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Abstract: Structure is a fundamental physical element of habitat, particularly in woodlands, 

and hence there has been considerable recent uptake of airborne lidar data in forest ecology 

studies. This paper investigates the significance of lidar data characteristics when modelling 

organism-habitat relationships, taking a single species case study in a mature woodland 

ecosystem. We re-investigate work on great tit (Parus major) habitat, focussing on bird 

breeding data from 1997 and 2001 (years with contrasting weather conditions and a 

demonstrated relationship between breeding success and forest structure). We use a time 

series of three lidar data acquisitions across a 12-year period (2000–2012). The lidar data 

characteristics assessed include time-lag with field data (up to 15 years), spatial sampling 

density (average post spacing in the range of 1 pulse per 0.14 m2–17.77 m2), approach to 

processing (raster or point cloud), and the complexity of derived structure metrics (with a 

total of 33 metrics assessed, each generated separately using all returns and only first 

returns). Ordinary least squares regression analysis was employed to investigate 

relationships between great tit mean nestling body mass, calculated per brood, and the 

various canopy structure measures from all lidar datasets. For the 2001 bird breeding data, 

the relationship between mean nestling body mass and mean canopy height for a sample 

area around each nest was robust to the extent that it could be detected strongly and with a 
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high level of statistical significance, with relatively little impact of lidar data 

characteristics. In 1997, all relationships between lidar structure metrics and mean nestling 

body mass were weaker than in 2001 and more sensitive to lidar data characteristics, and in 

almost all cases they were opposite in trend. However, whilst the optimum habitat structure 

differed between the two study years, the lidar-derived metrics that best characterised this 

structure were consistent: canopy height percentiles and mean overstorey canopy height 

(calculated using all returns or only first returns) and the standard deviation of canopy 

height (calculated using all returns). Overall, our results suggest that for relatively stable 

woodland habitats, ecologists should not feel prohibited in using lidar data to explore or 

monitor organism–habitat relationships because of perceived data quality issues, as long as 

the questions investigated, the scale of analysis, and the interpretation of findings are 

appropriate for the data available.  
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1. Introduction 

Three-dimensional structure is a fundamental physical element of habitat and has long been 

identified as a key determinant of biological diversity, particularly in forests [1]. Airborne lidar can 

supply detailed information about the vertical structure of a forest and its spatial variability, and thus 

its use in habitat assessment was quickly realised once methods of deriving forest structural variables 

became commonplace [2,3]. A common approach in assessing habitat with airborne lidar data is to 

derive a geospatial model of one or more elements of forest vertical or horizontal structure, and then to 

use such models for predicting habitat suitability for a specific organism based on known habitat 

requirements. Examples of individual species’ habitats assessed by this method include the Delmarva 

fox squirrel (Sciurus niger cinereus) in Delaware [4], the mule deer (Odocoileus hemionus) in British 

Columbia [5], the red-cockaded woodpecker (Picoides borealis) in South Carolina [6], and the brown 

creeper (Certhia americana) in Idaho [7]. An alternative to this approach is to utilise species 

distribution and abundance data to quantify habitat requirements directly from lidar data for occupied 

areas [8–10]. Associated with this is the subsequent potential to make predictions over a wider 

geographical area for which lidar data are available but species occurrence data are not [11,12]. This 

makes use of lidar data as an explanatory tool to increase understanding (and quantification) of 

resource selection by species of known distribution [13]. Such studies have most frequently focussed 

on bird species [14–17], but with a growing number examining mammals, such as the bald-faced saki 

monkey (Pithecia irrorata) [18], Pacific fisher (Martes pennanti) [19], moose (Alces alces) [20], and 

red squirrel (Sciurus vulgaris) [21]. 

A more ecologically sophisticated use of airborne lidar data for the assessment of habitats is in 

combination with field recorded data on one or more aspects of biological activity, such as foraging, 

hunting, or reproduction. This enables habitat quality to be quantified at the species or organism level 

based on how vegetation structure influences that particular biological activity. This establishes a link 

between ecological process and function and its relationship with habitat structure. Studies that 
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combine airborne lidar data with biological activity data thus generate a more detailed understanding 

of how a habitat is being used, and what features within the habitat either impede or facilitate its use. 

For example, two recent studies have investigated forest dwelling bats and the impacts of forest 

structure on their foraging activities [22,23], demonstrating species-specific relationships in habitat 

use. In addition, the selection of specific forest structure has been demonstrated for providing 

sheltering habitats for roe deer (Capreolus capreolus) both from predators [24] and during low winter 

temperatures [25], and for moose (Alces alces) during high summer temperatures [26].  

Relationships between habitat structure (assessed using airborne lidar data) and reproductive 

success for pairs of great tits (Parus major) breeding in nest boxes at a woodland site in eastern 

England were examined by the current authors [27]. For the 2001 breeding season, a negative 

relationship was demonstrated between the mean body mass of great tit nestlings, calculated per brood, 

and mean canopy height for the core territory area surrounding the nest box. As the body mass of 

nestlings largely reflected food abundance and availability within the territory, this provided a direct 

and ecologically-determined means for quantifying foraging habitat quality. This was expressed 

geospatially as habitat quality maps by applying the derived relationship to each grid cell in a  

lidar-derived canopy height model [28]. Examining these relationships for great tits in more detail over 

a series of breeding seasons (1997–2003) demonstrated that both the strength and direction of the 

relationship between mean nestling body mass and mean canopy height around the nest box varied 

each year, depending largely on weather conditions during the breeding season [29]. Thus, over the 

seven-year study period, a strong and highly significant negative relationship was shown in 2001, 

which was a notably cold and late spring, whilst a moderate and weakly significant positive 

relationship was found in 1997, which was a warm and early spring. None of the other years in the 

seven-year study period (during which spring temperatures were intermediate) showed a significant 

relationship between mean body mass and mean canopy height (although the slopes of the 

relationships showed a consistent shift from negative to positive as springs became warmer). 

Airborne lidar thus has a proven ability to supply highly detailed, extensive and accurate vegetation 

structure data which has been used successfully to assess organism–habitat relationships in woodland 

ecology. Over recent years, both the nature of airborne lidar systems and subsequent data processing 

have become increasingly sophisticated. Standard metrics extracted from lidar data for forest structure 

and habitat assessment have included the mean, maximum, standard deviation, and coefficient of 

variation of canopy height in regular grid cells or sample areas relating to, for example, field plots, 

count stations, pitfall trap locations, or territories [30,31]. Other frequently extracted canopy structure 

metrics from airborne lidar have included measures of skewness and kurtosis, height percentiles, and 

the percentage of returns (or return energy) within specified height bands [5,19]. More developed 

metrics include canopy cover or closure, canopy permeability or penetration ratio, foliage height 

diversity, and vertical distribution ratio [15,32]. The use of more complex canopy structure metrics has 

become more prevalent as studies have progressed from using lidar data in the form of rasterised 

canopy height models (CHMs) to working directly with terrain-normalised point clouds.  

