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Abstract: Digital elevation models (DEMs) derived from airborne lidar are traditionally 

unreliable in coastal salt marshes due to the inability of the laser to penetrate the dense 

grasses and reach the underlying soil. To that end, we present a novel processing 

methodology that uses ASTER Band 2 (visible red), an interferometric SAR (IfSAR) digital 

surface model, and lidar-derived canopy height to classify biomass density using both a 

three- class scheme (high, medium and low) and a two-class scheme (high and low). Elevation 

adjustments associated with these classes using both median and quartile approaches were 

applied to adjust lidar-derived elevation values closer to true bare earth elevation. The 

performance of the method was tested on 229 elevation points in the lower Apalachicola 

River Marsh. The two-class quartile-based adjusted DEM produced the best results, reducing 

the RMS error in elevation from 0.65 m to 0.40 m, a 38% improvement. The raw mean errors 

for the lidar DEM and the adjusted DEM were 0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, 

thereby reducing the high bias by approximately 49%. 
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1. Introduction 

Tidal salt marshes are among the most complex and productive ecosystems in the world [1,2]. 

Occurring at the interface between terrestrial and aquatic ecosystems and often between saline and  

non-saline water bodies, they provide valuable ecological services such as nutrient cycling, pollutant 

filtration, floodwater absorption, storm surge dissipation, and shoreline stabilization [2,3]. Salt marshes 

have some of the highest levels of net primary production, with aboveground biomass production from 

marsh grasses of up to 4000 g·m−2·yr−1 and below-ground production estimated at over 6000 g·m−2·yr−1 

in inland areas [4]. These high rates of primary production, in turn, support a diverse meso- and 

macrofauna including large populations of migratory waterfowl and wading birds and economically 

important species of fish and shellfish [2]. In addition to the tangible economic benefits from commercial 

fisheries, salt marshes provide a variety of other ecosystem services such as birdwatching, fishing, and 

other forms of recreation and tourism [3]. 

Despite their enormous value, salt marshes worldwide have been degraded or destroyed by a variety 

of anthropogenic threats including eutrophication due to agricultural and industrial runoff, drainage and 

reclamation for residential and commercial development, modification of hydrological flow regimes, 

relative sea level rise, increased air and water surface temperatures, and higher acidification associated 

with elevated atmospheric CO2 [1,5,6]. In the northern Gulf of Mexico, coastal marshes are threatened 

by accelerating submergence due to the loss of upstream sediments combined with rising sea levels [4]. 

In addition to rapid shoreline retreat from long-term coastal erosion, subsidence has led to the loss of 

thousands of square kilometers of salt marsh in the northern Gulf of Mexico through conversion to open 

water [1]. Even more troubling, estimates for global sea level rise based on the most recently available 

data suggest that an increase of 1 m or more by the year 2100 is a strong possibility given the accelerating 

loss of the polar ice sheets [7–10]. If realized, these projected rates of sea level rise in excess of 10 mm·yr−1 

would cause substantial losses of coastal marsh areas in the northern Gulf of Mexico [11]. 

To monitor the status of salt marshes on global to regional scales, it is vital to develop accurate 

quantitative relationships between metrics derived from remotely sensed data and indicators of salt 

marsh productivity such as aboveground biomass. Previous studies established strong correlations 

between live biomass of the salt marsh grass Spartina alterniflora (smooth cordgrass) and the canopy 

radiance corresponding to the red and near-infrared (NIR) spectral bands captured by Landsat Thematic 

Mapper (TM) sensors, as well as vegetation indices derived from those spectral bands [12]. Zhang et al. [13] 

reported statistically significant relationships between spectral vegetation indices derived from Landsat 

TM imagery and various measures of salt marsh biomass collected in San Pablo Bay, California. Among 

the models considered, the simple vegetation index (i.e., the near-infrared band divided by the red band) 

explained the most variation in green fresh biomass, with an R2 value of 0.58 [13]. Jensen et al. [3] used 

sub-meter resolution color-infrared (CIR) aerial photography in conjunction with field samples of biomass 

collected from salt marsh areas in coastal South Carolina to develop linear regression models relating 

the CIR spectral data to aboveground biomass of S. alterniflora. They found the strongest relationship 

between biomass and the NIR band, with an R2 value of 0.70 for the model containing this variable. 
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One of the major limitations of using satellite or CIR imagery to estimate aboveground biomass is 

the so-called “saturation problem,” wherein optical/infrared sensors are unable to distinguish variations 

in green biomass in areas of dense vegetation canopies. This saturation occurs when the canopy closure 

and leaf area density reach a threshold (varies by vegetation type) beyond which the optical/infrared 

sensor cannot detect increasing levels of green biomass response [14,15]. To address this problem, it has 

been proposed that biomass estimation could be improved by combining imagery from optical/infrared 

sensors with data acquired from active remote sensors, such as radar and airborne laser scanning (ALS, 

commonly referred to as “lidar” (light detection and ranging)) [14,16]. These active sensors provide 

additional information about topography and/or vegetation height that could potentially improve the 

quantitative models developed to predict aboveground biomass and other vegetation characteristics. 

