Table 3). The sensitivity of simulated GPP to εm and β in TL-LUEn, to εmsu and εmsh in TL-LUE, and to εmax in MOD17 was assessed using the factorial approach described in section 2.2.3. The calculated main effect of εmax, εm, β, εmsu and εmsh are 20%, 11.50%, 8.50%, 8.09% and 11.91% at the half-hourly scale, and 20%, 10.72%, 9.28%, 6.84% and 13.16% at the daily scale, and 20%, 11.26%, 8.74%, 7.52% and 12.48% at the 8-day scale, respectively (Table 5). The sensitivity of simulated GPP to εmax in MOD17 is higher than the sensitivity of simulated GPP to individual parameters in TL-LUEn and TL-LUE. The sensitivity of simulated GPP to the simultaneous uncertainties of εm and β in TL-LUEn and to the simultaneous uncertainties of εmsu and εmsh in TL-LUE is the same as the sensitivity of simulated GPP to εmax in MOD17. In addition, parameters in TL-LUE and MOD17 showed similar variations within each vegetation type, indicated by the similar CV in Table 3. However, as the two parameters in TL-LUEn vary not only with biomes but also with temperature [6], optimized εm and β exhibited larger variations and uncertainties than εmax, εmsu, and εmsh for all vegetation types (Table 3).



Above analyses on the performance of three models at different temporal scales and their sensitivity to parameter uncertainties indicate that TL-LUEn is more applicable in individual site at the half-hourly scale. TL-LUE can be used regionally at the half-hourly, daily, and 8-day scales. MOD17 is also a good option for simulating regional GPP at the 8-day temporal scale and it is able to simulate GPP with accuracy close to TL-LUE.





[image: Remotesensing 07 02238 g009 1024] 





Figure 9. The average differences of modeled daily GPPs with observations for different ranges of clearness index Q. ΔGPP means the difference between the simulated and tower-derived daily GPP for certain biome. (a–f) denoteΔGPP for 6 different vegetation types (BF, CROP, GRASS, MF, NF and SHRUB), respectively. 
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Table 5. Design of the 22 complete factorial sensitivity analyses for parameters of TL-LUEn, TL-LUE with all the vegetation types lumped together at half-hourly, daily, and 8-day scales.
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Simulations

	
TL-LUEn

	
TL-LUE

	

	
MOD17




	
εm

	
β

	
ΔGPPrel(%)

	
εmsu

	
εmsh

	
ΔGPPrel(%)

	
εmax

	
ΔGPPrel(%)






	
Half-hourly

	
1

	
-

	
-

	
−10.00

	
-

	
-

	
−10.00

	
-

	
−10.00




	
2

	
+

	
-

	
0.78

	
+

	
-

	
−1.91

	

	




	
3

	
-

	
+

	
−2.23

	
-

	
+

	
1.91

	

	




	
4

	
+

	
+

	
10.00

	
+

	
+

	
10.00

	
+

	
10.00




	

	
Main effect(%)

	
11.50

	
8.50

	

	
8.09

	
11.91

	

	
20.00

	




	
Daily

	
1

	
-

	
-

	
−10.00

	
-

	
-

	
−10.00

	
-

	
−10.00




	
2

	
+

	
-

	
0.72

	
+

	
-

	
−3.16

	

	




	
3

	
-

	
+

	
−0.73

	
-

	
+

	
3.16

	

	




	
4

	
+

	
+

	
10.00

	
+

	
+

	
10.00

	
+

	
10.00




	

	
Main effect (%)

	
10.72

	
9.28

	

	
6.84

	
13.16

	

	
20.00

	




	
8-day

	
1

	
-

	
-

	
−10.00

	
-

	
-

	
−10.00

	
-

	
−10.00




	
2

	
+

	
-

	
0.60

	
+

	
-

	
−2.48

	

	




	
3

	
-

	
+

	
−1.92

	
-

	
+

	
2.48

	

	




	
4

	
+

	
+

	
10.00

	
+

	
+

	
10.00

	
+

	
10.00




	
Main effect (%)

	
11.26

	
8.74

	

	
7.52

	
12.48

	

	
20.00

	








Note: Columns three-four and six-seven show contrast coefficients for εm, β in TL-LUEn, and εmsu, εmsh in TL-LUE, respectively. A plus symbol indicates that the parameter was set at 110% of the estimate while a minus symbol indicates 90% of the estimate. ΔGPPrel is the relative differences between the simulated GPP calculated by introducing a perturbation to a certain parameter and the simulated GPP calculated using optimized parameters.