A recent article [33] posed the question of whether a time-lag between field data and airborne lidar 

data matters when studying wildlife distribution patterns (in this case for bird species richness and 

single species distribution modelling). This work cautiously suggested that a six-year time-lag between 

field and lidar data collection did not have a negative impact on results in undisturbed coniferous 
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forest. The current study expands this theme to pose a more general question of whether lidar data 

quality matters when used to model organism-habitat relationships in a mature woodland ecosystem.  

Here, we re-investigate work on great tit habitat assessment [27,29], focussing on bird breeding data 

from 1997 and 2001 and using a time series of lidar data acquisitions across a 12-year period  

(2000–2012). Each lidar data acquisition involved a different airborne system and flight configuration, 

with the data processing methods applied to each dataset reflecting the standard procedures of the time 

of data acquisition. The lidar data characteristics assessed include time-lag with field data, spatial 

sampling density (i.e., post spacing), approach to processing (e.g., raster or point cloud), and the 

complexity of derived structure metrics. The influence of lidar data characteristics is assessed on the 

strength of a demonstrated relationship between great tit mean nestling body mass (in the 1997 and 

2001 breeding seasons) and lidar-derived structure extracted from a sample area around each nest. The 

focus is on how robust these organism-habitat relationships are when parameterised using different 

lidar datasets and metrics. Specific objectives are to compare results using: (i) mean height extracted 

from a raster CHM from 2000, 2005 and 2012; (ii) mean height extracted from a raster CHM and from 

point cloud data, both from 2012; (iii) mean height extracted from point cloud data from 2012, 

repeatedly halving the point density; and (iv) 33 canopy structure measures derived from 2012 point 

cloud data, with two separate datasets created using all returns and only first returns. Given that 

airborne lidar data are increasingly available in archives, often as processed data products rather than 

raw data, and typically with a time difference to field data, the overall aim of this study is to assess the 

extent to which factors that may be considered to represent lidar data quality impact their use in 

ecological applications. Here, we take a single species case study in woodland bird ecology. 

2. Materials and Methods 

2.1. Field Site and Bird Breeding Data  

The study area is Monks Wood in Cambridgeshire, eastern England (52°24'N, 0°14'W). This is an 

ancient deciduous woodland of 157 ha, that was established as a National Nature Reserve in 1953. The 

site is managed for conservation purposes with a view to maintaining and enhancing its biodiversity,  

in particular its butterfly, beetle and bird populations. Monks Wood is classified as ash-oak woodland.  

Its canopy species composition is determined by the influence of the drainage conditions, base-rich 

soils (gleyic brown calcareous earths and surface water gleys), and its management history. 

Monks Wood is heterogeneous in terms of the woody species making up the tree canopy and 

understorey, their relative proportions in any area, and canopy closure and density [34,35]. The 

overstorey tree species are common ash (Fraxinus excelsior), English oak (Quercus robur), field 

maple (Acer campestre), silver birch (Betula pendula), aspen (Populus tremula) and small-leaved elm 

(Ulmus carpinifolia). Common ash is the most abundant and widespread species, occurring mostly as 

coppice stems (due to clear-felling in the early 20th century and subsequent management practices), 

but also regenerating naturally wherever the canopy is opened [36]. English oak occurs less frequently 

than ash, but is still common. Field maple and silver birch are found scattered throughout the wood, 

whilst aspen and small-leaved elm form occasional clusters on the wetter soils [37]. The understorey is 

variable in nature but present throughout most of Monks Wood [38]. The dominant woody species of 
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the understorey and woodland fringes are hawthorn (Crataegus spp.), common hazel (Corylus 

avellana), blackthorn (Prunus spinosa), dogwood (Cornus sanguinea), common privet (Ligustrum 

vulgare), and bramble (Rubus fruticosus). Hazel, along with ash, was coppiced until 1995. Hazel now 

occurs mixed with hawthorn and blackthorn throughout the wood [36]. Other woody species include 

wild service tree (Sorbus torminalis), downy birch (B. pubescens), grey willow (Salix cinerea), goat 

willow (S. caprea), and crab apple (Malus sylvestris).  

Twenty-two nest boxes have been established across Monks Wood to monitor bird breeding 

success. The location of each nest box is known to sub-decimetre accuracy from an integrated  

dGPS-RTK survey [27]. The nest boxes can be occupied by either great tits or blue tits (Cyanistes 

caeruleus), but as the larger bird (ca. 19 g versus ca. 10 g) the great tit has the competitive advantage 

and so tends to occupy more boxes than blue tits. Every year for each nest box, breeding performance 

is recorded in terms of species present, dates of egg laying and hatching, clutch size, brood size, and 

weight of nestlings at 11 days old [39]. The nestlings are weighed using a spring balance on day 11 

(day of hatching = 0) and mean body mass is calculated for each brood, excluding runts. Runts, 

defined as nestlings too small to ring at 11 days, do not survive to fledge and are rare; none were 

present in the broods in either 1997 or 2001. Mean nestling body mass is used as a measure of 

breeding success likely to reflect territory quality [40] because it combines the effects of food 

abundance with the adults’ abilities to find it (foraging efficiency) and to deliver it to the nest (travel 

costs). In the absence of territory boundary data for each nest box, a 30 m radius area around each box 

is considered here to represent the core area of each territory (adapted from [27]).  

The number of nest boxes occupied by great tits in the 1997 and 2001 breeding seasons was eight 

and 11, respectively. Thirteen out of the 22 nest boxes were occupied in either year, with six of the 

boxes occupied in both years. The average number of nestlings was ca. 10 per nest box in 1997 (range 

7–12) and ca. nine per nest box in 2001 (range 7–10), with an average body mass (at 11 days old) of  

17.2 g and 18.1 g, respectively (two-sample t: number of nestlings p = 0.270; nestling body mass  

p = 0.054). 