Waring et al. [14] argued that Landsat imagery could be combined with synthetic aperture radar (SAR) 

data to improve biomass estimation in areas of dense vegetation, and Moghaddam et al. [17] reported 

significant improvements in regression models relating foliage biomass to Landsat TM data when 

combined with airborne SAR data collected over old-growth coniferous forests in the Pacific Northwest. 

In their study of woodland, shrub, grass, and mixed vegetation ecosystems in the Canadian arctic,  

Chen et al. [18] found that, in all cases, regression models combining Landsat TM and JERS-1 SAR 

data explained more of the variation in aboveground biomass than models containing either data source 

alone. Another type of active remote sensing technology, interferometric synthetic aperture radar 

(InSAR or IfSAR), requires that two SAR images be acquired over the same geographic area from a pair 

of close-range antennas. Because IfSAR can correct for terrain effects on radar backscatter intensity, it 

can potentially improve biomass estimation [19]. 

In recent years, lidar data have been used to estimate aboveground biomass and other biophysical 

parameters for a variety of forest, shrub, and grassland ecosystems [15,20]. More commonly, they have 

been used to develop digital terrain models for a variety of applications including coastal modeling [21]. 

However, it has been shown that the accuracy of lidar DEMs is reduced by vegetation, especially the tall, 

dense grasses typical of coastal salt marsh such as S. alterniflora and Juncus roemerianus (black rush) [22]. 

The term “lidar error” used herein is defined as the difference between the lidar DEM elevation and the 

true elevation at a specific location. This error has a significant impact on coastal modeling results in 

areas where dense vegetation degrades the accuracy of lidar-derived DEMs. In these areas the DEM 

estimates the elevation of the marsh platform (also known as the marsh table) on the order of 0.20 to 

0.80 m above its true bare earth elevation. In terms of coastal modeling, this can prevent flooding of the 

marsh surface in a simulation under both normal tide and storm surge conditions. This has ramifications 

in engineering [23], ecological [24], and integrated models assessing major processes such as sea level 

rise and climate change [25–27]. 

In this study, a combination of field sampling and remote sensing was used to develop linear regression 

models relating the aboveground biomass density of salt marsh vegetation to variables derived from the 

remotely sensed data. This study differs from similar work in the past [22] because it is species 

independent. This paper demonstrates that a combination of optical satellite imagery and data obtained 

from active remote sensing sources, such as SAR and/or lidar sensors, will explain more of the variation 

in aboveground biomass than would either data source alone. These species-independent biomass 

estimates can then be used to classify the aboveground biomass density and develop corresponding lidar 

DEM correction values. 
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2. Study Area 

This study was conducted at the Apalachicola National Estuarine Research Reserve (ANERR) in the 

panhandle of northwestern Florida (Figure 1). The ANERR encompasses almost 100,000 ha, including 

the lower 84 km of the Apalachicola River and its floodplain as well as the entire Apalachicola Bay 

estuary. The Apalachicola Bay, shielded from the currents of the Gulf of Mexico by a chain of barrier 

islands, is one of the most productive estuaries in North America. The bay supports a major nursery for 

commercial fishing and shellfish industries that are worth an estimated $14–16 million in annual 

revenue; it is also an important foraging area for trans-gulf migratory birds. The ANERR contains an 

estimated 7864 ha of salt and freshwater marshes [28]. As with other portions of the northwest coast of 

Florida, ANERR salt marshes are characterized as “low marsh,” consisting of tall seaward fringes of 

Spartina spp. (cordgrass) and J. roemerianus, and “high marsh,” composed of shorter J. roemerianus, 

Spartina spp., and salt-tolerant halophytes such as Salicornia spp. (saltwort) [4]. Somewhat unique for 

Gulf Coast salt marshes, however, is that the dominant cordgrass species is Spartina cynosuroides  

(big cordgrass), rather than S. alterniflora or Spartina patens (saltmeadow cordgrass). 

 

Figure 1. Study area (box) and biomass sampling locations (crosses). A total of 16 biomass 

samples were taken at the two sites. 