4.3. Uncertainties and Remaining Issues


Both TL-LUEn and TL-LUE separate a canopy into sunlit and shaded leaves, and TL-LUEn further describe nonlinear response of their respective photosynthesis to APAR. These two models demonstrated powerful ability to simulate GPP. However, there are still some uncertainties remained. As indicated by Gebremichael and Barros [105], uncertainties in meteorological and LAI data, parameters, and model structure all might induce errors of simulated GPP. The change of linear response of GPP to VPD and PAR to nonlinear one and the inclusion of a soil moisture scalar might improve GPP simulation.



Similar to MOD17, TL-LUEn and TL-LUE only use VPD and minimum air temperature as environmental constraints on GPP. VPD represents the effect of atmospheric dryness on vegetation photosynthesis as a result of stomatal conductance. Soil moisture also plays an important role in regulating GPP via effects on leaf cell turgor pressure directly affecting photosynthesis or by stomatal conductance [10,115,116]. Because VPD and soil water availability did not co-vary, it would be most appropriate to have soil water availability as a constraint on photosynthesis in addition to VPD [117]. In MOD17, soil drought stress was approximated through the increase in the sensitivity of GPP to VPD [118]. Photosynthesis is considered to be totally shut off during periods of very high VPD, but in fact soil moisture and other environmental conditions might be still favorable to maintain photosynthetic activity at a certain level even if atmosphere is very dry [105]. Thus, the lack of soil water availability as a photosynthetic constraint in all three LUE models surely increases uncertainties in simulated GPP, especially for crops and grasses with shorter roots and high dependence on shallow soil moisture.



In this study, parameters in three LUE models are assumed invariant seasonally, which could induce some uncertainties in optimized parameters and calculated GPP. Many studies have shown that these parameters vary with both temperature and vegetation types [14,119,120]. Wang et al. [6] recently reported that with the consideration of seasonal changes of two parameters associated with temperature, the two-leaf nonlinear hyperbolic model (i.e., TL-LUEn) could simulate GPP as well as a process-based model. Chen et al. [121] indicated that the exclusion of seasonality of parameters in one-leaf and two-leaf LUE models is one of major drivers responsible for the failure of these models to capture the seasonality of GPP well. Thus, the proper representation of seasonal variations of these parameters needs further investigation.



Simulated GPP is also affected by the quality of meteorological and LAI inputs. In the calibration and validation periods, the models were driven by tower-measured meteorological data and processed MODIS LAI. The errors caused by inaccuracies of meteorological inputs are likely relative small [41]. However, the MODIS LAI contained considerable uncertainties, especially for crops [122], mainly caused by uncertainties in land cover and surface reflectance inputs and in the LAI inversion algorithm, and by the prevalence of persistent cloud cover [105]. The four variables in both TL-LUEn and TL-LUE (APARmsh, APARmsu, LAImsh and LAImsu), are all linked to LAI [23]. Our analysis showed that GPP simulated by TL-LUEn and TL-LUE is slightly more sensitive to LAI than that simulated by MOD17 (not shown here), which could be one of possible explainers for the poorer performance of TL-LUEn and TL-LUE relative to MOD17 at crop sites. Of course, this speculation is still worth of deep study.