2.2. Airborne Lidar Data Acquisition and Pre-Processing 

Airborne lidar data for Monks Wood were acquired using discrete return systems in the years 2000, 

2005 and 2012. Although the timing of acquisition spanned June (in 2000 and 2005) and September (in 

2012), all three datasets represent leaf-on conditions, as leaf-flush takes place during April–May and 

leaf-drop does not commence until October-November at this field site. Leaf senescence would have 

begun in the September 2012 data, however. Each data acquisition involved a different lidar system 

and with subtly different configurations (Table 1). The differences between the three lidar data 

acquisitions largely reflect the developments of lidar systems over recent decades; most notably, 

increased pulse repetition rates and therefore higher point sampling densities on the ground. However, 

there are significant differences even in the choice of flight parameters, such as flight altitude (which 

together with beam divergence has subsequent impacts on footprint size), and scan half angle (which 

will have an influence on laser penetration into the canopy after the first return). Perhaps, the most 

salient difference between the three lidar data acquisitions is the post spacing of first returns; 1 per ca. 

5 m2 in the 2000 data, 1 per ca. 2 m2 in the 2005 data, and 1 per ca. 0.13 m2 in the 2012 data. The 2012 
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data also have up to four returns per pulse compared with just two (first and last return) in the 2000 

and 2005 data. Hence, the 2012 data contain considerably more detail than the earlier lidar data 

acquisitions in terms of both the horizontal and vertical structural variation in Monks Wood.  

Table 1. Lidar data acquisition characteristics as used in this study. 

Acquisition Parameter  2000 2005 2012 

Scanner Optech ALTM-2010 Optech ALTM-3033 Leica ALS50-II 

Wavelength 1047 nm 1064 nm 1064 nm 

Flying altitude ca. 1000 m ca. 2100 m ca. 1600 m 

Flying date 10/06/2000 26/06/2005 15/09/2012 

Pulse repetition freq. 10 kHz 33 kHz 144 kHz 

Scan half angle 10° 20° 10° 

Max. no. of returns per pulse 2 (first & last) 2 (first & last) 4 (first, second, third & last) 

Post spacing ca. 1 per 5 m2 ca. 1 per 2 m2 ca. 7.5 per 1 m2 

Footprint size ca. 25 cm ca. 45 cm ca. 35 cm 

Each of these lidar datasets was first processed within a year of data acquisition, using appropriate 

methods of the time. For both the 2000 and 2005 datasets, this involved the separate processing of the 

first and last return data. The point data were interpolated into raster grids. This was achieved using 

Delaunay Triangulation to create a triangulated irregular network (TIN) which was rasterised into a 

digital surface model (DSM). A digital terrain model (DTM) was generated from the last return DSM 

by a process of adaptive filtering, with the minimum filter size applied at each point selected based on 

focal variance. This identified local elevation minima, which were interpolated using thin-plate spline 

into a raster DTM. The values of the DTM were subsequently subtracted from the first return DSM to 

remove elevation and normalise values to above-ground height (creating a canopy height model; 

CHM). The CHMs were produced at 1 m and 0.5 m cell size, respectively, in 2000 and 2005, reflecting 

the lidar post spacing. Specific detail on the procedures carried out can be found in [41] for the 2000 

lidar data and [38] for the 2005 data. 

The 2012 lidar data were processed directly from the point cloud, treated as a single dataset.  

A classification of points into ground and non-ground (i.e., vegetation) returns was undertaken using 

RSC LAStools software (http://code.google.com/p/rsclastools/), which implements a progressive 

morphological filtering approach [42]. A DTM was generated from the classified ground points using 

the Natural Neighbour interpolation method and this was subsequently used to normalise all points 

(ground and non-ground, first through last return) to above-ground height. Structure metrics could then 

be extracted directly from the height normalised point cloud. As a separate procedure, to replicate the 

data processing undertaken on the 2000 and 2005 lidar datasets, the 2012 data were also processed into 

a rasterised CHM. For this process, the maximum height was retained per 1 m grid cell from first 

return lidar points falling within each cell (using the height normalised point cloud).  

2.3. Data Extraction and Analysis  

For all three rasterised CHMs (i.e., from 2000, 2005 and 2012), a 30 m radius subset was extracted, 

centred on the location of each occupied nest box, from which the mean height per plot was calculated. 
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Plots did not overlap spatially. This was performed using all grid cells per plot and subsequently only 

those with a height above 2 m and above 8 m (thereby, subsequently removing the ground vegetation 

and understorey layers from mean height calculation). These measurements are hereafter referred to as 

Hmean, Hmean > 2m and Hmean > 8m. Three measures of mean height were therefore available per 30 m 

radius plot for the 2000, 2005 and 2012 lidar datasets, taking the values from rasterised canopy height 

models (based on first return data). In addition, for the 2012 data, the same three measures of mean 

height were also extracted from the height normalised point data (separately using all returns and just 

the first return points). Lastly, Hmean was calculated from the first return point cloud data after 

systematically halving the point density by removing every other data point (according to their data file 

order). This process was repeated seven times, ultimately resulting in a point cloud containing 1/128th 

of the original first return data points.  

In addition to mean canopy height measurements, a range of canopy structure metrics were 

extracted per 30 m radius plot from the 2012 point cloud dataset. A total of 33 different metrics were 

extracted in two separate datasets, using all returns and only the first return points (Table 2). These 

metrics included the standard descriptive statistical measures of mean, median, maximum, and 

standard deviation of canopy height, together with height percentiles (H5 to H95), vegetation cover, 

canopy closure and permeability, percentage of returns from the ground, understorey and overstorey 

layers (defined as 0.5–2 m, 2–8 m and >8 m, respectively), foliage height diversity (FHD) and vertical 

distribution ratio (VDR). 

To assess change in forest structure across the 12 years of lidar data acquisition, paired t-tests were 

carried out on mean height (Hmean) derived from the 2000, 2005 and 2012 CHMs and from the 2012 

point cloud data (first return only and all returns). All of the 13 nest boxes occupied in at least one of 

the breeding seasons of focus (i.e., 1997 and/or 2001) were examined as a single dataset for this 

analysis, pairing Hmean values for each nest box across the different datasets. Ordinary least squares 

regression analysis was then employed to investigate relationships between great tit mean nestling 

body mass in 1997 and 2001 and the various canopy structure measures from all lidar datasets (i.e., 

2000 CHM, 2005 CHM, 2012 CHM, and 2012 point cloud metrics).  

Table 2. Structure metrics derived from the 2012 height normalised lidar point cloud data. 

These metrics were derived separately using all returns and only the first returns. 