3. Data Collection 

3.1. Field Sampling 

In June and September of 2011, field samples of salt marsh vegetation were collected to calculate the 

density of aboveground biomass. Two areas of salt marsh on the east side of Apalachicola Bay were 
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selected and are shown in Figure 1. A set of random points was generated within these salt marsh areas, 

with the sample points spaced a minimum of 15 m apart to provide spatial independence and ensure that 

they were located in separate ASTER pixels. A 0.25 m × 0.25 m square constructed of PVC pipe was 

cast near each sampling point. In harvesting the aboveground biomass, we included all vegetation with 

roots inside the PVC square. Additional samples were obtained by navigating 4.57 m (15 ft) north and 

east of each sampling point and repeating the harvesting procedure, resulting in three sub-samples per 

random point. The sampling locations were located outside the study area, but in settings with similar 

vegetation characteristics, including species and density (Figure 1). This was done to maintain independence 

between the data used to train and test the biomass density and lidar error regression models. 

In the laboratory, all biomass sub-samples were washed, air dried, and separated by species. The  

sub-samples were then oven dried at 105 °C until constant mass was achieved. The dry biomass density 

(in g·m−2) was then calculated for each sub-sample. Finally, the biomass densities of the three sub-samples 

were averaged to obtain the mean total aboveground biomass density for each sampling point. The standard 

deviations for the three biomass density subsamples for each site were aggregated to produce an average 

standard deviation for the entire data set (Table 1). 

In January of 2013, the research team collected GPS survey elevations using Real Time Kinematic 

(RTK) corrections on a 20 m grid covering the above-referenced salt marsh sampling locations. The 

topographic elevations were checked at six steel rod benchmarks set by the National Atmospheric and 

Oceanographic Administration (NOAA), National Geodetic Survey (NGS). The accuracies of these 

survey points are approximately 2 cm and 4 cm for the horizontal position and the vertical elevation, 

respectively. These elevations were used to develop a spatially variable lidar error prediction model 

based on biomass density. 

3.2. Remote Sensing Data 

For the optical remote sensing data used in this project, Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Level 1B satellite imagery was acquired from the United States 

Geological Survey (USGS) EarthExplorer website. The imagery is delivered as “radiance at the sensor” 

(W·m−2·sr−1·μm−1) converted to digital number (DN) [29]. The ASTER scene used to develop the 

biomass regression model and apply it to the study area was acquired on 6 May 2011. This scene was 

chosen because it was relatively cloud free (<10% cloud cover, with no clouds over study area) and close 

to the time frame of the field biomass sampling. 

Raster datasets of Band 2 (visible red) and Band 3 (near-infrared, NIR) of the ASTER imagery were 

produced at 15 m spatial resolution. Landsat 5 Enhanced Thematic Mapper imagery was also considered 

for this analysis; however, it was significantly outperformed by ASTER data in our preliminary analyses 

for this application and is not discussed further. See Abrams et al. [29] for a comparison of ASTER vs. 

Landsat TM red and NIR bands. The vegetation index (VI = NIR/red) and the normalized difference 

vegetation index (NDVI = (NIR – Red)/(NIR + Red)) were calculated to derive two new raster images. 

The VI and NDVI pixel values closest to each biomass sampling point were extracted from each raster. 

IfSAR and lidar were the active remote sensors used to acquire data for our analysis. The IfSAR data 

were acquired through a license with the Digital Coast program of the NOAA Coastal Services Center. 

NOAA provided these data as a floating-point digital surface model (DSM) raster with an approximate 
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cell size of just over 4 m. The radar pulse of the IfSAR sensor penetrates vegetation to a level dense 

enough to cause a reflection. Even for dense vegetation such as marsh grasses, this value is below the 

actual canopy; however, it is near enough to the top of the vegetation to be interpreted as a measure of 

relative vegetation canopy elevation [30]. To investigate the effect of varying resolution on overall 

biomass estimation model performance, the IfSAR data were resampled to generate a series of raster 

surfaces with coarser resolutions of 10, 15, 20, 25, 30, and 35 m via bilinear interpolation. 

The lidar data were acquired for Franklin County, Florida, in the summer of 2007 by contractors to 

the Florida Division of Emergency Management (FDEM) and are available to the public. These are 

classified, discrete return lidar data with a required nominal pulse spacing of 1.25 m (4 ft), calculated 

point cloud density of 4.26 pts·m−2, and a reported consolidated vertical accuracy (CVA, 95th percentile) 

of 18.6 cm (0.61 ft) across all terrain types. For the purposes of this study, points in classes 7 (Noise) 

and 9 (Open Water) were omitted, retaining classes 1 (Unclassified) and 2 (Ground) for analysis [31]. 

From these data we created two raster surfaces with a cell size of 5 m for ground elevation and canopy 

elevation. To create the ground elevation raster, we selected only those lidar returns representing the 

minimum height value in each 5 m × 5 m cell. This method is known as “minimum bin-gridding” and 

has been used to reduce the vertical errors in digital elevation model (DEM) rasters created from lidar 

data acquired over areas of dense vegetation, such as salt marshes [32]. For the canopy elevation raster, 

we selected the returns representing the maximum elevation in each 5 m × 5 m cell. Finally, we generated 

a canopy height raster surface by subtracting the ground elevation raster surface from the canopy elevation 

raster surface. As with the vegetation raster surfaces derived from the satellite imagery, we extracted the 

pixel value closest to each biomass sampling location for the IfSAR- and lidar-derived raster surfaces. 

