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Abstract: The Andes foothills of central Chile are characterized by high levels of floristic 

diversity in a scenario, which offers little protection by public protected areas. Knowledge 

of the spatial distribution of this diversity must be gained in order to aid in conservation 

management. Heterogeneous environmental conditions involve an important number of 

niches closely related to species richness. Remote sensing information derived from satellite 

hyperspectral and airborne Light Detection and Ranging (LiDAR) data can be used as 

proxies to generate a spatial prediction of vascular plant richness. This study aimed to 

estimate the spatial distribution of plant species richness using remote sensing in the Andes 

foothills of the Maule Region, Chile. This region has a secondary deciduous forest 

dominated by Nothofagus obliqua mixed with sclerophyll species. Floristic measurements 

were performed using a nested plot design with 60 plots of 225 m2 each. Multiple predictors 

were evaluated: 30 topographical and vegetation structure indexes from LiDAR data, and 32 

spectral indexes and band transformations from the EO1-Hyperion sensor. A random forest 

algorithm was used to identify relevant variables in richness prediction, and these variables 

were used in turn to obtain a final multiple linear regression predictive model (Adjusted  

R2 = 0.651; RSE = 3.69). An independent validation survey was performed with significant 

results (Adjusted R2 = 0.571, RMSE = 5.05). Selected variables were statistically significant: 
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catchment slope, altitude, standard deviation of slope, average slope, Multiresolution Ridge 

Top Flatness index (MrRTF) and Digital Crown Height Model (DCM). The information 

provided by LiDAR delivered the best predictors, whereas hyperspectral data were discarded 

due to their low predictive power. 

Keywords: flora; richness; EO-1 Hyperion; airborne LiDAR; prediction; Andes foothills 

 

1. Introduction 

Biodiversity is an essential element from which all human populations benefit directly or  

indirectly [1]. The current and future state of biodiversity has acquired greater scientific and political 

relevance due to increasing knowledge of the adverse effects that its decrease may have on the ecosystem 

and the advantages this holds for the wellbeing of humankind [2–4]. 

The Andes foothills in central Chile are in one of the world’s biodiversity hotspots [5]. They have a 

high rate of floristic diversity and endemism [6], particularly in the transition zone between the Valdivian 

temperate rain forest and the sclerophyll forest in the Maule region [7,8], yet the region currently has 

very little area protected in the Chilean National System of Protected Wild Areas (SNASPE) or in other 

public protected areas such as nature sanctuaries, forest reserves or national parks, which currently 

comprise only 2% of the region’s total surface area [6]. Nevertheless, these ecosystems are extremely 

vulnerable, since they are subject to a sustained increase in anthropogenic pressure mainly related to the 

change in land use for agriculture and livestock and the illegal extraction of wood products from native 

forests [9–11]. Additionally, this area is prone to the effects being produced by climate change, with a 

significant decrease in rainfall and increase in air temperature [11–13]. The conservation of biodiversity 

must be a priority [9,14,15]. Therefore, rapid and objective methods must be developed to assess and 

predict biodiversity spatially [16]; observation by remote sensing plays a fundamental role here in light 

of its capacity to extrapolate point information about biodiversity collected in situ to different spatial and 

temporal scales [17]. 

Theoretical and empirical studies suggest that the biodiversity of a particular site is strongly 

influenced by and positively correlated with its environmental heterogeneity [18,19]. More complex 

environments can host a greater number of ecological niches, which, in turn, can be colonized and 

inhabited by a greater number of species [20–22]. Different remote sensors make it possible to capture 

spatial heterogeneity mainly from two perspectives: spatial heterogeneity (horizontal variability) and 

topographical-structural heterogeneity (vertical variability) [20]. 

On the one hand, a number of studies have associated the biodiversity of different sites with the 

information obtained by passive remote sensors [23–27], correlating biological diversity directly with 

spectral reflectance values [28], with different spectral vegetation indexes [19,25,29–31], and different 

types of feature extraction like principal components analysis (PCA) [32] or minimum noise fraction 

(MNF) [26]. Taking this into account, it is expected that hyperspectral sensors, which have great ability 

to detect characteristics associated with the biochemical, physiological, and structural spectral variability 

of the vegetation in the electromagnetic spectrum, will provide valuable information for the evaluation 

of biodiversity [33,34]. 
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On the other hand, some studies have used topographical information, microreliefs and their spatial 

variability [35,36], along with the vertical structure of natural sites (understood as the configuration and 

variability of all the aboveground vegetation [20]) to estimate environmental heterogeneity, which is 

related to biodiversity. Topographical and structural information that an active LiDAR (Light Detection 

and Ranging) sensor is capable of capturing can be used to provide efficacious variables in studies on 

different ecosystems [37], especially forests with high vertical complexity [20]. It shows great potential 

for biodiversity characterization [26]. Within this context, combining LiDAR and hyperspectral data can 

be useful as they are related to different non-correlated proxies of plant biodiversity [38].   

