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Abstract: Wetlands are dynamic in space and time, providing varying ecosystem services. 

Field reference data for both training and assessment of wetland inventories in the State of 

Minnesota are typically collected as GPS points over wide geographical areas and at infrequent 

intervals. This status-quo makes it difficult to keep updated maps of wetlands with adequate 

accuracy, efficiency, and consistency to monitor change. Furthermore, point reference data 

may not be representative of the prevailing land cover type for an area, due to point location 

or heterogeneity within the ecosystem of interest. In this research, we present techniques for 

training a land cover classification for two study sites in different ecoregions by implementing 

the RandomForest classifier in three ways: (1) field and photo interpreted points; (2) fixed 

window surrounding the points; and (3) image objects that intersect the points. Additional 

assessments are made to identify the key input variables. We conclude that the image object 

area training method is the most accurate and the most important variables include: compound 

topographic index, summer season green and blue bands, and grid statistics from LiDAR 

point cloud data, especially those that relate to the height of the return. 

Keywords: wetlands; optical and infrared sensors; topographic; LiDAR; object based image 

analysis; segmentation 
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1. Introduction 

Wetlands are dynamic in both space and time, providing important ecosystem services, which vary 

depending upon location. These valuable ecosystems help mitigate flooding, provide filtration of 

polluted waters from waste and run-off, recharge groundwater supply, and provide habitat for many 

aquatic organisms [1–5].  

The dynamic nature of wetlands makes it particularly important to update wetland inventories more 

frequently than has been done in the past. The hydroperiod, or water level duration and frequency, is the 

most important attribute to a wetland’s function and biodiversity and is heavily influenced by climate 

patterns both large and small [5]. Climate conditions, land use practices, and topographical characteristics 

affect the location and seasonality of a wetland [6,7]. 

Wetland maps have been conventionally made using manual photo interpretation and heads-up (i.e., 

on-screen) digitizing and are not frequently updated [8]. Traditional wetland inventories, such as the US 

National Wetlands Inventory (NWI), are mapped and updated irregularly and typically under-represent 

ephemeral and forested wetlands due to poor timing of image data acquisition (e.g., during drier 

conditions in the mid-summer, under full leaf-on canopy conditions that obstruct the view of understory 

wetlands, and/or under cloud cover). Such inventories lack the incorporation of alternate remotely sensed 

data, such as light or radio detection and ranging (LiDAR or radar, respectively), that can describe the 

vertical structure of these diverse ecosystems [9,10]. Traditional pixel-based land cover classifications 

are unsupervised, supervised, or a combination of both (hybrid), and these classifications do not often 

incorporate spatial context in the classification [11]. Object based image analysis (OBIA) groups pixels 

that have similar data value properties (i.e., radiance/reflectance, elevation, slope, etc.) into areas or 

objects. Classifications then can be done by object, instead of pixel by pixel, and can potentially provide 

higher mapping accuracy [12–14].  

For both traditional and OBIA types of classification, the integration of remotely sensed data from 

multiple sources can provide a baseline for mapping wetlands and can improve upon the use of single 

date optical imagery for land cover classification. Furthermore, wetland type can be better resolved by 

integrating aerial orthophotographs from multiple dates, LiDAR multiple return point cloud data [15,16], 

topographic derivatives [14,17,18], and combinations of all of these data with other ancillary data, such 

as hydric soil information [6,19]. 

LiDAR is well suited for creating highly accurate digital elevation models (DEMs) and normalized 

digital surface models (nDSMs). The unique information from pulse return elevation and intensity are 

currently under-utilized and have growing potential for identifying vegetation structure and hydrologic 

condition [16,20–22]. By fully utilizing the data provided by LiDAR and its derivatives such as standard 

deviation of all returns within a grid cell, intensity of the returns, slope, nDSM, and topographic indices, 

the precision of wetland mapping is expected to be significantly increased. Intensity is an additional 

attribute from the LiDAR point cloud data that has been shown to be valuable for distinguishing among 

different land cover types and water inundation levels [16,21,22,23]. Another useful measure is the 

compound topographic index (CTI), complementary to elevation and slope, that estimates potential 

wetness based on the flow of water across a landscape and the total contributing area for a downslope 

point [18]. This index has been shown to increase wetland mapping accuracy [14,17,18,24]. 
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At this time, the State of Minnesota is one of nine states that have completed statewide LiDAR 

collects, and one of over 20 states that have plans to acquire statewide LiDAR in the near future. 