To limit the analysis to emergent wetlands, including the salt marshes, a mask consisting of National 

Land Cover Database (NLCD) class number 95, Emergent Herbaceous Wetland, was generated (Figure 2). 

This mask was applied to all subsequent spatial data analyses and regression model development. The 

NLCD 2011 data development was based largely on analysis of Landsat satellite imagery from 2011 [33]. 

A summary of all remote sensing and field data is shown in Table 1. 

Table 1. Summary of data used in analysis. 

Data Set Resolution Reported Accuracy * Acquisition Date Use in Study 

ASTER Radiance 

(converted to DN) 
15 m ±4% 6 May 2011 Biomass regression 

IfSAR DSM 4 m 1 m (vertical) 2004 Biomass regression 

Lidar Point Cloud 4 pts/m2 18.6 cm (vertical) 2007 
Biomass regression 

(canopy height) 

Field Biomass Density 

(Mean = 1738 g/m2) 
n/a ±691 g/m2 (std dev) Jun, Sep 2011 Biomass regression 

GPS–RTK Elevation n/a 4 cm (vertical) Jan 2013 Lidar error regression 

Lidar DEM 1.52 m Tested herein Summer 2007 Basis for adjustment 

GPS–RTK Elevation n/a 4 cm (vertical) Jan, Apr, Jul 2013 
Biomass-adjusted DEM 

testing 

* For field biomass density we report variation rather than accuracy. 
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Figure 2. Remote sensing data within the study area. (A) 2011 National Land Cover Dataset 

class 95, Emergent Herbaceous Wetland; (B) ASTER Band 2 (red) at 15 m spatial resolution 

(DN); (C) NOAA Coastal IfSAR DSM (meters) resampled to 15 m spatial resolution;  

(D) 2007 lidar canopy height (meters) derived from minimum/maximum bin gridding of 

point files. 

4. Analysis and Model Development 

4.1. Regression Analysis for Biomass Density 

A series of ordinary least squares (OLS) linear regression models was created using the statistical 

software R version 3.0.2 [34]. The laboratory measured aboveground biomass density of the field 

samples ranged from 730 to 2934 g·m−2, with a mean value of 1472 g·m−2 and a standard deviation of 

652 g·m−2. Please note that these values are different from the values reported in Table 1; Table 1 refers 

to the mean and standard deviations of the sub-samples at each sampling location. 

The histogram of the biomass density values was somewhat right-skewed, suggesting a lognormal 

distribution (Figure 3, left). Transforming the biomass density values by calculating their natural 

logarithms improved the normality of the distribution (Figure 3, right). The normality of the natural  

log-transformed data was confirmed by constructing a normal probability plot (Figure 4) and computing 

the interquartile range over standard deviation ratio, IQR/s. As shown in Figure 4, the normal probability 

plot produced a straight line and the computed IQR/s was 1.4, both of which indicated sufficient normality. 
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Consequently, the natural log-transformed biomass density values were used as the dependent 

variable in all of the linear regressions. Various combinations of data derived from the remote sensing 

datasets described in the previous section were the independent variables. To select the best model 

among the numerous models fitted, the Akaike information criterion (AIC) was used, wherein lower 

AIC values were indicative of better-fitting, more parsimonious models [35]. The adjusted R2 value for 

each model was also calculated to indicate the amount of variation in log-transformed biomass density 

explained by the model while taking into account the number of independent variables. To avoid 

collinearity in models containing multiple independent variables, Pearson’s correlation coefficients 

between all of the pairwise combinations of variables were calculated. For models containing independent 

variables with strong correlations, the variance inflation factor (VIF) scores were calculated using the 

car package in R [36] to explicitly check for collinearity. 

 

Figure 3. Biomass density distributions. (Left) the untransformed and right-skewed distribution; 

(Right) natural log-transformed and more normal distribution. 

 

Figure 4. Normal probability plot for natural log of biomass density. 

All of the linear regressions of the log-transformed biomass density vs. the independent variables 

derived from the ASTER imagery were statistically significant (Table 2). The ASTER-derived NDVI 

and VI (not shown) explained less than 40% of the total variation in biomass density. The red band 
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(ASTER band 2) explained the most variation among the single-variable regressions, with an adjusted 

R2 value of just over 0.52; on the other hand, combining the red and near-infrared (ASTER band 3) bands 

in a multiple regression model led to a slightly lower adjusted R2 value of 0.51. Including the IfSAR 

elevation data as an independent variable produced significantly better models for all of the ASTER 

band combinations. Overall, the best satellite-only model included the red band and IfSAR data and 

explained almost 72% of the variation in biomass density. Given that the Pearson’s correlation 

coefficient between the red band and IfSAR height variables was extremely low (r = 0.08), this model 

was not likely to be affected by multicollinearity [35]. 