The concept of biodiversity involves many components (i.e., richness, relative abundance, 

composition, spatial distribution, functional ranges, different types like alpha, beta, and gamma diversity, 

etc.) associated with different taxonomic groups (plants, fungi, mammals, birds, reptiles, etc.), thereby 

rendering these systems complex and expensive to evaluate [4]. Maps of alpha diversity (i.e., species 

richness: the number of species associated with a known area) [39] generated using predictive models have 

proven to be a relevant tool for determining the biodiversity of a given area, for assisting decision-makers 

at different levels [12], and for establishing spatially explicit conservation strategies for biodiversity [17]. 

There are few studies of species richness and diversity of topographically complex areas and even 

fewer of woody ecosystems with horizontal and vertical complexity such as those of the Andes foothills 

of central Chile. Therefore, the objective of this study was to predict and spatialize the vascular plant 

richness (alpha diversity) present in a secondary mixed deciduous forest of the Andes foothills in the 

Maule region, Chile. The prediction was performed by using and comparing variables derived from 

hyperspectral information from the Hyperion sensor and topographical and structural variables obtained 

from airborne LiDAR data. Ecological implications of the selected variables and the meaning of the 

spatial patterns obtained with the predictive models were also discussed. 

2. Results and Discussion 

2.1. Final Predictive Model 

The exploratory step was performed with the RF classifier to select 12 major predictors (Figure 1). 

At this point, most of the selected predictors were provided by the LiDAR information, omitting the 

hyperspectral information except for the Normalized Difference Vegetation Index (ND705) (Figure 2). 

The 11 LiDAR selected predictors were nine topographical variables: mean altitude (DTM10), standard 

deviation of altitude (SDAl30), mean slope (MSl30), median catchment slope (MCS60m), mean 

catchment slope (MCS60), MrRTF (multiresolution index of the ridge top flatness) (MRT10), standard 

deviation of slope (SDS15), and two structural predictors: mean digital crown model (DCM15), median 

digital crown model (DCM90). The selected predictors were strongly associated with the results of 

Corvalan et al. [40], where altitude and the landform indexes were used as variables to explain the 

presence, abundance, and associativity of several tree species in the same area. 

Y ෢= 19.4 – 0.01·MAl30 – 0.19·MSl30 + 3.65·MRT10 + 

1.25·SDS15	+	42.49·MCS60 – 0.38·DCM90
(1) 
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Figure 1. Data processing flow chart to obtain the predictive model of plant richness. 

The 12 predictors defined by the exploratory approach were used in a best subset regression approach 

to define the optimal number of predictors with the highest adjustment. The analysis indicated eight 

variables to obtain the maximum adjusted R2 (Figure 2a,b), but after including all of these variables in a 

multiple linear regression, some of the assumptions were not met. We excluded those predictors that 

affected the statistical assumptions to avoid affecting the predictive power of the model. Six variables 

were ultimately obtained: MAl30, SDS15, MCS60, MSl30, MRT10, and DCM90 as described in 

Equation (1). Thus, only LiDAR information was considered with one structural and five topographical 

predictors. These results can be explained by the fact that different spatial resolutions were considered, 

including airborne and spaceborne data. Camathias et al. [41] established that an increase in the spatial 

resolution of remote sensing can improve the accuracy of models to obtain richness prediction. 
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Figure 2. (a) Table of models showing which variables are in each model. The models are 

ordered by the adjusted R2. MAl30: mean altitude (30 m); SDAl30: standard deviation of 

altitude (30 m); MSl30: mean slope (30 m); MCS10: mean catchment slope (10 m); MRT10: 

MrRTF (10 m); ND705: NDVI (30 m); DCM15 digital crown model (15 m); DCM90: 

median digital crown model (90 m); SDS15: standard deviation of the slope  

(15 m); MCS60: mean catchment slope (60 m); MMCS60: median catchment slope (60 m). 

Note that the axis is not quantitative but ordered. The darkness of the shading simply 

represents the ordering of the adjusted R2 values (b) Plot of the number of predictors that 

maximize the adjusted R2.  