Metric Name Metric Description 

Hmax Maximum height 

Hmean Average height 

Hstd Standard deviation of height 

H5, H10 ….H90, H95 Height percentiles (H50 is median height) 

Vegetation cover Vegetation returns (>0.5 m) as a proportion of total returns 

Canopy permeability Proportion of laser pulses for which there are multiple returns  

Canopy closure Percentage of returns above a canopy height threshold of 2 m 

Pgroundlayer Percentage of returns in the ground layer (i.e., 0.5–2 m) 

Punderstorey Percentage of returns in the understorey layer (i.e., 2–8 m) 

Poverstorey Percentage of returns in the overstorey layer (i.e., >8 m) 
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Table 2. Cont. 

Metric Name Metric Description 

Hmean > 2 m  
Mean height of returns >2 m (i.e., mean height of the understorey & overstorey layers 

combined) 

Hmean 2–8 m  Mean height of returns in the range 2–8 m (i.e., the understorey layer) 

Hmean > 8 m  Mean height of returns >8 m (i.e., the overstorey layer) 

Foliage height diversity 

(FHD) 

Foliage height diversity calculated with the Shannon index as the proportion of returns in 

the ground layer, understorey and overstorey layers 

Vegetation distribution ratio 

(VDR) 
Vegetation distribution ratio (Hmax-H50/Hmax) 

3. Results  

3.1. Comparison of Woodland Structure between the Different Lidar Datasets  

For the 13 nest boxes occupied in either 1997 and/or 2001, the mean height in the 30 m radius plots 

surrounding each box increased between the 2000, 2005 and 2012 CHMs (Figure 1). Furthermore, the 

pair-wise differences in mean height per nest box between the 2000 and 2005 CHMs and between the 

2005 and 2012 CHMs were statistically significant at p < 0.001. Across the 13 nest boxes, the overall 

Hmean increased from 13.01 m in 2000, to 14.57 m in 2005 and 15.47 m in 2012. The overall Hmean in 

the 2012 point cloud data was 14.56 m (first return only) and 11.75 m (all returns). From paired t-test 

results, Hmean calculated using all returns was significantly lower than when calculated using only first 

returns, and both were significantly lower than Hmean derived from the 2012 CHM (p < 0.001 in  

all cases).  

 

Figure 1. Mean canopy height (Hmean) for the 13 occupied nest boxes as extracted from  

30 m radius plots in 2000, 2005 and 2012 lidar Canopy Height Models (CHM) and from 

2012 point cloud (PC) data calculated using first returns only (FR) and all returns (AR). 

Sample sizes: 2000 CHM 2864 raster cells; 2005 CHM 11,438 raster cells; 2012 CEH 

2864 raster cells; 2012 PC FR 6298–34,499 points; 2012 PC AR 10,146–47,471 points  

(see Table S2). 
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3.2. Organism-Habitat Relationships Using Mean Height from 2000, 2005 and 2012 Chms  

For the 2001 great tit data, the relationship between mean nestling body mass and mean height 

extracted from the raster CHMs had an R2 value in the range 0.740–0.856 (n = 11, p < 0.001) from all 

three dates of lidar data and for all three methods of calculating the mean height per plot (Table 3).  

All of these relationships for the 2001 bird data were negative in trend. Relationships were stronger 

using the 2000 lidar CHM (R2 range 0.810–0.856), declined slightly using the 2005 CHM (R2 range  

0.797–0.821) and declined further in the 2012 CHM (R2 range 0.740–0.757). For all three lidar dates, 

the strongest relationship between mean nestling body mass in 2001 and mean height occurred when 

mean height was calculated only for grid cells in the CHM that were above 2 m (i.e., Hmean > 2 m). 

In comparison to 2001, the relationships between mean nestling body mass in 1997 and mean 

canopy height were weaker, positive in trend and not statistically significant at p = 0.05 (although most 

were significant at p = 0.10). The strongest relationships with mean body mass were derived using the 

2005 CHM (R2 range 0.421–0.499, p < 0.10, n = 8). The 2000 CHM generated slightly weaker 

relationships (R2 range 0.396–0.409, p < 0.10, n = 8), whilst the 2012 CHM only generated a 

statistically significant relationship when mean height was calculated only from grid cells above 8 m 

(R2 = 0.433, p < 0.10, n = 8). 

Table 3. Relationship between great tit nestling mean body mass in spring 1997 and 2001 

and mean canopy height from raster Canopy Height Models (CHMs) generated from 

airborne lidar data acquired in 2000, 2005 and 2012. All relationships for 1997 have a 

positive trend, whereas relationships in 2001 have a negative trend. Values shown in bold 

are significant at p < 0.10, the underlined values are the highest R2 per column. 

Dataset 

1997 Great Tit Data 2001 Great Tit Data 

Hmean Hmean > 2 m Hmean > 8 m Hmean Hmean > 2 m Hmean > 8 m 

R2 p R2 p R2 p R2 p R2 p R2 p 

2000 CHM 0.409 0.088 0.405 0.090 0.396 0.094 0.838 <0.001 0.856 <0.001 0.810 <0.001 

2005 CHM 0.421 0.082 0.442 0.072 0.499 0.051 0.816 <0.001 0.821 <0.001 0.797 <0.001 

2012 CHM 0.319 0.145 0.356 0.118 0.433 0.076 0.740 <0.001 0.757 <0.001 0.754 <0.001 

3.3. Organism–Habitat Relationships Using Mean Height from 2012 CHM and Point Cloud Data  

Using the 2012 point cloud data (first return only), the relationship between mean nestling body 

mass and mean height had an R2 value in the range 0.280–0.400 (n = 8, p = 0.177–0.093) for the 1997 

breeding season and in the range 0.718–0.748 (n = 11, p < 0.001) for 2001. In all cases (i.e., both 

breeding seasons and mean canopy height calculated as Hmean, Hmean > 2 m and Hmean > 8 m), the relationship 

between mean nestling body mass and mean height around the nest box was slightly stronger when 

mean height was extracted from the CHM rather than from the first return point cloud (Table 4). 

However, the difference in R2 value was never greater than 0.039. For the 1997 breeding season, there 

was a clear trend of Hmean > 8 m generating the strongest relationship for both the CHM and point cloud 

datasets, whilst in 2001, Hmean > 2 m and Hmean > 8 m gave almost identically strong relationships.  
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Table 4. Relationship between great tit nestling mean body mass in spring 1997 and 2001 

and mean canopy height from a raster Canopy Height Model (CHM) and point cloud data 

(first return only) acquired in 2012. All relationships for 1997 have a positive trend, 

whereas relationships in 2001 have a negative trend. Values shown in bold are significant 

at p < 0.10, the underlined values are the highest R2 per column. 