Resampling the IfSAR elevation data to coarser spatial resolution had a positive impact on the 

biomass regression results. As shown in Table 2, resampling the IfSAR data to a resolution of 15 m 

improved the fit of the model, as indicated by the adjusted R2 value of almost 0.74. During the model 

selection process it was discovered that none of the models based on coarser resolutions of the resampled 

IfSAR data (20 m, 25 m, 30 m, 35 m) explained as much variation as the model based on the 15 m IfSAR 

data, although the 30 m model came close with an adjusted R2 value of just under 0.73. This was 

expected, as it was a multiple of the high performing 15 m resolution. The Pearson’s correlation 

coefficient between the 15 m resampled IfSAR data and the ASTER band 2 data was slightly higher than 

the correlation with the original-resolution IfSAR data (r = 0.09 vs. r = 0.08), but still far too low for 

concern about multicollinearity in the regression model. This lack of collinearity was further confirmed 

by the fact that both variables in this model have variance inflation factor (VIF) scores that are very close 

to one, well below the threshold value of 10 [36]. 

The results of the linear regressions involving the lidar-derived independent variables showed further 

improvement to the regression model. Neither the single-variable model including ground elevation nor 

the one including canopy elevation was statistically significant, but the one including canopy height was 

significant and had an adjusted R2 value of 0.18 (Table 2, first row). The multiple regression model 

including both canopy height and the ASTER band 2 data was also significant and increased the amount 

of variation explained by the model to almost 50%. As the final two rows of Table 2 indicate, adding the 

IfSAR elevation data as an independent variable to the model containing canopy height and ASTER 

band 2 increased the adjusted R2 value to 0.77 and 0.82 for the original-resolution and 15 m-resampled 

IfSAR data, respectively. While the correlation between the lidar-derived canopy height and ASTER 

band 2 variables was fairly strong (r = 0.67), the VIF scores do not indicate any strong collinearity in 

the model, since the highest score was VIF = 2.41 for canopy height. 

Table 2. Biomass density vs. ASTER and IfSAR. 

Independent Variable(s) P-Value Adjusted R2 AIC 

Canopy Height 0.0378 0.1846 27.9963 

Canopy Height + Aster_Band2 0.0017 0.4927 19.8279 

Aster_Band2 (red) 0.0003 0.5219 17.8547 

Aster_Band2 + IfSAR <0.0001 0.7160 8.8048 

Aster_Band2 + IfSAR_15m <0.0001 0.7391 7.1929 

Canopy Height + Aster_Band2 + IfSAR <0.0001 0.7695 5.6162 

Canopy Height + Aster_Band2 + IfSAR_15m <0.0001 0.8247 0.4117 
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This regression model was accepted for the computation of log-transformed biomass density. The 

regression model coefficients are shown in Table 3. 

Table 3. Biomass density estimation regression model coefficients. 

Independent Variable Coefficient 

Intercept 6.5430 

Canopy Height −1.6838 

Aster_Band2 0.0196 

IfSAR_15m 0.8703 

4.2. Regression Analysis for Lidar Error 

The log-transformed biomass was used as the lone independent variable in the regression to calculate 

lidar error. Recall that lidar error is defined as the difference between the “true” elevation as determined 

by GPS-RTK surveying and the lidar DEM. To more accurately model the physical relation between 

biomass and lidar error, it is assumed that an area with zero biomass density represents a perfectly flat 

and unobstructed surface. In turn, it is assumed that an area with zero biomass will not contribute any 

obstruction error, i.e., false ground classifications due to laser returns from vegetation. Therefore, the 

regression between lidar error and log-transformed biomass will be forced through the origin (having an 

intercept value of zero). The regression achieved an adjusted R2 of 0.829 and was statistically significant 

with a p value less than 0.001. Note that since this was a linear regression with only one independent 

variable, the AIC and VIF measures were unnecessary. This regression model was accepted for the 

computation of log-transformed biomass density. The regression model coefficients are shown in Table 4. 

To test the accuracy of the adjusted lidar DEM, 229 spot elevations within the Emergent Herbacaeous 

Wetland landcover class were obtained during a transect-based GPS-RTK survey in the lower Apalachicola 

River marsh (Figure 5). Transects were deliberately oriented on varying directional headings and the 

sites were selected to span the fluvial distributary network within the study area. 

 

Figure 5. Spot elevations for testing accuracy of biomass-adjusted DEM. 
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Table 4. Regression coefficients for estimation of lidar error. 