The LUE of crops changes with species. At the BON, MIR, MER, RG19, and RG21 crop sites, the corn or soybeans were cultivated every other year. At the ASM site, the dominant species was wheat in 2003–2004 and 2006, while it was changed to corn in 2005. Corn is a C4 plant while soybeans and wheat are C3 plants. The LUE of corn is much higher than that of soybeans and wheat. The application of optimized parameters of C3/C4 plants for C4/C3 plants in the validation years might result in large uncertainties in simulated GPP. This is a possible cause for the poorer performance of models for crops in the validation period than in the calibration period. In addition, the uneven numbers of flux sites for different vegetation types could also result in uncertainties in the identified overall robustness of individual models.





5. Conclusions


In this study, the ability of three different types of LUE models (MOD17, TL-LUE and TL-LUEn) to simulate GPP at various temporal scales for different vegetation types was assessed using measurements at 58 flux sites in Asia, Europe and North America. The main conclusions that were drawn as follows:

	(1)

	
Optimized model parameters vary distinctly not only among different vegetation types, but also among different sites for the same vegetation type, especially for TL-LUEn. The parameters in TL-LUEn change sizably with temporal scales while the parameters in TL-LUE and MOD17 are almost invariant with temporal scales.




	(2)

	
The overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001) than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at 8-day scale.




	(3)

	
At the half-hourly temporal scale, TL-LUEn and TL-LUE outperformed MOD17 for all vegetation types but CROP. The outperformance of TL-LUEn and TL-LUE over MOD17 was more distinct for forests than for GRASS and SHRUB vegetation types. With the increase of temporal scales, the improvement of both TL-LUEn and TL-LUE over MOD17 decreased. At the daily temporal scale, both TL-LUEn and TL-LUE performed better than MOD17 for forests and SHRUB. TL-LUE also outperformed MOD17 slightly for other non-forest types (CROP and GRASS). TL-LUEn only performed better than TL-LUE for BF. At the 8-day temporal scale, TL-LUEn only outperformed MOD17 for forests while TL-LUE performed better than MOD17 for all vegetation types. TL-LUEn only slightly outperformed TL-LUE for BF.




	(4)

	
The improvement of TL-LUEn and TL-LUE over the MOD17 for forests was mainly achieved by the correction of the underestimation of GPP under low incident PAR and the overestimation of GPP under high incident PAR occurring in the MOD17.




	(5)

	
TL-LUEn is more applicable at individual sites at the half-hourly scale. TL-LUE could be regionally used at half-hourly, daily and 8-day scales, owing to its excellent performance and small parameter variations at different temporal scales and for most vegetation types. MOD17 is also an applicable option at 8-day scale.
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Figure A1. Histograms of the 20000 samples for each parameter generated by the Metropolis-Hasting Algorithm. Note: Only the best and worst cases are shown for each temporal scale owing to space limitation. 
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Table A1. Assessment of half-hourly GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







Table A1. Assessment of half-hourly GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







	

	
ID

	
RMSE (mg C m −2 (30min)−1)

	

	
R2




	
TL-LUEn

	
TL-LUE

	
MOD17

	

	
TL-LUEn

	
TL-LUE

	
MOD17






	
BF

	
BEP

	
63.381

	
66.958

	
76.423

	

	
0.819

	
0.783

	
0.689




	
DHS

	
60.435

	
63.478

	
71.283

	

	
0.724

	
0.703

	
0.633




	
HA

	
59.667

	
64.036

	
71.053

	

	
0.910

	
0.888

	
0.807




	
HAF

	
71.021

	
72.580

	
85.082

	

	
0.862

	
0.853

	
0.801




	
HES

	
76.049

	
85.382

	
99.336

	

	
0.807

	
0.774

	
0.671




	
MMS

	
73.369

	
75.175

	
82.751

	

	
0.770

	
0.759

	
0.709




	
MOZ

	
68.622

	
68.328

	
73.618

	

	
0.770

	
0.758

	
0.711




	
PUE

	
49.406

	
49.861

	
54.236

	

	
0.806

	
0.801

	
0.770




	
ROC

	
79.484

	
80.577

	
84.508

	

	
0.636

	
0.640

	
0.635




	
UMBS

	
49.415

	
66.195

	
79.444

	