The final model had a residual mean standard error (RMSE) of 3.69 species, with 53 degrees of 

freedom and an adjusted determination coefficient (R2) of 0.651 (Figure 3a). There was a slight tendency 

to overestimate in areas with low richness and to underestimate slightly in zones with high richness. The 

validation set provided similar results but with lower, significant accuracy (Figure 3b), and demonstrated 

the robustness of the present approach. These results are similar to those obtained by Carlson et al. [23], 

which were evaluated for an insular tropical forest using only hyperspectral information, and to those of 

Hernández–Stefanoni et al. [42], also for a tropical forest using only multispectral information. Other 

studies obtained better biodiversity predictions (R2 > 0.73) under tropical conditions by considering the 

Shannon index as a dependent variable [43,44]. Under Mediterranean conditions, similar predictions to 

those obtained in our study were obtained by Simonson et al. [45] and Bacaro et al. [46] by using the 

Shannon index and richness, respectively. In another context, Camathias et al. [41] obtained lower 

richness prediction accuracies (R2 = 0.53) for the whole of Switzerland, which is mainly composed of 

alpine ecosystems (60%). These examples show the predictive differences of these models depending 

on the ecosystem type. In this sense, Camathias et al. [41] also mentioned that the importance of a 

remotely sensed variable is strongly dependent on the biogeographic context, which highlights the need 

to perform studies of poorly investigated ecosystems such as complex Mediterranean areas. 
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Figure 3. (a) Statistics of the estimated richness vs. predicted richness obtained in the model 

construction (60 clusters); (b) Statistics of the estimated richness vs. predicted richness 

obtained in the independent validation set (20 clusters). 

Table 1. Evaluation of the assumptions of the multiple linear regression and validation 

regression analysis. *: Assumptions acceptable (p-value > 0.05); €: Assumptions acceptable 

(√VIF < 2); ¥: Assumptions acceptable (p-value < 0.05); §: Closest Cluster to be outlier; 

MCS60: Mean Catchment Slope (60 m); DCM90: Median Digital Crown Model (90 m); 

MRT10: MrRTF (10 m); SDS15: Standard Deviation of the slope (15 m); MAl30: Mean 

Altitude (30 m); MSl30: Mean Slope (30 m). Spatial autocorrelation was evaluated over 

residuals with the Moran test.  

Linear Model Assumptions Value p-value     

Global Stat 4.242 0.3742 *     

Skewness 3.389 0.0657 *     

Kurtosis 0.001 0.9728 *     

Nonlinear link function 0.635 0.4257 *     

Heteroscedasticity 0.218 0.6407 *     

Outlier Evaluation Cluster p-value Bonfer. p    

Bonferroni test 25 § 0.0068 ¥ 0.4091    

Residuals Normality W p-value     

Shapiro–Wilk normality test 0.9698 0.1435 *     

Co-linearity Evaluation MCS60 DCM90 MRT10 SDS15 MAl30 MSl30 

Variance Inflex Factors (VIF) 2.935 € 1.302 € 1.394 € 1.426 € 1.306 € 2.69 € 

Validation regression analysis Adj R2 p-value RMSE    

 0.5714 6 × 10−5  ¥ 5.057    

Autocorrelation Test Index Expect. z-score p-value pattern  

Global Moran’s I −0.0851 −0.0169 −08067 0.4197 * random  

Correlations between the final predictors are worthy of note for being relatively low (R < 0.5) among 

all variables included in the predictive model except for the slope variables MS130 and MCS60, which 

were R = 0.78. These correlation results indicate a low repetition or redundancy of information among 
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variables, which was ratified by the co-linearity analysis of the Variance Inflex Factor (VIF) summarized 

in Table 1. This table also validates the set of assumptions that corroborate the robustness of the proposed 

multiple regression model. The robust parametric assumption test provided by the model (Table 1) 

indicates that the inclusion of other, more complex methods such as the generalized linear mixed models 

(GLMM) or non-parametric approaches such as the RF regression or the generalized additive models 

(GAM) were not necessary. 

2.2. Ecological Implications 

In a broad sense, the selected predictors represent the environmental variability in Monte Oscuro, 

ratifying a positive correlation between environmental heterogeneity and species richness, which has 

also been found in other studies [16,18,20,35]. The variables derived from LiDAR information were the 

best estimators of plant diversity (Figure 4), supporting the notion that greater variability in different 

biotic and abiotic conditions and the larger number of niches these may provide are important factors in 

the estimation of diversity [46]. Using high spatial resolution LiDAR data, Dufour et al. [18] determined 

that the heterogeneity they captured affected plant richness patterns on a local scale. This methodological 

consideration may be relevant if we consider that the forest of Monte Oscuro had a sensitive variation 

in spatial dynamics, which was favored by the LiDAR pixel with the best resolution. Altitude (MA130) 