Independent Variable Coefficient 

Intercept 0.0000 

LN_BiomassDensity 0.0323 

4.3. Categorization of Biomass Estimates 

Although the data shown in Sections 4.1 and 4.2 seem to support the estimation of numerical values 

for the biomass density and lidar error, the sample size was small and, as a result, we cannot state with 

certainty that a value of biomass density represented the true conditions on the ground. However, using 

the field samples, we could classify the biomass density values as high, medium, or low. This enables 

relative comparisons of biomass distribution over time in studies focusing on the effects of sea level rise, 

for example. Table 5 shows the field samples along with their respective lidar DEM errors. 

Table 5. Classification of biomass (BM) density relative to lidar error. 

BM (g/m2) Ln(BM) Rank Percentile Lidar DEM Error (m) 

2934 7.9842 1 100.00% 0.30 

2641 7.8790 2 93.30% 0.18 

1885 7.5417 3 86.60% 0.35 

1807 7.4994 4 80.00% 0.21 

1802 7.4968 5 73.30% 0.27 

1762 7.4739 6 66.60% 0.09 

1699 7.4377 7 60.00% 0.26 

1544 7.3423 8 53.30% 0.10 

1532 7.3343 9 46.60% 0.35 

949 6.8550 10 40.00% 0.34 

916 6.8205 11 33.30% 0.15 

892 6.7939 12 26.60% 0.29 

825 6.7152 13 13.30% 0.17 

825 6.7152 13 13.30% 0.26 

804 6.6899 15 6.60% 0.20 

730 6.5931 16 0.00% 0.22 

 

We pursued two scenarios for adjusting the lidar DEM based on estimated biomass density: a division 

into three classes (High, Medium, and Low), where the thresholds were at the approximate 66th and 

33rd percentile values of biomass density (1800 g·m−2 and 950 g·m−2, respectively), and a division into 

two classes (High and Low), with a single threshold value at the natural break occurring at the 

approximate 45th percentile (1500 g·m−2). These adjustment scenarios were compared against the overall 

median value lidar DEM error for the entire set of samples. Refer to Table 6 below for adjustment values. 

These classifications of the field samples formed the basis of the lidar DEM error adjustment values. 

The adjustments were used to modify (lower) the lidar DEM to more accurately reflect the true in situ 

conditions. To capture some of the non-linearity in the lidar error as a function of biomass density, a 

quartile-based approach was used within each class. We selected the upper quartile (75th percentile) 

lidar DEM error as the adjustment value for lidar DEM errors associated with the High biomass density 
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class, the median (50th percentile) value for the Medium class, and the lower quartile (25th percentile) 

for the Low class. This approach was pursued to investigate whether lidar DEM error due to vegetation 

was disproportionately greater in areas of high density and effectively non-existent in areas with sparse 

vegetation. The presence of biomass always results in a lidar DEM elevation that is too high; therefore, 

all adjustments we made were applied to lower the lidar DEM elevation (Table 6). 

The three- and two-class estimation schemes of biomass density we used to adjust the lidar DEM with 

the quartile and median selection methods resulted in four adjustment scenarios. A single biomass 

density class with a median adjustment value (termed the “control” scenario) is presented for comparison. 

For all scenarios, the adjustment value was subtracted from the lidar DEM elevation value in each pixel 

based on the biomass density class. Two z-tests (α = 0.05) were performed: first, the mean error of the 

adjustment scenarios was compared with the mean error of the lidar DEM; second, the mean error of the 

adjustment scenarios was compared with the mean error of the control scenario. 

Table 6. Lidar corrections based on biomass density class. 

Biomass 

Density 

3-Class, Quartile 

Adjustment (m) 

3-Class, Median 

Adjustment (m) 

2-Class, Quartile 

Adjustment (m) 

2-Class, Median 

Adjustment (m) 

1-Class, Median 

Adjustment (m) 

High 0.32 0.27 0.30 0.26  

Medium 0.23 0.26   0.24 

Low 0.16 0.21 0.18 0.22  

5. Results and Discussion 

Using this newly developed regression model, spatially variable biomass densities were estimated for 

the study area (Figure 6). 

 

Figure 6. Biomass density classifications for study area. (A) Three-class scheme: High, 

Medium, and Low; (B) Two-class scheme: High and Low. 
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The results of the first comparison overwhelmingly showed that the mean errors for all adjustment 

scenarios, including the control, were significantly less than the lidar DEM (therefore, we do not show 

those results here in detail). The errors between the DEM for each scenario and the GPS-RTK measured 

elevation at the 229 testing points, including the p value for the second z-test, are shown in Table 7. 

Table 7. Errors in the lidar and biomass-adjusted DEMs. The p value represents the 

probability that the mean error of the control (single-class median) scenario is greater than 

the mean error for a particular adjustment scenario. 