Dataset 

1997 Great Tit Data 2001 Great Tit Data 

Hmean Hmean > 2 m Hmean > 8 m Hmean Hmean > 2 m Hmean > 8 m 

R2 p R2 p R2 p R2 p R2 p R2 p 

CHM 0.319 0.145 0.356 0.118 0.433 0.076 0.740 <0.001 0.757 <0.001 0.754 <0.001 

Point cloud 0.280 0.177 0.327 0.139 0.400 0.093 0.718 <0.001 0.744 <0.001 0.748 <0.001 

3.4. Organism-Habitat Relationships Using Mean Height from 2012 Point Cloud Data Systematically 

Reducing the Point Density  

Systematically halving the number of first return points that were used to calculate the mean height 

(Hmean) from 2012 point cloud data (up to a total of seven times) had almost no impact on the 

subsequent use of those data to assess the relationship between mean height and mean nestling body 

mass in 2001. Thus, calculating mean height using all first return data points per plot (mean number of 

points 20,392; range 6298–35,499) compared with only 1/128th of all first return points per plot (mean 

159 points; range 49–277), only reduced the derived relationship with mean body mass in 2001 from 

R2 = 0.718 to R2 = 0.714 (n = 11, p < 0.001). As the relationship between mean nestling body mass in 

1997 and mean height per plot extracted from the 2012 lidar data was not statistically significant at  

p = 0.10, the effect of reducing the lidar point count on this relationship was not assessed. 

3.5. Organism-Habitat Relationships Using 33 Structure Metrics from 2012 Point Cloud Data  

A total of 33 structure metrics were extracted directly from the 2012 lidar point cloud for two 

separate datasets, (i) using all returns and (ii) using only the first returns. The relationship between 

each of these structure metrics and great tit mean nestling body mass in the springs of 1997 and 2001 is 

listed in Table 5. Taking Hmean calculated using first return data as a point of comparison with previous 

sections (i.e., 3.2–3.4), the relationship with this metric and mean nestling body mass in 2001 was  

R2 = 0.718 (n = 11, p < 0.001). For the remaining 65 lidar structure metrics (generated using all and 

first returns), only 15 produced a stronger relationship with mean nestling body mass in 2001. Of these 

15 metrics, seven were calculated using all returns and eight using only first returns; these were the 

height percentiles H50–H65 (all returns), H25–H50 (first returns), Hmean > 2 m and Hmean > 8 m (all and first 

returns), and standard deviation of height (all returns). The strongest relationship with mean nestling 

body mass in 2001 across all lidar point cloud metrics occurred with the standard deviation of height 

(Hstd) calculated using all returns (R2 = 0.769, p < 0.001, n = 11). A cluster of variables had 

relationships in the range R2 = 0.744 to 0.748 (p < 0.001), including H40 and H45 (first returns), H55 and 

H60 (all returns), and both Hmean > 2 m and Hmean > 8 m (first returns). It is notable that these latter relationships 

represent only a moderate increase in the strength of relationship attained using Hmean derived from the 

2012 raster CHM (R2 = 0.740, n = 11, p < 0.001). 
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Two additional points are worth noting from Table 5 regarding the 2001 great tit breeding data. 

Firstly, height standard deviation (Hstd) was the only metric to vary strongly when calculated using all 

returns and only first returns; producing a strong significant negative relationship with mean nestling 

body mass when calculated using all returns (R2 = 0.769, p < 0.001) and a non-significant, weakly 

positive relationship when calculated using only the first returns (R2 = 0.125, p = 0.286). Secondly,  

the more complex metrics than height, such as foliage height diversity, vegetation cover, canopy 

permeability, canopy closure and percentage returns from different vegetation layers (ground layer, 

understorey, overstorey) resulted in notably weaker relationships than Hmean. Only the vertical 

distribution ratio (VDR) gave similar strength relationships to Hmean, both using all returns (VDR:  

R2 = 0.674, p = 0.002; Hmean: R2 = 0.661, p = 0.002) and using first returns only (VDR: R2 = 0.713,  

p < 0.001; Hmean: R2 = 0.718, p < 0.001). 

Table 5. Relationships between great tit nestling mean body mass in spring 1997 and 2001 

and woodland structure metrics derived from 2012 lidar point cloud data. Values shown in 

bold are significant at p < 0.10, the underlined values are the highest R2 per column. 