	
0.900

	
0.895

	
0.851




	
WCR

	
56.459

	
59.721

	
75.943

	

	
0.899

	
0.887

	
0.822




	
Average RMSE

	
64.301

	
68.390

	
77.607

	
Average R2

	
0.809

	
0.795

	
0.736




	
CROP

	
ASM

	
48.448

	
50.368

	
46.187

	

	
0.599

	
0.578

	
0.642




	
BON

	
112.395

	
108.419

	
102.831

	

	
0.639

	
0.650

	
0.635




	
MEI

	
142.000

	
139.843

	
134.365

	

	
0.678

	
0.687

	
0.711




	
MER

	
161.440

	
158.377

	
158.585

	

	
0.688

	
0.700

	
0.728




	
MIR

	
178.555

	
175.665

	
174.733

	

	
0.724

	
0.736

	
0.771




	
RG19

	
70.821

	
69.495

	
72.853

	

	
0.737

	
0.744

	
0.709




	
RG21

	
99.387

	
85.314

	
83.437

	

	
0.582

	
0.600

	
0.579




	
Average RMSE

	
116.149

	
112.497

	
110.427

	
Average R2

	
0.664

	
0.671

	
0.682




	
GRASS

	
AUD

	
21.885

	
21.481

	
22.053

	

	
0.200

	
0.212

	
0.276




	
FPE

	
34.699

	
34.544

	
35.134

	

	
0.541

	
0.531

	
0.496




	
GCR

	
55.747

	
56.305

	
58.141

	

	
0.831

	
0.823

	
0.815




	
HB

	
11.792

	
14.484

	
17.945

	

	
0.906

	
0.853

	
0.795




	
KED

	
33.405

	
33.165

	
32.512

	

	
0.498

	
0.502

	
0.518




	
NEU

	
80.230

	
81.569

	
93.599

	

	
0.821

	
0.821

	
0.767




	
VRA

	
85.744

	
84.997

	
82.802

	

	
0.310

	
0.315

	
0.352




	
Average RMSE

	
46.215

	
46.649

	
48.884

	
Average R2

	
0.587

	
0.580

	
0.574




	
MF

	
CBS

	
65.447

	
67.410

	
78.617

	

	
0.819

	
0.813

	
0.750




	
HOF

	
55.397

	
58.873

	
70.669

	

	
0.881

	
0.862

	
0.776




	
SOR

	
62.126

	
60.641

	
78.508

	

	
0.915

	
0.909

	
0.832




	
VSA

	
56.961

	
55.160

	
62.589

	

	
0.861

	
0.862

	
0.819




	
Average RMSE

	
59.983

	
60.521

	
72.596

	
Average R2

	
0.813

	
0.805

	
0.750




	
NF

	
ACA

	
77.015

	
76.300

	
75.549

	

	
0.413

	
0.413

	
0.402




	
BD49

	
74.576

	
78.571

	
106.579

	

	
0.847

	
0.834

	
0.720




	
DH00

	
56.199

	
63.847

	
63.684

	

	
0.605

	
0.602

	
0.561




	
DH88

	
50.135

	
52.940

	
76.208

	

	
0.881

	
0.877

	
0.782




	
DON

	
87.427

	
87.770

	
84.239

	

	
0.682

	
0.680

	
0.685




	
ES

	
64.787

	
57.208

	
60.443

	

	
0.770

	
0.769

	
0.726




	
FY

	
65.602

	
61.214

	
67.128

	

	
0.844

	
0.855

	
0.770




	
HY

	
31.505

	
30.950

	
38.836

	

	
0.951

	
0.947

	
0.885




	
LOB

	
75.394

	
73.753

	
80.112

	

	
0.782

	
0.781

	
0.739




	
MIN

	
62.065

	
59.961

	
64.929

	

	
0.826

	
0.828

	
0.788




	
MNY

	
42.416

	
45.296

	
44.548

	