had the greatest relative importance among the variables (Figure 4). The range of elevation in the study 

was about 700 m, which generates an important gradient of temperature conditions that is a key factor 

in mountain ecosystems determining different vegetation zones [8]. The same variable proved to be 

heavily discriminatory in characterizing several tree species in the same area [40]. The importance of 

this variable is consistent with the results of several studies [19,41,47], where altitude (at different 

resolutions) is always among the selected variables in predictive models, particularly on the regional 

scale [46]. Other predictors with significant relative importance were those related to the slope (SDS15 

and MS130), an important source of environmental variation for Monte Oscuro, as has been reported for 

other ecosystems [19,20,37]. Predictors directly derived from this variable have been reported as second 

in importance on the local [46] and regional scale [19] for different ecosystems. With respect to the 

landform indexes, the MCS60 and MRT10 were also relevant; these are directly related to 

geomorphology and, thus, to accumulation processes linked to soil formation [48]. These variables 

appear to be indicating environmental variability related to edaphic conditions, which has been reported 

in a community composition study [49]. Indeed, these variables may have a direct relation to soil particle 

size. Therefore, water availability to root systems and, particularly, soil moisture has been shown to be 

one of the most important structuring factors for vegetation communities at the local spatial scale [50,51]. 

The distribution of nutrients could also be affected by the topographical conditions. Indeed, given the 

greater homogeneity of chemical, physical and biological plant growth factors, a smooth terrain profile 

should provide fewer niches than a steeper (and presumably uneven) profile, and thus have lower species 

richness as well [52]. MCS60 represents an integrated slope averaging a bigger area and is, therefore, an 

indicator of the landscape variability on a larger scale [49]. In this way, the landforms have already been 

highlighted as relevant indicators able to explain the spatial pattern of species distribution [53].  
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Figure 4. Relative importance of the variables of the model of vascular plant richness based 

on the percentage of the representation of R2 obtained by the LMG method [54] 

The digital crown height model (DCM90), which represents the only forest structural variable,  

was also of considerable relative importance in the predictive model, which was also found by  

Dufour et al. [18], Bässler et al. [47], and Féret & Asner [43]. In this sense, the structural heterogeneity 

could be one of the main drivers of variation in species richness due to the patterns formed in the  

gap-to-understory environments [18]. This kind of variable has also been used as an indicator of the 

vertical structure of vegetation for biodiversity studies related to other taxonomic groups such as 

mammals, reptiles, and insects [55].  

The forest ecosystems of the Andes foothills of central Chile have a particular vertical and horizontal 

complexity in addition to their location in a topographically complex area, which limits studies related 

to remote sensing and biodiversity. The total species richness recorded in the 80 sample plots was 126 

species; this demonstrates the important diversity of this area, as also indicated by other authors [6]. 

Studies that have successfully estimated diversity have mostly concentrated on relatively flat  

areas [16,25,44,56]. Some studies have focused on altitudinal range similar to Monte Oscuro but none 

of them on the same local scale [19,47]. Over complex terrain areas, the inclusion of high-resolution 

topographical and structural variables derived from a LiDAR point cloud may represent a relevant 

contribution to the estimation of diversity, as demonstrated in several studies [20,41,46,47] including 

this one. Because of the singular conditions of the complex native forest of the Andes foothills of central 

Chile, it is expected that more robust results will be obtained by modeling plant diversity using the 

differentiation of different plant strata (tree, shrub, and herb canopies separately), due to the high 

capacity of LiDAR to capture the variability of these strata, as shown in other studies [26,57]. 

The Monte Oscuro site has considerable heterogeneity in topography and geomorphology, which was 

recorded as an important variation in the magnitudes of the topographical and geomorphological 

variables estimated. The study zone was relatively homogeneous in terms of the radiation received; 

climatic and lighting variables such as total insolation were also discarded during the exploratory 

analysis. The main reason could be that the site is mostly a southern exposure, indicating a homogeneous 

and similar condition in terms of the radiation received. In studies on the local scale, the variation in 
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climatic and lighting conditions seems less important to explain the biodiversity prediction than when 

regional scales were considered [19,41,46]. 

With respect to the hyperspectral information, even if one of the spectral predictors was selected in the 

final subset of 12 variables, a possible explanation for the low predictive power of the hyperspectral-derived 

predictors could be the local scale of the study area and the spatial resolution of the spaceborne sensor. 