Minnesota also collects both spring and summer aerial imagery (occurring every one–two years), a 

practice that is growing in demand across the country and increasingly more regions are routinely 

collecting spring aerial imagery. In this paper we demonstrate techniques for mapping wetlands that take 

advantage of these types of data acquisitions. The techniques are meant to be affordable, relatively 

simple, applicable for different study areas, and thus more easily repeated at larger geographic scales. 

Much of the training and classification process can be automated using open source software that can 

implement classification algorithms such as randomForest (RF), provided the reference and input model 

data are preprocessed in advance. The RF classification is computationally fast, can handle multiple data 

types, and does not require much user-based knowledge for generating a wetland classification.  

There are several ways to perform RF classification without great concern of over-fitting, which 

makes it flexible, including: using point or area training data and producing pixel or object-based 

classifications. RF also allows for an assessment of input data importance. The choice of classifier 

training approach may be less flexible, depending on the training data available (usually point reference 

data), potentially constraining the desired level of accuracy. Here, we compare the results of a land cover 

classification by training an RF classifier in three ways: (1) field and photo interpreted points using  

a single pixel; (2) average values for pixels within a fixed window of field and photo-interpreted points; 

and (3) average values for pixels within image objects that intersect field and photo-interpreted points. 

Assessments are made for two study sites, a forested region and an agricultural region, to identify the 

key input variables for accurate classification of upland, water, and wetlands, and for sub-classifying 

upland and wetland type. The results from this study can be used to provide classification maps that will 

inform natural resource managers charged with monitoring wetland ecosystems. In addition, the techniques 

tested in this study will aid in the design of wetland mapping programs and ultimately, provided the 

current image acquisition programs retain the frequency of their data collection efforts at every one–two 

years, increases the efficiency and consistency for more frequent mapping and monitoring of these 

valuable ecosystems. 

2. Methods 

2.1. Study Areas 

The study areas are representative of two ecoregions with different hydrological patterns, as defined 

by the Minnesota Department of Natural Resources Ecological Classification System [25]: Laurentian 

Mixed Forest (Cloquet) and Prairie Parkland (Mankato) provinces. 

2.1.1. Cloquet 

This study area surrounds the small city of Cloquet (Figure 1) in the Laurentian Mixed Forest province 

of northeastern Minnesota. It is dominated by conifer forests, some mixed hardwood-conifer forests, and 

conifer bogs and swamps. Wetland loss in this region is not as large as in the southern portion of the 

state; greater than 80% of the pre-settlement wetland area remains [26]. The elevation across the study 

area is 330–450 m above sea level (mean of 392 m), with slopes averaging less than 1.7 degrees. 
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Precipitation over the study site during the 2009 water year (October 2008–September 2009) was below 

normal by about 5 cm, but precipitation during the first part of the 2010 water year was above normal 

(79 cm) by about 10 cm. Precipitation over the study site during the 2011 water year was above normal 

by about 5 cm [27].  

2.1.2. Mankato 

Many of the agricultural fields surrounding the study area near Mankato (Figure 1) are drained 

cultivated wetlands [26]. The prairie parkland province is in western Minnesota and is heavily modified 

by human activity, specifically for large-scale conventional agriculture. Most of the prairie wetlands 

have been drained with tile systems [28], though the drainage extent is unknown. It is estimated that less 

than 50% of the pre-settlement wetland area remains in this portion of the state [26]. The elevation across 

the study area is 233–316 m above sea level (mean of 296 m), with slopes averaging less than 1.3 degrees. 

Precipitation over the study site during the 2010 water year (October 2009–September 2010) was above 

normal by about 25 cm, but precipitation during the 2011 water year was below normal (84 cm) by  

about 5 cm [27].  

 

Figure 1. Study areas near Cloquet, MN and Mankato, MN. The aerial images are from the 

2010 National Agricultural Imagery Program. 

2.2. Input Datasets and Process Flow 

2.2.1. LiDAR-Derived Input Data 

We used LiDAR point cloud data to generate several topographic raster datasets used in the RF 

models, including: digital elevation model (DEM), local ground slope, normalized digital surface model 