	
0.738

	
0.721

	
0.663




	
NCL

	
93.203

	
91.163

	
116.335

	

	
0.838

	
0.842

	
0.793




	
NR

	
38.822

	
36.581

	
43.257

	

	
0.792

	
0.805

	
0.739




	
QMB

	
26.751

	
25.044

	
29.041

	

	
0.633

	
0.673

	
0.597




	
QYZ

	
78.560

	
78.520

	
80.415

	

	
0.756

	
0.758

	
0.747




	
REN

	
77.531

	
79.238

	
79.692

	

	
0.663

	
0.657

	
0.617




	
SRO

	
81.280

	
78.843

	
77.470

	

	
0.725

	
0.719

	
0.682




	
THA

	
67.968

	
68.762

	
76.497

	

	
0.850

	
0.848

	
0.765




	
TMK

	
59.161

	
64.370

	
105.229

	

	
0.935

	
0.919

	
0.799




	
U50

	
34.898

	
30.674

	
36.441

	

	
0.633

	
0.710

	
0.606




	
WET

	
70.679

	
72.746

	
75.443

	

	
0.862

	
0.862

	
0.803




	
Average RMSE

	
62.665

	
62.560

	
70.575

	
Average R2

	
0.763

	
0.767

	
0.708




	
SHRUB

	
KEN

	
59.876

	
58.965

	
62.697

	

	
0.811

	
0.811

	
0.789




	
MIZ

	
73.406

	
73.674

	
73.614

	

	
0.840

	
0.844

	
0.831




	
OEM

	
16.690

	
19.447

	
23.973

	

	
0.818

	
0.785

	
0.713




	
SON

	
28.248

	
29.451

	
25.293

	

	
0.381

	
0.400

	
0.391




	
SRM

	
30.431

	
29.824

	
30.056

	

	
0.450

	
0.457

	
0.462




	
TRA

	
55.896

	
52.920

	
51.908

	

	
0.639

	
0.663

	
0.680




	
U89

	
23.456

	
21.613

	
27.365

	

	
0.779

	
0.781

	
0.679




	
U98

	
20.229

	
23.686

	
27.612

	

	
0.746

	
0.648

	
0.543




	
Average RMSE

	
38.529

	
38.698

	
40.315

	
Average R2

	
0.683

	
0.674

	
0.636
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Table A2. Assessment of daily GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







Table A2. Assessment of daily GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







	

	
ID

	
RMSE (g C m −2 day −1)

	

	
R2




	
TL-LUEn

	
TL-LUE

	
MOD17

	

	
TL-LUEn

	
TL-LUE

	
MOD17






	
BF

	
BEP

	
1.291

	
1.401

	
1.818

	

	
0.914

	
0.883

	
0.794




	
DHS

	
1.328

	
1.418

	
1.695

	

	
0.379

	
0.362

	
0.321




	
HA

	
1.590

	
1.646

	
2.165

	

	
0.929

	
0.909

	
0.829




	
HAF

	
1.495

	
1.650

	
2.155

	

	
0.940

	
0.923

	
0.851




	
HES

	
1.522

	
1.905

	
2.503

	

	
0.914

	
0.880

	
0.781




	
MMS

	
1.810

	
1.792

	
1.895

	

	
0.849

	
0.854

	
0.829




	
MOZ

	
1.824

	
1.782

	
2.055

	

	
0.780

	
0.770

	
0.706




	
PUE

	
1.477

	
1.624

	
1.888

	

	
0.549

	
0.524

	
0.450




	
ROC

	
2.006

	
2.045

	
2.063

	

	
0.689

	
0.670

	
0.682




	
UMBS

	
1.318

	
2.147

	
2.330

	

	
0.924

	
0.944

	
0.917




	
WCR

	
1.343

	
1.402

	
1.848

	

	
0.949

	
0.941

	
0.891




	
Average RMSE

	
1.546

	
1.710

	
2.038

	
Average R2

	
0.801

	
0.787

	
0.732




	
CROP

	
ASM

	
1.095

	
1.061

	
1.165

	