The results of this research did not allow us to confirm the spectral variation hypothesis on a local scale, 

even though Oldeland et al. [56] suggested that the use of hyperspectral information should improve 

monitoring of species diversity. In this light, recent studies [43,44] have proven that the hyperspectral 

information from airborne sensors can significantly enhance the predictive power of models not only 

because of the spectral information but also because of the improvement provided by the spatial 

resolution [24,26,41,58,59]. Another relevant source of information could be an analysis of seasonal and 

annual variability that can provide an additional element in estimating biodiversity [24], particularly in 

deciduous forests like Monte Oscuro. Another possible way to improve the hyperspectral contribution 

could be a more refined methodology to optimize the information contained in the hyperspectral image; 

this might have contributed better to managing the complexity of the multidimensional structure which 

hyperspectral data possess [33]. The recommendation of Ginzburg & Jensen [60] and Rocchini et al. [16] 

to incorporate more elaborate methods to explain the complexity that characterizes plant diversity explains, 

to a certain degree, why no hyperspectral variables were in the final predictive model. Kalacska et al. [25] 

obtained a significant prediction of diversity using images from the same Hyperion sensor but utilizing a 

more complex methodology than the one used in this study (Wavelet transformation with temporal-seasonal 

analysis) and in a dry tropical forest ecosystem. Parviainen et al. [19], using GAMs, improved the 

explanatory power of remote sensing variables in assessing biodiversity and species distribution. 

2.3. Spatial Prediction  

The spatial prediction of vascular plant richness was depicted as a richness map estimated by applying 

the coefficients to the variables of the final predictive model (Figure 5). 

The highest richness levels were associated with the lowest part of the study area and sections close 

to the main water courses (Figure 5). Different studies have stated that the spatial distribution of 

biodiversity is clearly affected by altitude variation, with a negative correlation with richness in different 

ecosystems [61,62]. The important variability in richness recorded on the plots is also clearly depicted 

on the map; this varied from 4 to 49 species and is clearly reflected in the colors of the richness map. 

The main variables selected in the predictive model are associated with elevation as well as with the 

topographical and geomorphological features of the area, along with the digital crown model that 

represents crown height. Most of these characteristics represent conditions of environmental variability 

on a local scale. Comparable results have been reported for regional scales [24,36], showing a variable 

relative importance depending upon the scale [18]. According to Kolasa & Rollo [63], heterogeneity 

may be mostly explained by three components: (i) the environmental variability or range in which the 

different environmental conditions of the site are variable (number of habitat types); (ii) the spatial 

configuration of the different habitats of the site; and (iii) by the historical variation over time. Monte 

Oscuro appears to have a large number of niches according to the variation in richness recorded on the 

plots (Figure 5), whereas its spatial configuration was clearly influenced by environmental conditions 
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linked to the above-mentioned environmental conditions. Greater richness values were associated with 

lower zones with favorable micro-meteorological conditions mostly related to higher temperatures, 

along with a theoretically adequate water supply with micro-topographical conditions of heterogeneity 

that can provide different conditions for plant establishment. This area has at least five months of the 

year without precipitation, which produces a water deficit sufficient to affect the plant composition of 

the forest. It should also be remembered that this precise area is located in a transitional vegetation zone 

where sclerophyll forest coexists with the Valdivian forest evergreen species in a matrix of Nothofagus 

obliqua [8], which significantly increases the richness. Finally, it should be noted that Monte Oscuro is 

a secondary forest. Although there is currently little or no intervention, in the past, the intervention was 

enough to influence forest structure, affecting the current richness.  

 

Figure 5. Spatialization of the predictive model of plant vascular richness. White circles 

depicted the richness value of the sampling plot used for the model construction. Red circles 

depicted the richness values of the sampling plots used for validation purposes. 

Lastly, it is also notable that resampling the predictor variables at differing spatial resolutions that 

more adequately reflect the field situation improved the prediction. The selection and concern of the 

spatial resolution have relevant implications in ecological studies [49] and within the taxonomical groups 

considered [55]. The consideration of different grain size of the selected predictors has been used mainly 

in studies on regional and continental scales [56,64–66]. Some of the predictors included in the final 

model, such as the DCM90 or the MCS60, were aggregated at a coarser resolution from the original 

data. Similar resampling techniques provided better representativity of the environmental heterogeneity 
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because the spatial grain of predictors strongly affects the ecosystem structural properties related to 

remote sensing, and this partially determines certain patterns of species clustering in communities [49]. 