(nDSM), slope of the nDSM, grid statistics on Z (height; minimum, mean, maximum, and standard 

deviation), grid statistics on intensity, and the compound topographic index (CTI). Since wetlands tend 

to be located in low-lying flat or depressional areas on the landscape, we used elevation and slope data 

in the RF classifier. The Cloquet site LiDAR data were acquired 3–5 May 2011, by Woolpert, Inc. Flight 

lines had 25% overlap and multiple returns were recorded for each laser pulse along with an intensity 

value for each return. The nominal point spacing of the LiDAR pulses is reported to be 1.5 m; the 

horizontal accuracy is ±1.2 m (95% confidence level), and the vertical accuracy root mean square error 
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(RMSE) is 5.0 cm. The Mankato site LiDAR data were acquired 26–28 April 2010, by Quantum Spatial, 

Inc. Flight lines had 50% overlap and multiple returns were recorded for each laser pulse along with an 

intensity value for each return. The reported nominal point spacing of the LiDAR pulses is 1.3 m, the 

horizontal accuracy is ±0.5 m; and the vertical accuracy root mean square error (RMSE) is about 10.0 cm. 

The DEMs used for both study sites were provided by the Minnesota Department of Natural Resources 

as a 1 m product and were reportedly generated by extracting vendor-classified bare earth and model 

key points from the point cloud data and hydro-flattened using the edge of water breaklines. Prior to 

calculating the CTI, all sinks in the DEM were filled to avoid interference with hydrologic flow. We 

used the Fill Sinks XXL tool in the software program SAGA (System for Automated Geoscientific Analyses; 

v. 2.1.0) because of its method of filling depressions by maintaining a downward slope along the  

flow path [29]. The CTI data layers were calculated for both study areas using the following formula [30]: 

CTI = ln [(α)/tan(β)], where α = contributing upslope area and β = local slope. The algorithm we used to 

calculate α was called the triangular multiple flow direction algorithm (MD∞), which allows for multiple 

neighboring cells to estimate the downslope cell’s flow direction [30]. We processed the CTI layers 

using the software Whitebox (v. 1.0.7). In addition, we ran a 3 × 3 cell window low-pass filter using a 

mean rule on the final CTI data layers to minimize anomalous values. 

For the remaining topographic datasets used, we generated the data using QuickTerrain Modeler 

(Applied Imagery, Silver Spring, MD, USA; v. 7.1.6). We imported the LiDAR point cloud data into 

QT Modeler by including all returns except the LiDAR points from the overlapping flight lines (25% 

for Cloquet and 50% for Mankato). Through exploratory data analysis, we found that avoiding the 

overlap class reduced the amount of noise and outlying spikes in intensity due to scan angle at the edges 

of flight lines. We created a DSM by using the maximum Z value of all returns. We chose 5 m grid 

spacing to maintain enough returns within a grid cell and retain confidence in calculating statistical 

summaries, while still preserving moderately high resolution. For cells that did not have any LiDAR 

returns, a proprietary algorithm in QT Modeler (adaptive triangulation interpolation) was used to fill 

gaps. The interpolated surface is then approximated as a TIN (triangular irregular network) and QT 

Modeler uses an anti-aliasing (AA) routine to refine the precision by taking into account triangulation 

within cells. Before exporting the DSM raster, a smoothing algorithm, natural neighbor, was performed 

to smooth and curve triangulated lines based on the elevation levels of neighboring cells. These processes 

result in slopes and building edges being represented more realistically. An nDSM was then created by 

subtracting the DEM from the DSM. Additional grid statistics were calculated from the LiDAR point 

cloud, including the minimum, maximum, mean, and standard deviation of the Z and intensity values of 

all returns within each 5 m grid cell. We used QT Modeler’s Grid Statistics Tool to run these statistical 

operations using a 5 m grid on the attributes from the imported point cloud. The resulting grid statistics 

were exported in raster format with the 5 m grid spacing. 

2.2.2. Optical Input Data 

For both study sites, we used summer 2010 aerial orthophotos from the U.S. Department of Agriculture, 

Farm Service Administration’s National Agricultural Imagery Program and spring digital orthophoto 

quarter quads (DOQQs) from the Minnesota Department of Natural Resources. The DOQQs for the 

Cloquet site were collected in June 2009 (early leaf onset) and in 2011 for the Mankato site. The spring 
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2009 and 2011 imagery was acquired with visible and near infrared bands (blue, green, red, NIR), 

whereas the summer 2010 imagery was collected only in visible bands (blue, green, red). All optical 

imagery used in this study was orthorectified and radiometrically balanced by the respective supplier 

prior to distribution. The NIR band is often used for calculating spectral indices, such as the Normalized 

Difference Vegetation Index (NDVI). Many studies have shown that NDVI is particularly useful for 

separating vegetated versus non-vegetated areas and wet versus dry areas [10,11,31]. We used the red 

and near-infrared bands to calculate NDVI for both sites (spring season 2009 for Cloquet and spring 

season 2011 for Mankato). For all optical images used in this study, we used 5 m spatial resolution to 

correspond with the resolution used for the LiDAR data and derivatives. 