	
0.608

	
0.630

	
0.595




	
BON

	
3.166

	
2.821

	
2.793

	

	
0.727

	
0.737

	
0.696




	
MEI

	
3.054

	
2.911

	
3.076

	

	
0.852

	
0.867

	
0.845




	
MER

	
4.742

	
4.396

	
4.350

	

	
0.855

	
0.879

	
0.863




	
MIR

	
5.375

	
5.075

	
4.996

	

	
0.835

	
0.876

	
0.875




	
RG19

	
2.223

	
2.202

	
2.345

	

	
0.741

	
0.740

	
0.710




	
RG21

	
2.476

	
2.480

	
2.570

	

	
0.691

	
0.691

	
0.664




	
Average RMSE

	
3.162

	
2.992

	
3.042

	
Average R2

	
0.758

	
0.774

	
0.750




	
GRASS

	
AUD

	
0.609

	
0.611

	
0.618

	

	
0.412

	
0.435

	
0.427




	
FPE

	
1.147

	
1.093

	
1.091

	

	
0.493

	
0.507

	
0.511




	
GCR

	
2.312

	
1.493

	
1.608

	

	
0.803

	
0.806

	
0.790




	
HB

	
0.328

	
0.349

	
0.357

	

	
0.912

	
0.917

	
0.913




	
KED

	
0.949

	
0.948

	
0.958

	

	
0.574

	
0.578

	
0.560




	
NEU

	
2.785

	
2.755

	
2.860

	

	
0.740

	
0.746

	
0.733




	
VRA

	
2.907

	
2.938

	
2.991

	

	
0.025

	
0.020

	
0.013




	
Average RMSE

	
1.577

	
1.455

	
1.498

	
Average R2

	
0.566

	
0.573

	
0.564




	
MF

	
CBS

	
1.550

	
1.603

	
1.868

	

	
0.899

	
0.893

	
0.842




	
HOF

	
1.039

	
1.123

	
1.661

	

	
0.932

	
0.922

	
0.840




	
SOR

	
1.386

	
1.361

	
2.024

	

	
0.951

	
0.948

	
0.887




	
VSA

	
1.606

	
1.542

	
1.966

	

	
0.853

	
0.862

	
0.811




	
Average RMSE

	
1.395

	
1.407

	
1.880

	
Average R2

	
0.909

	
0.906

	
0.845




	
NF

	
ACA

	
1.417

	
1.406

	
1.473

	

	
0.338

	
0.337

	
0.319




	
BD49

	
1.567

	
1.714

	
2.756

	

	
0.922

	
0.908

	
0.755




	
DH00

	
1.495

	
1.483

	
1.619

	

	
0.805

	
0.809

	
0.746




	
DH88

	
1.357

	
1.518

	
2.270

	

	
0.908

	
0.912

	
0.780




	
DON

	
2.057

	
2.032

	
2.073

	

	
0.287

	
0.279

	
0.318




	
ES

	
1.358

	
1.416

	
1.712

	

	
0.440

	
0.432

	
0.397




	
FY

	
1.747

	
1.703

	
2.062

	

	
0.877

	
0.874

	
0.795




	
HY

	
0.851

	
0.849

	
1.111

	

	
0.955

	
0.955

	
0.915




	
LOB

	
1.849

	
1.824

	
2.175

	

	
0.876

	
0.878

	
0.839




	
MIN

	
2.284

	
2.294

	
2.407

	

	
0.726

	
0.726

	
0.716




	
MNY

	
1.191

	
1.096

	
1.155

	

	
0.800

	
0.796

	
0.742




	
NCL

	
1.826

	
1.917

	
2.612

	

	
0.862

	
0.858

	
0.801




	
NR

	
1.030

	
1.053

	
1.194

	

	
0.796

	
0.799

	
0.751




	
QMB

	
0.618

	
0.638

	
0.727

	

	
0.789

	
0.779

	
0.726




	
QYZ

	
1.217

	
1.260

	
1.530

	