3. Experimental Section  

3.1. Study Area 

The study area is located at the Andes foothills of central Chile in the Maule region, province and 

commune of Curicó at the Monte Oscuro site (35°07ʹ00ʺ S, 70°55ʹ30ʺ W) (Figure 6a). This sector is 

associated with the sub-Mediterranean temperate bioclimatic zone, with a mean annual precipitation of 

1000 mm concentrated between April and October, and mean temperatures ranging from 8 °C in the 

coldest months (June to August) to 18 °C in the warmest months (December to February). The site has 

an area of 12.95 km2 and a surface area of 14.50 km2, with a mean altitude of 1075 m.a.s.l. (varying from 

650 to 1500 m.a.s.l.) and mostly southern exposure, presenting a very complex and heterogeneous 

topography with high microsite variations. The vegetation is a secondary deciduous forest dominated by 

Nothofagus obliqua (Mirb.) Oerst. mixed with the sclerophyll species Quillaja saponaria Mol., 

Cryptocarya alba (Molina) Looser, Lithraea caustica (Molina) Hook et Arn., and the Valdivian forest 

evergreen species Myrceugenia exsucca (DC.) Berg and Podocarpus saligna D. Don, which according 

to Luebert & Pliscoff [8], corresponds to the “Deciduous Mediterranean Andean forest of Nothofagus 

obliqua and Austrocedrus chilensis.” In the study area, this formation presents a very dense and tangled 

understory, with multiple layers (three or more) between the ground and the upper canopy mainly 

dominated by Nothofagus obliqua. 

 

Figure 6. (a) Location of the study area; (b) Spatial distribution of field samples (model 

clusters in black and validation clusters in red); (c) Detail of a sampling unit with  

nested plots. 
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3.2. Field Data  

This study used vascular plant richness as the only variable to be predicted, as a surrogate of total 

biodiversity. This taxonomic group was chosen due to its clear dominance in the forests of the study area 

and because it is essential in the trophic network of almost all other land animals and plants [5]. The 

model construction sampling was performed between 7 and 11 January 2013 (20 plots) and between 14 

and 22 March 2013 (40 plots). In these ecosystems, most of the flora is present during the whole summer 

period, particularly the vascular plant richness. In terms of annual vegetation, even if some of this was 

not present in its active state during March, we were careful to identify the remaining dry parts of leaves, 

fruit, and flowers. A systematic sampling design of 60 square nested plots [28,67] separated by 200 m 

was considered. Each sampling point was determined randomly inside the 200 m grid design by 

discarding those plots with slopes greater than 45° and with strong accessibility problems due mainly to 

tangled vegetation (Figure 6b). 

Sampling plots were constructed to capture floristic information from three types of plant cover: trees, 

shrubs, and herbs. We established six nested subplots on each plot, the largest of which was  

225 m2 (15 m × 15 m), with its vertices in the four cardinal points of north, south, east and west. In the 

largest plots, we identified the species of all woody individuals taller than 2 m (defined as trees). Two 

subplots of 25 m2 (5 m × 5 m) were located in the northern and southern corners of the 225 m2 plot, in 

which we identified the species of all woody individuals under 2 m (defined as shrubs). Within each  

25 m2 subplot, we established sub-subplots of 1 m2, in the northern corner of the northern subplot and 

the southern corner of the southern subplot. We also included a third 1 m2 sub-subplot in the center of 

the 225 m2 plot, equidistant between the other two (Figure 6c). In each of the three 1 m2 plots, we 

identified the species of all non-woody individuals (defined as herbs). The information from the 1 m2 

and 25 m2 plots was expanded linearly to their respective 225 m2 plots, thereby obtaining the total richness 

of vascular species for each group (conglomerate) of plots [40]. The establishment of the field sampling 

area was made based on a visual inspection of a larger area, making sure that the selected area was 

representative of the variability present within the Hyperion pixel. If this is not met, the center of the plot 

was moved until the 225 m2 sampling area covered a representative area of the 900 m2 Hyperion pixel.  

Using the same sampling methodology, a validation floristic survey was performed between 20 and 

27 January 2014 (20 plots) with 20 independent sampling points (Figure 6b). 

3.3. Remote Sensing Data  

3.3.1. Hyperspectral Information 

The hyperspectral variables were derived from a Hyperion dataset at processing level L1R from the 

EO-1 satellite, acquired on 25 February 2011 (ID: EO1H2330842011056110KF), which had a swath 

width of 7.5 km, a spatial resolution of 30 m and a spectral resolution of 242 bands with a 10 nm spectral 

width, which ranged from a 400 to a 2500 nm wavelength [68]. 
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Table 2. Summary of predictor variables (hyperspectral and Light Detection and Ranging 

(LiDAR)) used to generate the predictive model of richness. 