2.3. Land Cover Classification Schemes 

We performed two levels of land cover classification for both study sites that differentiated among 

upland, water, and wetland areas (Level 1), and sub-classified upland and wetland types (Level 2). 

Upland classes included agriculture, forest, grassland, shrub, and urban. Wetland classes included 

emergent, forested, and scrub/shrub wetlands. This wetland class scheme was modified from the 

Cowardin wetland classification scheme [32] and included the three most common wetland classes in 

the study area according to the NWI: emergent, forested, and scrub/shrub wetlands (where palustrine 

unconsolidated bottom and palustrine aquatic bed classes were merged into one emergent wetland class 

and the riverine unconsolidated bottom class was merged with the water class). 

We took a hierarchical approach for classification using the following steps: (1) water and non-water 

areas were classified; (2) the non-water class was sub-classified into upland and wetland areas; (3) the 

wetland class was sub-classified into three wetland types; and (4) the upland class was sub-classified 

into five upland types. At each step, different sets of input data were used to optimize model performance. 

More details about the datasets used in each hierarchy level are described in the RandomForest section, 

and each of the data layers included will be explained in detail in the respective subsections of the Input 

Datasets and Process Flow section.  

2.4. Random Forest Classification 

We used the meta-classifier RF for our study [33] and implemented the algorithm (v 4.6–7) in the 

software package R (v 2.15.1). We executed the classifier by bringing in the input layers as data frames, 

where all input data layers are required to be scaled to the same spatial resolution, and used three different 

types of reference training data. The RF classifier constructs decision trees using a random sample of 

input variables at each node in each tree. The number of variables sampled was the square root of the 

total number of input variables. Each decision tree is fully grown using a sample (with replacement) of 

about one-third of the training data (in-bag). The remaining training data (out-of-bag) is used to calculate 

cross-validation accuracy per tree, and averaged to estimate relative accuracy of each model prior to 

formal accuracy assessment. After trial-and-error revealed minimal change in cross-validation accuracy 

with more 500 trees, we decided to remain at the algorithm’s default number of 500 trees. Each of the trees 

produced a “vote”, and the final classification result was the class that had the most votes [33]. We built 

one RF model per test of training method by integrating different combinations of remotely sensed data. 
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The combination of data input for each classification step was selected based on expert knowledge of 

remotely sensed data and success from a previous study of land cover classification [10]. The same datasets 

were used for both study sites to make inferences on the relative power of each input data layer for two 

ecological regions. The following datasets were used in each step of the hierarchical classification:  

(1) water and non-water areas were classified using a DEM, the CTI, and spring and summer aerial 

orthophotos; (2) the non-water class was sub-classified into upland and wetland areas using slope gradient, 

the CTI, spring and summer aerial orthophotos, and LiDAR grid statistics; (3) the wetland class was  

sub-classified into three wetland types using a DEM, slope, the CTI, an nDSM, slope of the nDSM, spring 

and summer aerial orthophotos, and LiDAR grid statistics; and (4) the upland class was sub-classified into 

five upland types using slope, an nDSM, the slope of the nDSM, spring and summer aerial orthophotos, 

normalized difference vegetation index (NDVI) of the spring imagery, and LiDAR grid statistics. 

2.5. Training and Reference Data 

We tested a hierarchical land cover classification technique using three methods for classifier training: 

(1) point training using a single pixel value per point; (2) buffer area training using the average value for 

pixels within a 5 × 5 pixel window (approximately 12.5 m buffer radius) surrounding the reference data 

points; and (3) polygon area statistics within image objects that intersect reference data points. For all 

three methods, we used the same stratified random sample of 75% of the reference point data for training 

and 25% of the reference point data for an independent accuracy assessment on the results. This percentage 

split of the data was used to ensure there were sufficient training points per class, which was particularly 

relevant for the Level 2 classification (Tables 1 and 2). 

Table 1. Summary of reference point data for Cloquet, Minnesota. 