Metric Name 

1997 Great Tit Data 2001 Great Tit Data 

All Returns First Return Only All Returns First Return Only 

Trend R2 p Trend R2 p Trend R2 p Trend R2 p 

Veg. cover − 0.093 0.464 − 0.179 0.296 − 0.427 0.029 − 0.469 0.020 

Canopy perm. + 0.185 0.288 + 0.197 0.271 − 0.491 0.016 − 0.488 0.017 

Canopy closure + 0.222 0.234 + 0.002 0.921 − 0.440 0.026 − 0.473 0.019 

H5 + 0.000 0.985 + 0.000 0.990 − 0.111 0.316 − 0.511 0.013 

H10 + 0.001 0.952 + 0.025 0.708 − 0.113 0.311 − 0.643 0.003 

H15 + 0.002 0.919 + 0.105 0.433 − 0.261 0.108 − 0.684 0.002 

H20 + 0.016 0.760 + 0.174 0.304 − 0.386 0.041 − 0.705 0.001 

H25 + 0.042 0.627 + 0.222 0.239 − 0.484 0.018 − 0.723 0.001 

H30 + 0.108 0.471 + 0.264 0.192 − 0.580 0.006 − 0.731 0.001 

H35 + 0.136 0.370 + 0.312 0.150 − 0.635 0.003 − 0.736 0.001 

H40 + 0.166 0.317 + 0.403 0.091 − 0.679 0.002 − 0.744 0.001 

H45 + 0.203 0.261 + 0.453 0.067 − 0.714 0.001 − 0.747 0.001 

H50 (Hmedian) + 0.251 0.206 + 0.469 0.061 − 0.735 0.001 − 0.726 0.001 

H55 + 0.293 0.166 + 0.474 0.058 − 0.745 0.001 − 0.712 0.001 

H60 + 0.397 0.094 + 0.472 0.060 − 0.746 0.001 − 0.697 0.001 

H65 + 0.445 0.071 + 0.465 0.063 − 0.726 0.001 − 0.682 0.002 

H70 + 0.458 0.065 + 0.457 0.066 − 0.703 0.001 − 0.675 0.002 

H75 + 0.450 0.096 + 0.448 0.069 − 0.683 0.002 − 0.672 0.002 

H80 + 0.439 0.073 + 0.417 0.083 − 0.674 0.002 − 0.665 0.002 

H85 + 0.412 0.087 + 0.358 0.117 − 0.665 0.002 − 0.646 0.003 

H90 + 0.321 0.143 + 0.270 0.187 − 0.638 0.003 − 0.620 0.004 

H95 + 0.191 0.279 + 0.151 0.341 − 0.585 0.006 − 0.554 0.009 

H100 (Hmax) + 0.031 0.679 + 0.031 0.678 − 0.397 0.038 − 0.397 0.038 

Hmean + 0.284 0.174 + 0.280 0.177 − 0.661 0.002 − 0.718 0.001 

Hstd + 0.486 0.055 + 0.050 0.596 − 0.769 0.001 + 0.125 0.286 

Hmean >2m + 0.340 0.129 + 0.327 0.139 − 0.719 0.001 − 0.744 0.001 
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Table 5. Cont. 

Metric Name 

1997 Great Tit Data 2001 Great Tit Data 

All Returns First Return Only All Returns First Return Only 

Trend R2 p Trend R2 p Trend R2 p Trend R2 p 

Hmean 2-8m − 0.001 0.976 − 0.036 0.651 + 0.005 0.862 + 0.109 0.322 

Hmean >8m + 0.403 0.091 + 0.400 0.093 − 0.735 0.001 − 0.748 0.001 

Pgroundlayer − 0.153 0.338 − 0.118 0.404 + 0.416 0.032 + 0.483 0.018 

Punderstorey − 0.166 0.316 − 0.189 0.282 + 0.601 0.005 + 0.637 0.003 

Poverstorey + 0.221 0.240 + 0.136 0.368 − 0.528 0.011 − 0.577 0.007 

FHD − 0.045 0.612 − 0.082 0.491 + 0.502 0.015 + 0.589 0.006 

VDR − 0.149 0.345 − 0.344 0.126 + 0.674 0.002 + 0.713 0.001 

It should be noted that by performing 33 regression calculations from a single dataset, there is a ca. 

82% chance of identifying a false positive (i.e., type I error) in these results. Taking a p value of 0.10 

as representing statistical significance for a single test, the Bonferroni correction gives p = 0.003 for 

the entire dataset. Given this significance level, for the 2001 great tit data only the following first 

return point cloud variables gave a statistically significant result when regressed with mean nestling 

body mass: H10–H85, Hmean, Hmean > 2 m, Hmean > 8 m, Punderstorey, and VDR. Using all returns in the 2012 

lidar point cloud, only the following variables gave statistically significant regression results: H35–H90, 

Hmean, Hstd, Hmean > 2 m, Hmean > 8 m, and VDR. However, it should also be noted that the use of 

Bonferroni correction in ecology has been questioned [43,44]. 

For the 1997 great tit data, all of the relationships with the lidar variables were weaker than for the 

2001 data and, with the exception of vegetation cover (all and first returns) and height standard 

deviation (first returns only), had the opposite trend. None of these latter mentioned relationships were 

statistically significant at p = 0.10 (Table 5). As with the 2001 bird data, the lidar variables that 

generated stronger relationships with nestling body mass than Hmean in 1997 were height percentiles, 

although in this case H55–H90 (all returns) and H35–H85 (first returns), Hmean > 2 m and Hmean > 8 m (all and 

first returns), Hstd (all returns), and in addition VDR (first returns only). However, of these it should be 

noted that only H60–H85 (all returns), H40–H80 (first returns), Hmean >8m (all and first returns) and Hstd 

(all returns) were statistically significant relationships at p = 0.10. (None of these were significant 

using the Bonferroni correction of p = 0.003). As with the 2001 great tit data, the strongest overall 

relationship (R2 = 0.486, p = 0.055, n = 8) occurred with standard deviation of height using all returns. 

The next strongest relationship (R2 = 0.474, p = 0.058, n = 8) occurred with the percentile H55 from 

first return lidar points. Looking specifically at the canopy height percentiles, for the 1997 and 2001 

great tit relationships the strongest using all returns occurred for H70 in 1997 and H60 in 2001, and 

using only first returns occurred for H55 in 1997 and H45 in 2001.  

4. Discussion 

4.1. Great Tit Breeding Habitat Requirements  

The results of this study show an inversion in the trend of relationships between lidar-derived 

woodland structure metrics and mean nestling body mass in 1997 compared with 2001. As published 
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previously [29], this may be explained by differences in weather conditions which influence the type 

of woodland structure that provides the best foraging conditions for parent birds during the rearing of 

nestlings. Nonetheless, although optimum structure may differ from year to year depending on the 

weather, the lidar-derived metrics that best characterise this structure have been shown to be 

consistent. Thus, looking at the point cloud metrics derived from the 2012 lidar data, key woodland 

structure metrics that can be identified as important in both years were mean overstorey canopy height 

(i.e., Hmean > 8 m) and canopy height percentiles (calculated using all returns and only first returns) and 

height standard deviation (calculated using all returns).  

In general, stronger relationships were attained with mean nestling body mass when using median 

height per plot (Hmedian) rather than mean height (Hmean). Furthermore, the relationships were stronger 

still when using height percentiles immediately adjacent to the median with first returns (i.e., H45 and 

H55 for 2001 and 1997 bird data, respectively), or using height percentiles above the median with all 

returns (i.e., H60 and H70 for 2001 and 1997, respectively). The histogram of all returns is skewed 

towards lower values compared with the histogram of first returns, since the first returns characterise 

the canopy top whilst all returns include data points from within the canopy or sub-canopy. Thus, for 

the 11 sample plots surrounding occupied nest boxes in 2001, H45 (first returns) and H60 (all returns) 

both describe a canopy height of ca. 14.5 m, whereas for the eight sample plots in 1997, H55 (first 

returns) and H70 (all returns) both describe canopy height of ca. 16.5 m. In both years, there would 

therefore appear to be an optimum vegetation height for foraging, and the use of height percentiles 

(whether from all returns or only first returns) allows this optimum height to be identified.  

Hmean > 2 m and Hmean > 8 m generally resulted in stronger relationships with mean nestling body mass 

than Hmean for both 1997 and 2001. Thus, removing the ground vegetation and/or understorey layers in 

calculating mean height per sample area around the nest box typically strengthened relationships with 

mean nestling body mass. In 2001, the relationship between mean nestling body mass and the 

percentage of returns in the overstorey (Poverstorey) was weaker than that with mean height (Hmean),  

for both all and first return data (with a similar pattern in the non-significant relationships in 1997).  