Predictors Type Name Reference 

Hyperion 

Hyperspectral  

Image 

155 reflectance bands 

Vegetation Index  

(non–photosynthetic vegetation) 

Cellulose absorption index (CAI) [75] 

Plant Senescence Reflectance Index (PSRI) [76] 

Vegetation Index (live vegetation, 

vigor, greenness) 

Enhanced vegetation index (EVI) [77] 

Modified red edge Simple Ratio Index (mSR705 ) [78] 

Canopy Single Ratio (SRcanopy) [79] 

Single Ratio (SR705) [79] 

Simple Ratio Vogelmann index (SRv) [80] 

Modified Normalized Difference Vegetation Index (mND705) [79] 

Canopy Normalized Difference Vegetation Index (NDcanopy) [79] 

Normalized Difference Vegetation Index (ND705) [79] 

Modified Single Ratio (MSR) [81] 

Ratio TCARI/OSAVI [82] 

Vegetation Index (canopy  

structural water) 

Moisture Stress Index (MSI ) [83] 

Normalized Difference Infrared Index (NDII) [84] 

Normalized Difference Water Index (NDWI ) [85] 

Water Band Index (WBI) [86]  

Water Index (WI1180 ) [87] 

Vegetation Index  

(photosynthetic activity) 

Photochemical Reflectance Index (PRI) [88] 

Total Chlorophyll Concentration [89]  

Transform (Processing of 

dimensionality reduction) 

Forward Principal component analysis (PCA) (first 6 components) [73] 

Minimun Noise Fraction (MNF) (first 7 components) [74] 

Light Detection and 

Ranging (LiDAR) 3D 

Point Cloud and 

derived Digital 

Terrain Model (DTM) 

DTM10  Altitude  – 

First topographic  

derived (from DTM) 

Slope [90] 

Aspect [90] 

Curvature [90] 

Plan Curvature [90] 

Profile Curvature [90] 

Landform variable  

(Hydrology from DTM) 

Catchment Area [91] 

Catchment Height [91] 

Catchment Slope [91] 

Flow Path Length [92] 

Valley Depth [93] 

Landform variable  

(Topo–hydrology from DTM) 

SAGA Wetness Index [94]  

Slope Length [93] 

Stream Power Index [95] 

Topographic Wetness Index (TWI) [96] 

TCI Low [97] 

LS–Factor [96] 

Landform variable  

(Topo–morphometry from DTM) 

Topographic Position Index (TPI) [98] 

Morphometric Protection Index [99] 

Terrain Ruggedness Index (TRI) [100] 

Multi–resolution Index of Valley Bottom Flatness (MrVBF) [48] 

Multi–resolution Index of Ridge Top Flatness (MrRTF) [48] 

Convergence Index [93] 

Vector Ruggedness Measure (VRM) [101] 

Climate and Lighting (from DTM) 

Diurnal Anisotropic Heating [93] 

Total Insolation [102] 

Topographic Positive Openness [99] 

Analytical Hillshading [103] 

Structural variables 
 DSM10 – 

 DCM10 – 
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The pre-processing and image corrections were performed with the ENVI 5.0 software, using the 

methodological steps developed by Datt et al. [69], including the extraction of the spectral subset 

(excluding uncalibrated bands with spectral superposition and those with multiple anomalous values, 

leaving 155 bands) and the spatial subset of the study area, finally obtaining reflectance values using the 

FLAASH atmospheric correction [70]. The scene was also georeferenced to the WGS-84 geodetic datum 

using 40 control points and a total RMS error of ± 0.1 pixels with the help of an Orthophoto obtained 

during the LiDAR flight (0.5 m spatial resolution) plus a Landsat 7 ETM+ image (30 m spatial 

resolution) from 26 February 2011. 

From the preprocessed scene, 19 vegetation indexes widely used in the literature associated with 

hyperspectral remote sensing [71,72] and the first components of two transformations to reduce the noise 

and dimensionality of the band set—a forward principal components analysis (PCA) [73] and a 

minimum noise fraction (MNF) [74]—were calculated by selecting the components to be used based on 

the interpretation of the PCA and MNF eigenvalue plot and visual inspection of the bands. The 32 

hyperspectral variables used in the statistical analyses are summarized in Table 2. 

3.3.2. LiDAR 

The LiDAR point cloud was acquired in February 2011 using a Harrier 54/G4Dual System sensor 

mounted on a Piper PA-24 Comanche airplane, achieving an average point cloud density of  

4.64 points/m2. The pulse and scanning frequencies were 100 kHz and 100 Hz, respectively, with a field 

vision angle of approximately 22.5° and a laser pulse wavelength of 1550 nm. Using the “lasground.exe” 

tool of LAStools software [104], the point cloud was classified as ground and no ground returns, 

subsequently obtaining from these a digital terrain model (DTM) and digital surface model (DSM) 

respectively with the “las2dem.exe” tool, both with a spatial resolution of 10 m. We then calculated a 

digital crown height model (DCM) by the difference between the DSM and the DTM. 