Land Cover Classification Training Sites Testing Sites Final Total 

Upland 296 132 428 

Water 48 18 66 

Wetland 401 146 547 

Total 745 296 1041 

Agriculture 25 14 39 

Forest 145 79 224 

Grassland 53 12 65 

Shrub 40 15 55 

Urban 33 12 45 

Total 296 132 428 

Emergent Wetland 108 40 148 

Forested Wetland 140 49 189 

Scrub/Shrub Wetland 153 57 210 

Total 401 146 547 

Point training data for the RF classifier included a single pixel value for each input data layer. Buffer 

area training data included the mean value for all pixels within the buffer area for each input data layer. 

Image object area training included the minimum, maximum, mean, and standard deviation values 

calculated for each image object. 
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Table 2. Summary of reference point data for Mankato, Minnesota. 

Land Cover Classification Training Sites Testing Sites Final Total 

Upland 191 64 255 

Water 24 8 32 

Wetland 125 41 166 

Total 340 113 453 

Agriculture 71 24 95 

Forest 24 8 32 

Grassland 24 8 32 

Shrub 28 9 37 

Urban 44 15 59 

Total 191 64 255 

Emergent Wetland 63 21 84 

Forested Wetland 49 16 65 

Scrub/Shrub Wetland 13 4 17 

Total 125 41 166 

2.5.1. Point Training Data 

Reference training and test point data were compiled from several sources, including: randomly 

generated field sites visited by trained field crews (summers 2009–2010 for Cloquet and summer 2011 

for Mankato), plots of an existing wetland monitoring program (centroids from polygons of the 2006–2008 

Minnesota Department of Natural Resources Wetland Status and Trends Monitoring Program [26], and 

newly generated points using photo interpretation. The procedure for field crew reference data collection 

during the summers 2009–2011 involved: locating randomly generated reference points with a Trimble 

Juno SB GPS unit (3–5 m real-time and 1–3 m post-processed accuracy); identifying the dominant land 

cover type; recording basic characteristics of the site on the GPS unit; taking representative photographs; 

and maintaining a back-up recording of the point ID, photo ID, land cover classification, and GPS 

coordinates in a field book. Points were added to the reference dataset via photo interpretation to ensure 

adequate representation of each land cover class and to maintain an appropriate spatial distribution of 

data points. The RF model built using these point training data was applied per pixel to the whole study 

area for both sites to produce a pixel-based classification.  

2.5.2. Buffer Area Training Data 

We used a fixed window around each of the reference training points to incorporate contextual 

information in the training phase of the RF classifier. The additional information provided by including 

an area surrounding a training point, rather than using the data from a single pixel corresponding to  

a training point, has been reported to increase the representativeness of the training data and improve the 

accuracy of the classification [34–36]. After trial-and-error revealed minimal sensitivity to buffer size, 

we used a 5 × 5 cell window at 5 m spatial resolution (approximately 12.5 m buffer radius). The average 

value for each buffer area was calculated for each input data layer and the classifier used that value.  

The RF classifier was applied per pixel using the buffer area training data to produce pixel classifications. 
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2.5.3. Image Object Area Training Data 

Pixels that were contained within the previously described buffer areas surrounding reference training 

points provided contextual information irrespective of ecosystem transition zones and edge effects. 

However, image segmentation algorithms generate objects containing relative contextual homogeneity 

present in the input data [12]. These boundaries contain more relevant information within them about 

the landscape compared to a single point and are more representative of the feature than a fixed window 

(buffer area).  

Image segmentation has been used in land cover classification for several decades [14,37–41]. The 

methods available for image segmentation and the applications for OBIA have become more broadly 

sophisticated over the last decade [12,42–45]. The OBIA process tends to rely heavily on expert knowledge 

of software algorithms, photointerpretation skills, knowledge of remotely sensed data, and time invested 

in trial and error for parameter settings. 

The image segmentation procedure we used involved several steps and employed multiple segmentation 

algorithms in the software package eCognition Developer 64 (Trimble Navigation Limited, Westminster, 

CO, USA; v. 8.8). We describe this process as dynamic, iterative, and minimally knowledge-based at 

multiple scales. In this case, ‘scale’ refers to creating image objects that represent features at different 

spatial scales, i.e., fine-scaled features (trees and buildings) and larger features (agricultural fields, water 

bodies, and wetland complexes). Figure 2 outlines the approach in six steps that are explained in more 

detail as follows. 

We used Contrast Split segmentation on the nDSM. This effectively separated tall areas from shorter 

areas, where the eCognition software uses iterations of different threshold values to optimize the split. 

eCognition also uses an “Edge Difference” method for finding the borders of image objects. 