As the proportional coverage of overstorey in the 30 m radius sample areas varied across the range 

40%–97% for the occupied nest boxes in both 1997 and 2001, this suggests that it was not so much the 

amount of overstorey but its height that was an important factor in determining foraging habitat quality 

in each year. The strongest relationships with mean nestling body mass in both years occurred with 

standard deviation of height from all returns, but no relationships at all occurred with standard 

deviation of height from only first returns. This showed that variation in height at the top of the 

vegetation canopy was not important in determining foraging habitat quality, whilst variation 

throughout the woodland vertical profile evidently was. Note that the above relationships were 

moderate and positive in 1997, but strong and negative in 2001. In addition, moderate to strong 

positive relationships occurred in 2001 between mean nestling body mass and both foliage height 

diversity and the vertical distribution ratio, highlighting the importance of a sub-canopy or 

understorey. Piecing these results together it would seem that in 2001, when foraging was difficult due 

to poor weather, the best foraging conditions occurred (within limits not fully identified in this study) 

where there was less overstorey coverage, a greater presence of shrub layer and/or understorey, where 

overstorey canopy height was lower (optimum at around 14.5 m), and where there was less variation in 

canopy vertical profile (suggesting the need for a more continuous understorey layer). By contrast,  
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in 1997 when foraging conditions were good due to more benign weather, the optimum woodland 

structure for foraging involved a taller canopy (optimum 16.5 m) with greater variation in canopy 

vertical profile (implying a lesser need for continuous understorey). It is thus likely that during poor 

weather, the main prey of the great tits (tree-dwelling caterpillars) is more abundant at lower heights 

due to wash-out from the higher canopy, with the understorey providing more sheltered foraging for 

parent birds. 

Although the foraging niche of the great tit in British woodland is one of the best described in avian 

ecology [45–47], the lidar data have identified detailed elements of woodland structure that determine 

the quality of foraging habitat under different weather conditions during the breeding season. Great tits 

may be particularly vulnerable to poor weather because the larger sizes of caterpillars that are optimal 

for the growth of their nestlings [48] are likely to be less abundant under such conditions (i.e., slower 

larval growth rates combined with greater losses to smaller competitor species, such as blue tits, that 

prefer smaller caterpillars [49]). Furthermore, with climate change likely to increase the incidence of 

extreme weather and its impact on woodland birds [50,51], knowledge of woodland structures most 

favourable for foraging under a range of different conditions is vital. 

4.2. Assessment of Results against Study Aims  

The woodland showed a significant increase in height in the sample areas around occupied nest 

boxes between 2000, 2005 and 2012 as might be expected from tree growth. However, the rate of 

increase in mean canopy height was not even per nest box (mean height would be affected by loss of 

woody material as well as growth), and therefore the rank position of the nest boxes by mean height 

changed between the three years of lidar data acquisition. This combined to affect the results of the 

regression analyses between mean height and mean nestling body mass. For the 2001 breeding data, 

results showed a decline in the strength of relationships between mean height and mean nestling body 

mass across the three lidar datasets. This would be expected, as the 2000, 2005 and 2012 lidar data had 

a one year, four year and 11 year time-lag, respectively, to the bird breeding data. However, the 

decline in the strength of the relationship amounted to less than 1% of total variance explained for 

every year of time difference between breeding data and lidar data. For the 1997 bird breeding data, 

the strongest relationships between mean height and mean nestling body mass occurred using the 2005 

lidar data, implying that contemporaneous field and lidar data are not always a necessity to achieve 

maximum strength relationships. However, this seems likely to be an effect of ‘noise’ in this weaker 

relationship. Nonetheless, the fact that it remained detectable across a time-lag of at least eight years is 

broadly similar to the findings for the 2001 breeding data. 

The process of rasterising the 2012 lidar data to derive a CHM significantly affected the mean 

height statistics for each sample plot compared with values extracted directly from the point cloud. 

This had an impact on the derived relationships between mean height and mean nestling body mass. 

For both the 1997 and 2001 breeding data, stronger relationships between mean height and mean 

nestling body mass were generated using the CHM data than the point cloud data (first return only). 

Interestingly, this was the case despite the mean canopy heights from the CHM being significantly 

greater than those extracted from the point cloud. The CHM had greater mean height values because 

the rasterisation process took the maximum height per 1 m grid cell. Selecting mean height per grid 
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cell would have lowered the height value in most cells and therefore also the overall mean height value 

calculated per 30 m sample plot around each nest box. Rasterising a point cloud using either a mean or 

maximum value per cell would likely have an uneven impact on differently structured forest, and 

hence subsequent use of those data in organism-habitat modelling. Other methods of rasterising lidar 

data into a CHM (such as those employed with the 2000 and 2005 datasets) would likely have 

generated other differences in derived mean height. It should be noted that it was a deliberate decision, 

rather than an oversight, not to re-process the older lidar datasets using the more up-to-date methods 

employed with the 2012 data acquisition. The reason for this was that many older lidar datasets held in 

archives may only be available as processed raster models generated shortly after data acquisition. The 

aim here was to assess the potential usefulness of such datasets in organism–habitat modelling if they 

are all that is available. 

Reducing the number of lidar returns that were included in the calculation of mean height per 30 m 

radius plot had very little effect on the resulting mean height value, and therefore no significant impact 

on the subsequent use of those data to assess the relationship between mean height and mean nestling 

body mass using the 2001 breeding data. 

The comparison of 33 different lidar metrics in regression analyses of woodland structure and mean 

nestling body mass showed mean height to be one of the better performing variables. However, the 

required structural profile was summarised better by other single descriptive measures, such as median 

height or specific height percentiles. Furthermore, greater explanatory power was derived by 

considering several descriptive measures which supply complementary information about the canopy 

profile, such as standard deviation of all lidar returns and mean overstorey height. Thus, our 

understanding of how the full structural variation of woodland influences habitat quality for great tits 

in different breeding seasons (and under different weather conditions) has expanded from that 

presented in [29] through a consideration of the wider set of variables extracted from the 2012 lidar 

point cloud data. Of particular importance was the additional information available from multiple 

return data and the separate analysis of all return and first return only data. 