We then used the SAGA GIS software [93] to calculate, based on the DTM, first-order topographical 

variables, landform variables associated with morphometrics, hydrology and topography, and variables 

associated with the illumination of the study area: 28 variables we called topographic variables. DSM10 

and DCM10 were used as structural variables [105]. These 30 variables acquired from LiDAR are 

summarized in Table 2. 

3.4. Statistical Analysis and Spatialization  

A total of 62 variables were used for the predictive model of richness, which was performed with the 

R-project software [106]. The first stage occupied the Random Forest (RF) package [107] in regression 

mode as an exploratory analysis to give priority to and select the relevant variables in the prediction of 

richness. We used RF because of its improvements over other tree classification techniques [59]. Its 

ability to construct hundreds of decision tree models using random subsets of the variables, in addition 

to its internal cross-validation and bootstrap aggregation (bagging) [108], make it a powerful tool for 

variable selection. 

Twenty replicas of the classifier using 500 decision trees each time were run to choose the most 

important and stable variables based on the percentage increase of the mean square error (%IncMSE), 

which was generated when they were not selected. To improve the prediction and include the different 
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spatial resolution of the variables [42,109], the grain size of these pre-selected variables was modified 

by aggregating the pixels at different spatial resolutions (15, 30, 60 and 90 m) with different grouping 

criteria (mean, median, and standard deviation of the neighboring pixels). The aggregate function of the 

Spatial Analyst toolbox of ArcGIS 10.1 was used to obtain the different grain size.  

Secondly, these pre-selected variables, some metrics, and their aggregations at different resolutions 

were used as input for a new run of the RF model for selecting the best predictive variables, using the 

same parameters as in the first stage. With this approach, 12 variables were selected according to the 

most common selection after 20 iterations. After this coarse variable selection, a best subset regression 

technique was applied to the 12 pre-selected variables according to the “leaps” packages [110]. 

According to this criterion, a multiple linear regression model was obtained by optimizing the best 

quantity and types of predictors. Finally, we applied the coefficients obtained from the multiple linear 

regression to each selected predictor and thus produced a spatial interpolation of the richness. 

To evaluate the robustness of the final multiple linear model generated, we used the “gvlma” package 

of R [111], based on a single global test and on specific directional tests to measure the asymmetry, 

kurtosis, a non-linear link function, and heteroscedasticity, using a significance level of 0.05. The 

normality of the multiple regression residuals was also verified using the Shapiro-Wilk test from the R 

“stats” package [112], possible outliers with the Bonferroni test and co-linearity using the variance inflex 

factor (VIF), both using the car-package R function [113]. The relative importance of the variables of 

the final predictive model (R2 and confidence intervals) was then evaluated using the Lindeman, 

Merenda and Gold method (LMG) of the “relaimpo” package of R [54]. The spatial autocorrelation of 

model residuals was evaluated using Moran’s I test available in the ArcMAP 10.1 software [114]. 

Finally, a regress analysis between validation points and the corresponding modeled values was 

performed in R, obtaining a validated R2 and RMSE. 

4. Conclusions  

The main objective was to predict and spatialize the vascular plant richness (alpha diversity) present 

in a secondary mixed deciduous forest of the Andes foothills of the Maule region, Chile. This was 

achieved using only structural variables derived from airborne LiDAR data, discarding the spaceborne 

hyperspectral information that, despite being significant, showed a lower predictive power. The 

information on altitude represented by DTM, the standard deviation of the slope, and the catchment slope 

were the variables that contributed most to predicting the richness of the plots (all derived  

from LiDAR). 

On the local scale utilized, the contribution of LiDAR data was significant in the development of the 

model selections, whereas the hyperspectral information did not provide a significant contribution to the 

prediction of plant richness. The inclusion of aggregated topographical information proved to be a 

relevant predictor in the final model. Other processing methodologies applied to a larger geographical 

expanse might generate better results. 

This study demonstrates that the plant species richness of Mediterranean deciduous forests and their 

spatial heterogeneity can be modeled and predicted with sufficient precision to be used in management 

and conservation plans, highlighting the great potential of this type of focus for evaluating and 

monitoring biodiversity.  
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There are opportunities to improve the methodological approaches and review the use of other 

predictive variables (acquired both from LiDAR and hyperspectral information), or include an analysis 

with spectral images of finer resolution. 
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