We used an nDSM slope data layer with the multi-threshold segmentation algorithm to segment the 

tall features (greater than 1 m in height, based on user assessment of the distribution of surface feature 

heights throughout the nDSM) into areas of low slope (<3°) and high slope (>3°). The value of 3° of 

slope was chosen by trial and error and confirmed by other studies that found this value to be an appropriate 

threshold for wetland mapping [46]. To isolate buildings from trees and other natural features, we applied 

the quadtree segmentation algorithm to spring and summer optical data. This algorithm aggregates pixels 

with similar spectral properties and produces rectangular objects, leveraging the fact that natural features 

tend to be more rounded (less angular) than anthropogenic features. 

We used multi-resolution segmentation with spring and summer optical data on all tall features  

(low and high slope). This is an optimization algorithm that consecutively segments to minimize the 

heterogeneity within image objects and merges segments to maximize the homogeneity between neighboring 

image objects. The parameters used in this algorithm were: scale parameter = 10, shape = 0.3, and 

compactness = 0.5. Image objects were reviewed by four expert photo interpreters and co-authors of this 

study [45], who verified that the image objects resulting from parameters used in segmentation approximated 

the features of interest. For the not-tall features, we used multi-resolution segmentation with both optical 

and LiDAR intensity values using the same algorithm parameters described above.  

In the next step, multi-resolution segmentation results were further refined using spectral difference 

segmentation, where small image objects were aggregated to create contiguous image objects for large 

features while maintaining spectral similarity within small features. This further minimizes the heterogeneity 
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within image objects and maximizes the homogeneity between neighboring image objects. We used  

a different Spectral Difference value for the tall features than for the not-tall features (30 and 15, 

respectively). For features that are not-tall, a relatively smaller value preserves more objects with greater 

heterogeneity between neighboring objects, such as a wet ditch between a road and an agricultural field. 

To ensure a proper number of pixels for statistical operations within the final objects, we removed all 

objects that were less than 100 pixels, which is less than half the size for a reasonable minimum mapping 

unit (1–3 acres). These smaller objects were merged with objects that shared more than 20% of the total 

boundary or were merged with the objects that fully engulfed the smaller object. As a last step, we 

removed all labels (“tall, high slope”, “tall, low slope”, “not tall”). 

After finalizing the segmentation within both study sites, we intersected the reference training points 

with the image objects to isolate the set of training objects with known class value for the RF classifier. 

The training data used by the RF model included statistics for the minimum, maximum, mean, and 

standard deviation of all pixels within image object areas. For example, the grid statistic “Z minimum” 

was used as an input variable, but the training data for the RF model included grid statistics about that 

variable from all pixels that were contained within each object (the minimum “Z minimum” value within 

each object, the maximum “Z minimum” value within each object, the mean “Z minimum” value within 

each object, and the standard deviation of the “Z minimum” value within each object). 

Post classification edits were done on some larger segmented polygons because the objects included 

features of different land cover classes. These edits were performed on the largest objects only, covering 

approximately 5% of the resulting image objects, where most of the edits were completed by using photo 

interpretation to split large objects into two or more smaller objects with different land cover classes. 

Only the final classification results were edited.  

 

Figure 2. Image segmentation process flow.  
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2.6. Accuracy Assessment 

For each of the three different methods for classifier training (point, buffer area, and object area), we 

used the same reference test points for an independent accuracy assessment (25% of the total reference 

dataset). We used traditional accuracy assessment methods, including: constructing error matrices with 

overall accuracy, 95% confidence intervals (CI), User’s and Producer’s accuracies, Kappa statistic (K-hat), 

and comparison significance tests of error matrix k-hat values [47]. We produced summaries of the 

Producer’s and User’s accuracies and the overall accuracies for each of the three classifier training 

methods for both study sites. We also performed pairwise error matrix significance tests to compare the 

three different methods for classifier training.  

We assessed the importance of variables using the outputs from RF, which complement the traditional 

accuracy assessment. The Mean Decrease in Accuracy measure was used to report variable importance. 

Mean Decrease in Accuracy is calculated from the out-of-bag sample of input data, which was held out 

of the growth of a decision tree. The variable is ranked higher in importance if the cross-validation 

accuracy of the model was decreased when the variable was held out of the growth of individual decision 

trees within the RF model [33].  