Studies at a range of field sites for other bird species (and other taxa) have shown a host of different 

lidar metrics to provide the most relevant characterisation of woodland structure to explain presence, 

abundance, or biological activity. For example, for the black-throated blue warbler (Dendroica 

caerulescens) in the northern hardwood forests of Hubbard Brook, New Hampshire, canopy height, 

elevation and canopy complexity were found to be key characteristics of frequently occupied  

habitat [32]. Horizontal structure (i.e., relative tree canopy cover) was demonstrated to be a key habitat 

variable determining the presence of capercaillie (Tetrao urogallus) in a forest reserve in the Swiss 

Pre-Alps [8]. For the black-capped vireo (Vireo atricapilla) in the Fort Hood Military Reservation, 

Texas, mean height, canopy cover, and edge density were useful predictive variables, although not as 

important as vegetation and soil type [52]. Measures of forest vertical structure (e.g., mean and 

standard deviation of canopy height) and horizontal patterns of vertical structure (assessed by both 

semivariograms and lacunarity analysis), together with elevation, land-cover and hydrography data 

were found useful in predictive distribution modelling for the red-cockaded woodpecker (Picoides 

borealis, Vieillot) in a forested catchment in North Carolina [31]. For the red-naped sapsucker 

(Sphyrapicus nuchalis) in northern Idaho, key airborne lidar variables for predicting breeding site 

selection were foliage height diversity, the distance between major strata in the canopy vertical profile, 
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and vegetation density close to the ground [17]. Moving away from birds as the focal species, in a 

study of the Pacific fisher in the Sierra Nevada Mountains, California, tree height and slope were 

shown to be important variables within a 20 m radius of a denning tree, but forest structure and 

complexity became more important between 20 m and 50 m [19]. These studies show that an 

understanding of the ecology of both the focal species and the study ecosystem is required when 

identifying the most appropriate use of airborne lidar data in investigating organism-habitat 

relationships. With one exception [33], no other study has assessed the impacts of time-series lidar data 

on their use in ecological assessment.  

4.3. Applicability of Results to Other Ecological Systems  

This case study has examined the breeding data for a single species (great tit) at a single site 

(Monks Wood), in just two breeding seasons (spring 1997 and 2001). Furthermore, the sample sizes 

were small, with mean nestling body mass calculated over just eight nest boxes in 1997 and eleven 

boxes in 2001. This particularly influenced the statistical significance levels of the relationships 

derived using the 1997 bird breeding data, increasing the uncertainty of the findings. These are obvious 

limitations, and therefore the findings may not be applicable across all ecological studies seeking 

structure-based organism-habitat relationships. In this particular case study, measures of canopy 

closure were not particularly relevant to the relationships under investigation. This helped make the 

mean height a robust summarising measure that consistently provided statistically significant 

relationships with mean nestling body mass in 2001 despite variations in the lidar data characteristics 

assessed (i.e., time-lag with field data, spatial sampling density, raster or point cloud data processing). 

The lack of impact of the time-lag between lidar and field data was also influenced by the relatively 

mature state of Monks Wood and minimal active management (and natural change such as tree fall) 

within the sample area surrounding each nest box. Thus, because of the feeding niche of the great tit 

and the ecological state of the field site in this study, mean height extracted from airborne lidar data 

was shown to be a robust measure, providing a good overall summary of woodland structure required 

for parental foraging during the breeding season. Also, although the specific ecological relationships 

reported here for the great tit may not apply to other woodland species with different foraging niches 

(e.g., the marsh tit Poecile palustris which has a greater association with woodland understorey, [53]), 

it seems likely that relationships for other species in mature woodland may be similarly robust with 

respect to lidar data characteristics.  

5. Conclusions  

In spring 2001, the relationship between woodland structure (assessed as mean height) and nest 

success for great tits was robust to the extent that it could be detected strongly and with a high level of 

statistical significance from lidar data, with relatively little impact of lidar data characteristics.  

For example, the relationship between mean height (Hmean) and mean nestling body mass had an R2 

value of 0.856, 0.821 and 0.757 (p < 0.001 in all cases) using a lidar-derived raster Canopy Height 

Model (CHM) acquired in the years 2000, 2005 and 2012, respectively. This relationship dropped to  

R2 = 0.718 (p < 0.001) when Hmean was calculated directly from 2012 point cloud data (using first 

returns only), and fell only slightly further to R2 = 0.714 (p < 0.001) when the point density was 
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reduced to just 1/128th of the original point count. Furthermore, when a range of metrics were derived 

from the 2012 lidar point cloud data (33 metrics each calculated using all returns and only first 

returns), only 15 metrics gave a stronger relationship with mean nestling body mass than Hmean  

(seven metrics using all returns, and eight metrics using only first returns). Of these, the strongest 

relationship with mean nestling body mass occurred using the standard deviation of height (Hstd) 

calculated using all returns (R2 = 0.769, p < 0.001, n = 11). Thus, for a breeding season in which harsh 

weather conditions made successful breeding difficult, it made only a moderate difference to the 

strength with which the relationship between canopy height and breeding success could be estimated 

as to whether the lidar data were acquired within one year or 11 years of the field data on bird 

breeding, whether woodland height was derived directly from lidar point clouds or from raster canopy 

height models, and whether thousands, hundreds or just tens of lidar data points were used in the 

calculation of mean height per plot. For the 1997 great tit breeding season, a somewhat benign year in 

terms of weather conditions, no statistically significant relationship (at p = 0.05) with mean nestling 

body mass was attained with any of the lidar datasets or variables. The strongest relationship occurred 

with mean height extracted from the 2005 raster CHM using only those grid cells with a value above  

8 m (i.e., Hmean > 8 m); R2 = 0.499, p = 0.051, n = 8. For this breeding season, forest structure (however, 

assessed using lidar data) was shown to have a more moderate influence on bird breeding success. 

The results of this study thus show that for relatively mature and undisturbed woodland, ecologists 

should not feel prohibited in using lidar data to explore organism–habitat relationships because of 

perceived data quality issues, such as a time-lag, low sampling density, or unavailability of point cloud 

data and the associated ability to derive more complex structure metrics. Uniquely, we have shown that 

if a relationship between biological activity and woodland canopy structure is robust (as in the 2001 

great tit data), then the use of lower quality lidar data (as specified above) is unlikely to prevent such 

relationships from being discovered in a stable-state ecosystem. A time-lag between lidar data 

acquisition and field data would, of course, be expected to have a much greater impact in a more 

dynamic system, such as early successional or coppiced woodland. Less robust relationships (as in the 

1997 great tit data) may be harder to detect across longer time lags, and in relation to other lidar 

quality issues, so this would have to be borne in mind when interpreting results.  
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