Measure 
Lidar 

DEM (m) 

3-Class, 

Quartile 

Adjustment 

(m) 

3-Class, 

Median 

Adjustment 

(m) 

2-Class, 

Quartile 

Adjustment 

(m) 

2-Class, 

Median 

Adjustment 

(m) 

1-Class, 

Median 

Adjustment 

(m) 

RMSE 0.65 0.42 0.42 0.40 0.42 0.44 

Mean Error  0.61 0.34 0.34 0.32 0.35 0.37 

Std. Dev. Error 0.24 0.25 0.24 0.24 0.24 0.24 

p value 1.000 0.050 0.060 0.001 0.134 n/a 

As shown, the biomass-adjusted DEMs resulted in an average reduction in the Root Mean Square 

(RMS) error from 0.65 m to 0.42 m, representing a 35% decrease. All adjustment scenarios performed 

better than simply using the overall median adjustment across the entire DEM; however, only the 

quartile-based adjustments were statistically significant. Also, the two-class scheme performed slightly 

better than the three-class scheme, indicating that detecting natural breaks in the biomass density sample 

population was a better approach than arbitrarily splitting it into three classes with an approximately 

equal number of samples. The best performing adjustment scenario was the two-class quartile scenario. 

This was likely due to the better performance of the two-class scheme and the better capture of the non-linear 

nature of the lidar error/biomass density relationship. For comparison, the lidar DEM and the two-class, 

quartile-adjusted DEM are shown in Figure 7. 

 

Figure 7. (A) Lidar DEM and (B) two-class, quartile-adjusted DEM. 
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The adjusted DEM contained many more pixels in the 0–0.5 m range than did the original lidar DEM 

(Figure 7), which is the expected range for the marsh platform. The marsh platform typically is slightly 

higher than mean sea level, and the marsh is the most productive when an optimal periodic inundation 

occurs. In this region, mean sea level and mean high water are approximately 4.5 and 22.8 cm above 

NAVD88, respectively. 

These findings must be tempered by the fact that even with the technique proposed here, the error is 

still more than we would like, especially in microtidal systems such as the northern Gulf of Mexico.  

In contrast, results achieved by Hladik and Alber [22] showed a reduction in mean DEM error from  

0.10 m to −0.01 m using a species and vegetation-height specific adjustment methodology. Notably,  

that study site (Sapelo Island, Georgia) had substantially less error between the lidar DEM and GPS-RTK 

elevations than did Apalachicola (0.10 vs. 0.61 m), so a direct comparison with the results presented here 

is difficult. However, if one is able to generate or obtain spatially distributed species classification along 

with vegetation height classes, the method of Hladik and Alber is likely superior. If these data are not 

available, we recommend the method proposed here. In any case, we would caution against blindly using 

this or any other method without first verifying that it is applicable in the tidal, vegetation type and 

density conditions of a particular study site. This can be accomplished by conducting an exploratory 

field data acquisition and remote sensing analysis campaign, using the method presented here as guidance. 

To view these findings in their proper context, assessments of the processing sequence and potential 

sources of error are required. First, the lidar elevation accuracy standard set by the US Federal 

Emergency Management Agency is 36.6 cm (1.19 ft) at the 95% confidence level, so most lidar surveys 

in coastal areas are designed to meet this standard. Oftentimes the vertical elevation accuracy in open 

terrain is closer to 15 cm [37]. The lidar data used in this study met that standard, but for microtidal 

systems, even acceptable lidar accuracy may not be enough for some coastal modeling applications (one 

of the primary uses of lidar DEMs). 

Another potential source of error is the acquisition time of the remote sensing data, especially with 

respect to the seasonality of the marsh vegetation growth cycle. Depending on the time of year, the marsh 

grasses may be at their peak or dormant heights. For this study, the field biomass density samples and 

the ASTER imagery were collected in comparable years (June/September 2011 and May 2011), but there 

was a seasonal discrepancy. With optical-IR sensors, such as ASTER, it is more difficult to obtain cloud-free 

imagery in Florida during the summer growing season due to the general storminess of that time period. 

The acquisition times of the elevation data (IfSAR DSM, lidar, and GPS-RTK) were substantially 

disparate (2004, 2007, and 2013, respectively). This is not unusual, as IfSAR and lidar data are expensive 

and are not collected on a regular basis in most areas. With respect to the difference between the lidar 

elevations and the GPS-RTK elevations, their separation in time could have been influenced by accretion 

or erosion in the marsh. Although it is true that there is likely to have been accretion on the marsh surface, 

it has been estimated to be about 0.8 mm·yr-1 in Apalachicola [38]. This would have resulted in an 

accretion of approximately 5 mm, well within the accuracy bounds of the lidar, so is unlikely to have 

contributed significantly to the error in the regression model. However, the IfSAR data were much older 

and the month of acquisition could not be determined from the metadata. As the IfSAR provided a 

measure of canopy elevation, rather than a relative measure such as canopy height, this may have 

impacted the results significantly. 
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Lastly, the relatively small sample size for field-harvested biomass density (n = 16) requires further 

caution when applying the technique proposed herein. When using this technique in areas containing 

comparatively more or less dense marsh vegetation, additional samples should be acquired to adapt the 

technique for those areas. 