3. Results  

3.1. Classification Level 1 

3.1.1. Cloquet 

The most accurate classifier training method was image object area training (86%). Table 3 shows  

a summary of the Producer’s and User’s accuracies for each of the three methods of training, illustrating 

that object area training is best for nearly every class. The lowest Producer’s accuracy for the object area 

training method was from the wetland class (81%) and the lowest User’s accuracy was from the upland 

class (77%). The highest Producer’s and User’s accuracies were from the water class (100%). Pairwise 

significance test results showed that the object area training was significantly different from the other 

two methods, at an alpha level of 0.05. 

The second best method for classifier training was point training (80%) and the third was buffer area 

training (78%), but these two methods were not significantly different from one another. These two methods 

were still significantly more accurate than the original NWI (70%). The lowest Producer’s accuracy for 

the point training method was from the wetland class (76%) and the lowest User’s accuracy was from 

the upland class (72%). The highest Producer’s accuracy for the point training class was from the water 

class (88%) and the highest User’s accuracy was from the wetland class (85%). The lowest Producer’s 

accuracy for the buffer area training method was from the water class (68%) and the lowest User’s 

accuracy was from the wetland class (77%). The highest Producer’s accuracy for the buffer area training 

class was a tie between the upland and wetland classes (79%) and the highest User’s accuracy was from 

the water class (88%). 

The output classification maps for each of the three methods of classifier training show spatial 

differences among the three methods. In Figure 3a, the point training has less heterogeneity than the 

buffer area training (Figure 3b), and the image object area training, by nature, has more homogeneity 
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(Figure 3c). The water class, in particular, has strong spatial uniformity in the image object area  

training approach, meaning features are not as broken or choppy compared with the point and buffer 

training methods.  

 

Figure 3. Output Level 1 classifications for point training pixel classification (a); buffer area 

training pixel classification (b); and object area training polygon classification (c) for the 

Cloquet site. 

Table 3. Cloquet site Producer’s and User’s accuracies for each Level 1 class, overall accuracy 

(95% CI in parentheses), Kappa statistic, and Z statistic of the three methods for land cover 

classification: point training, buffer area training, and object area training.  

 Point Training Buffer Area Training Object Area Training 

Class 
Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Water 88 83 68 88 100 100 

Upland 84 72 79 78 90 77 

Wetland 76 85 79 77 81 93 

Overall Accuracy (%) 80 (±5%) 78 (±5%) 86 * (±4%) 

Kappa Statistic 0.63 0.61 0.75 

Z Statistic 14.5 * 13.9 * 50.5 * 

* Values were significant at an alpha of 0.05. 

There were several variables that were considered important in all three training methods, including: 

CTI, summer season green band, Z minimum, Z mean, Z maximum, Z deviation, and intensity deviation. 

For the point training approach (Table 4, first column), the summer season red and blue bands, and 

intensity minimum were also found to be among the top ten most important variables. For the buffer 

area training approach (Table 4, second column), the summer season red and blue bands and the spring 

season NIR band were also found to be among the top ten most important variables. For the object area 

training approach (Table 4, third column), the spring season NIR band and intensity minimum were also 

found to be among the top ten most important variables. 
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Table 4. Importance of variables (in decreasing order). Top ten selected from each training 

method for Level 1 classification of the Cloquet study site. 

Point Training Buffer Area Training Object Area Training 

CTI CTI CTI—Mean 

Green Band Z Deviation Green Band—Mean 

Z Mean Green Band Z Deviation—Mean 

Z Max Blue Band Z minimum—SD 

Red Band Z Maximum NIR Band—Mean 

Z Deviation NIR Band Intensity Min—Mean 

Z Minimum Red Band Green Band—Max 

Intensity Deviation Intensity Deviation Intensity Deviation—Mean 

Blue Band Z Mean Z Mean—SD 

Intensity Minimum Z minimum CTI—Mean 

3.1.2. Mankato 

The most accurate classifier training method was a tie between image object area training and point 

training (96%, Table 5). Table 5 shows a summary of the Producer’s and User’s accuracies for each of 

the three methods of training, illustrating that the different methods for classifier training do not vary 

greatly in their results for each land cover class. The lowest Producer’s accuracy for the object area 

training method was from the water class (80%) and the lowest User’s accuracy was from the wetland class 

(95%). The highest Producer’s accuracy for the object area training method was from the upland class (100%) 

and the highest User’s accuracy was from the water class (100%). For the point training method, the lowest 

Producer’s and User’s accuracies were from the wetland class (95%) and the highest Producer’s and User’s 

accuracies were from the water class (100%). Pairwise significance test results showed that the three methods 

of classifier training were not significantly different, at an alpha level of 0.05. 