	
0.903

	
0.909

	
0.863




	
REN

	
1.906

	
1.871

	
2.016

	

	
0.779

	
0.778

	
0.751




	
SRO

	
2.68

	
2.213

	
2.425

	

	
0.424

	
0.437

	
0.416




	
THA

	
1.878

	
1.864

	
2.305

	

	
0.847

	
0.847

	
0.752




	
TMK

	
1.368

	
1.422

	
2.266

	

	
0.965

	
0.962

	
0.884




	
U50

	
0.771

	
0.817

	
0.965

	

	
0.819

	
0.808

	
0.738




	
WET

	
2.288

	
2.276

	
2.645

	

	
0.818

	
0.818

	
0.773




	
Average RMSE

	
1.560

	
1.556

	
1.881

	
Average R2

	
0.759

	
0.757

	
0.704




	
SHRUB

	
KEN

	
1.070

	
1.073

	
1.398

	

	
0.641

	
0.641

	
0.559




	
MIZ

	
2.377

	
2.345

	
2.536

	

	
0.401

	
0.410

	
0.451




	
OEM

	
0.590

	
0.459

	
0.520

	

	
0.866

	
0.899

	
0.847




	
SON

	
0.896

	
0.746

	
0.696

	

	
0.383

	
0.340

	
0.348




	
SRM

	
0.730

	
0.730

	
0.748

	

	
0.661

	
0.657

	
0.628




	
TRA

	
1.252

	
1.211

	
1.325

	

	
0.730

	
0.716

	
0.658




	
U89

	
0.466

	
0.559

	
0.727

	

	
0.909

	
0.889

	
0.810




	
U98

	
0.578

	
0.662

	
0.777

	

	
0.804

	
0.755

	
0.665




	
Average RMSE

	
0.995

	
0.973

	
1.091

	
Average R2

	
0.674

	
0.663

	
0.621
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Table A3. Assessment of 8-day GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







Table A3. Assessment of 8-day GPP simulated using TL-LUEn, TL-LUE and MOD17 for the 58 evaluation site-years.







	
Vegetation

Type

	
ID

	
RMSE(g C m −2 (8days) −1)

	

	
R2




	
TL-LUEn

	
TL-LUE

	
MOD17

	
TL-LUEn

	
TL-LUE

	
MOD17






	
BF

	
BEP

	
8.797

	
9.867

	
11.087

	

	
0.940

	
0.908

	
0.875




	
DHS

	
8.040

	
8.081

	
9.379

	
0.489

	
0.483

	
0.454




	
HA

	
11.839

	
12.680

	
15.534

	
0.948

	
0.919

	
0.893




	
HAF

	
10.318

	
11.533

	
13.496

	
0.952

	
0.939

	
0.905




	
HES

	
11.323

	
13.312

	
17.844

	
0.940

	
0.913

	
0.858




	
MMS

	
12.139

	
13.032

	
12.506

	
0.878

	
0.862

	
0.873




	
MOZ

	
10.735

	
12.913

	
13.328

	
0.859

	
0.799

	
0.788




	
PUE

	
10.386

	
11.343

	
13.264

	
0.564

	
0.518

	
0.443




	
ROC

	
14.711

	
14.755

	
14.760

	
0.731

	
0.727

	
0.738




	
UMBS

	
14.479

	
16.448

	
16.701

	
0.966

	
0.956

	
0.960




	
WCR

	
9.311

	
10.438

	
9.748

	
0.961

	
0.952

	
0.956




	
Average RMSE

	
11.098

	
12.218

	
13.422

	
Average R2

	
0.839

	
0.816

	
0.795




	
CROP

	
ASM

	
9.940

	
7.639

	
8.004

	