Future studies are advised to obtain larger biomass density sample sizes and synchronize the field 

data collection with the remote sensing and lidar acquisition times to the maximum extent possible.  

At a minimum, data should be synchronized on a seasonal basis. Furthermore, biomass growth rates can 

vary year to year due to climatic, weather, and environmental factors such as drought, severe storms, or 

a pollution event. Any evidence of abnormal growth patterns should be addressed. 

Despite the uncertainty in the method proposed herein, it is still a substantial step in the right direction 

and a necessary attempt to address a problem with widespread implications. The elevation of the marsh 

platform is a key parameter in nearly every model set in coastal ecosystems. For example, the Marsh 

Equilibrium Model [24] relies heavily on the initial estimation of the marsh platform elevation to project 

future accretion in response to sea level rise. The model is based on local bioassay field experiments that 

estimate above- and below-ground biomass production rates that also serve as inputs into the model. 

The Sea Level Affecting Marshes Model (SLAMM) [39] is another widely used tool that relies 

heavily on marsh platform elevation as an input. The technical documentation for this model specifically 

states that bare earth lidar should be used as the elevation dataset when available [40]. If the mean 

elevation error in a bare earth lidar DEM is nearly 50 cm above its true elevation, regions with small tide 

ranges such as the northern Gulf of Mexico will not see any modeled inundation, as the erroneously high 

marsh platform often will exceed the elevation of high tide. With a tool as widely used as SLAMM,  

this could lead to the propagation of misinformation, with communities basing their future land planning 

decisions on highly inaccurate results. In fact, Freeman et al. [38] applied the SLAMM model to 

Apalachicola Bay in 2012 and used the same lidar DEM that served as the basis for adjustment in this 

paper (1.524 m (5 ft) resolution resampled to 30 m). Their results serve as guidance for adapting to 

projected impacts to coastal wetlands, infrastructure, and vulnerable species, thereby demonstrating the 

importance of addressing the issue of inaccuracies in lidar DEMs of coastal salt marshes. 

6. Summary and Conclusions 

A novel processing sequence that uses ASTER, IfSAR, and lidar data to estimate spatially variable 

biomass density classes is presented. Two biomass density classification schemes were tested: a three-class 

scheme (high, medium, and low) based on the 66th and 33rd percentiles, and a two-class scheme (high 

and low) based on a natural break at the 45th percentile in the field biomass density data. These biomass 

density classes were used to estimate the error in the lidar DEM of the marsh platform. To compute the 

lidar DEM adjustment value, the field biomass samples (n = 16) and their corresponding lidar DEM 

errors were analyzed. Within each classification scheme, two methods for computing the recommended 

adjustment values were investigated: a median approach, where the 50th percentile lidar DEM error 

within each class was selected, and a quartile approach, where the 75th percentile lidar DEM error within 

the high class, the 50th percentile within the medium class, and the 25th percentile with the low class 

were selected. All combinations of biomass density classification scheme and adjustment value were 

tested. All adjustment schemes were superior to the unadjusted lidar DEM by wide statistical margins. 



Remote Sens. 2015, 7 3522 

 

The schemes were also compared to a simple median adjustment based on the entire population of 

samples. Only the scenarios using the quartile adjustment selection were significantly better than simply 

using the overall median lidar DEM error. The two-class quartile adjustment method was most effective. 

The recommended adjustments associated with each of these classes are 0.30 m for high and 0.18 m for 

low. The performance of the method was tested on 229 spot elevation points in the lower Apalachicola 

River Marsh. The two-class quartile-adjusted DEM reduced the RMS error in elevation from 0.65 m to 

0.40 m, a 38% improvement. The raw mean errors for the lidar DEM and the adjusted DEM were  

0.61 ± 0.24 m and 0.32 ± 0.24 m, respectively, thereby reducing the high bias by approximately 49%. 

Based on the findings of this study and the work by others cited herein, coastal researchers should 

avoid using unadjusted lidar DEMs in coastal marshes and wetlands dominated by emergent vegetation. 

Instead, they are advised to apply a spatially variable correction technique such as the one presented 

here. Future work in developing these techniques should address the major sources of uncertainty identified 

in this paper, namely the discrepancy in acquisition time between field and remote sensing datasets. 
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