	
0.646

	
0.668

	
0.658




	
BON

	
22.047

	
21.025

	
20.760

	
0.760

	
0.753

	
0.722




	
MEI

	
21.868

	
22.272

	
23.100

	
0.883

	
0.878

	
0.868




	
MER

	
36.640

	
34.434

	
33.774

	
0.889

	
0.888

	
0.883




	
MIR

	
41.373

	
39.191

	
38.325

	
0.870

	
0.886

	
0.897




	
RG19

	
14.858

	
15.987

	
16.825

	
0.797

	
0.776

	
0.738




	
RG21

	
18.381

	
18.880

	
19.199

	
0.718

	
0.708

	
0.694




	
Average RMSE

	
23.587

	
22.775

	
22.855

	
Average R2

	
0.795

	
0.794

	
0.780




	
GRASS

	
AUD

	
4.462

	
4.377

	
4.424

	

	
0.505

	
0.531

	
0.520




	
FPE

	
8.178

	
7.494

	
7.389

	
0.565

	
0.601

	
0.614




	
GCR

	
12.983

	
10.570

	
11.432

	
0.841

	
0.84

	
0.832




	
HB

	
1.467

	
1.825

	
1.632

	
0.977

	
0.963

	
0.973




	
KED

	
7.285

	
6.912

	
6.773

	
0.620

	
0.670

	
0.656




	
NEU

	
20.615

	
20.126

	
20.91

	
0.776

	
0.779

	
0.769




	
VRA

	
22.565

	
22.917

	
23.431

	
0.032

	
0.020

	
0.010




	
Average RMSE

	
11.079

	
10.603

	
10.856

	
Average R2

	
0.617

	
0.629

	
0.625




	
MF

	
CBS

	
9.285

	
10.630

	
11.117

	

	
0.944

	
0.936

	
0.918




	
HOF

	
6.798

	
6.388

	
7.703

	
0.96

	
0.955

	
0.935




	
SOR

	
11.469

	
9.027

	
12.070

	
0.959

	
0.960

	
0.938




	
VSA

	
10.844

	
9.517

	
12.613

	
0.929

	
0.933

	
0.906




	
Average RMSE

	
9.599

	
8.891

	
10.876

	
Average R2

	
0.948

	
0.946

	
0.924




	
NF

	
ACA

	
9.207

	
9.107

	
9.201

	

	
0.349

	
0.382

	
0.380




	
BD49

	
10.080

	
10.342

	
13.791

	
0.943

	
0.952

	
0.904




	
DH00

	
10.258

	
10.962

	
10.835

	
0.846

	
0.850

	
0.841




	
DH88

	
9.043

	
10.307

	
14.822

	
0.943

	
0.949

	
0.880




	
DON

	
14.970

	
14.370

	
14.779

	
0.217

	
0.213

	
0.215




	
ES

	
11.749

	
10.039

	
12.075

	
0.490

	
0.467

	
0.437




	
FY

	
13.414

	
13.072

	
14.767

	
0.889

	
0.888

	
0.829




	
HY

	
5.923

	
5.976

	
6.865

	
0.971

	
0.964

	
0.951




	
LOB

	
15.885

	
13.218

	
14.689

	
0.943

	
0.940

	
0.926




	
MIN

	
17.790

	
17.128

	
17.869

	
0.832

	
0.830

	
0.829




	
MNY

	
7.965

	
7.875

	
8.036

	
0.870

	
0.857

	
0.808




	
NCL

	
10.917

	
13.249

	
17.512

	
0.872

	
0.857

	
0.808




	
NR

	
6.918

	
7.253

	
7.520

	
0.853

	
0.851

	
0.852




	
QMB

	
8.092

	
7.034

	
7.159

	
0.589

	
0.586

	
0.577




	
QYZ

	
8.782

	
8.131

	
9.146

	
0.951

	
0.953

	
0.939




	
REN

	
14.123

	
13.660

	
13.975

	
0.862

	
0.863

	
0.862




	
SRO

	
20.316

	
15.779

	
18.341

	
0.466

	
0.478

	
0.433




	
THA

	
14.245

	
13.288

	
14.906

	
0.899

	
0.896

	
0.872




	
TMK
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Average RMSE

	
11.639

	
11.141

	
12.609
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Average R2
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