The least accurate method for classifier training was buffer area training (95%). The lowest Producer’s 

accuracy for the buffer area training method was from the water class (80%) and the lowest User’s 

accuracy was from the wetland class (90%). The highest Producer’s accuracy for the buffer area training 

class was from the upland class (97%) and the highest User’s accuracy was from the water class (100%). 

All three of the methods were still significantly more accurate than the original NWI (70%). 

The output classification maps for each of the three methods of classifier training show slight spatial 

differences between the three methods. Figure 4a,c shows that the point training and object area training 

methods resulted in more homogeneity than the buffer area training (Figure 4b). 

There were several variables that were considered important in all three methods, including: CTI, 

summer seasons green and blue bands, Z minimum, Z mean, Z maximum, and Z deviation. For the point 

training approach (Table 6, first column), intensity minimum, intensity mean, and intensity deviation 

were also found to be among the top ten most important variables. For the buffer area training approach 

(Table 6, second column), the summer season red band, intensity minimum, and intensity deviation  

were also found to be among the top ten most important variables. For the object area training approach 

(Table 6, third column), only LiDAR related variables were found to be ranked in the top ten important 

variables, including: all statistics on Z minimum data and the standard deviation of intensity maximum. 
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Figure 4. Output Level 1 classifications for point training pixel classification (a); buffer area 

training pixel classification (b); and object area training polygon classification (c) for the 

Mankato site. 

Table 5. Mankato site Producer’s and User’s accuracies for each Level 1 class, overall 

accuracy (95% CI in parentheses), Kappa statistic, and Z statistic of the three methods for 

land cover classification: point training, buffer area training, and object area training. 

 Point Training Buffer Area Training Object Area Training 

Class 
Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Water 100 100 80 100 80 100 

Upland 97 97 97 97 100 97 

Wetland 95 95 95 90 95 95 

Overall Accuracy (%) 96 (±3%) 95 (±4%) 96.0 (±3%) 

Kappa Statistic 0.9 0.9 0.9 

Z Statistic 29.0 * 23.6 * 29.9 * 

* Values were significant at an alpha of 0.05. 

Table 6. Importance of variables (in decreasing order). Top ten selected from each training 

method for Level 1 classification of the Mankato study site. 

Point Training Buffer Area Training Object Area Training 

Z minimum Z Minimum Z Minimum—Max 

CTI CTI CTI—Mean 

Z Mean Z Mean Z Minimum—SD 

Z Deviation Green Band Z Minimum—Mean 

Green Band Blue Band Z Minimum—Min 

Z Maximum Intensity Minimum Z Maximum—SD 

Intensity Deviation Intensity Deviation Z Maximum—Min 

Intensity Mean Z Deviation Intensity Maximum—SD 

Intensity Minimum Z Maximum CTI—Min 

Blue Band Red Band Z Mean—Mean 
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3.2. Classification Level 2 

3.2.1. Cloquet 

The image object area training method was the most accurate (77%) approach and the urban and water 

classes had the best results. The upland shrub class had the poorest accuracy for all three training 

approaches for both User’s and Producer’s accuracies. The output classification results (see Figure 5) 

showed that the point and buffer area training methods had more spatial variability, with scattered areas 

classified as agriculture and grassland throughout and overall less wetland area. This visual assessment 

confirmed the results of the Producer’s and User’s accuracies (see Table 7). Aside from the upland shrub 

class, all of the upland classes using the image object area training method were more accurate than the 

wetland classes. This result may imply that the Level 1 classification of the upland class was more 

accurate than the wetland class, allowing for higher accuracies in the Level 2 classification of upland 

subclasses. It may also imply that the image object area training data for the upland subclasses was more 

representative than the image object area training data was for the wetland subclasses. 

 

Figure 5. Output Level 2 classifications for point training pixel classification (a); buffer area 

training pixel classification (b); and object area training polygon classification (c) for the 

Cloquet site.  

The dataset used to sub-classify the wetland class into emergent, forested, and scrub/shrub wetlands 

included: DEM, slope, CTI, spring and summer aerial orthophotos, and LiDAR grid statistics. The 

dataset used to sub-classify the upland class included: slope, nDSM, slope of the nDSM, spring and 

summer aerial photos (including NDVI of the spring imagery), and LiDAR grid statistics. Among all of 

these variables, the most important variables for Level 2 classification across all three training methods 

(shown in Table 8) were LiDAR grid statistics on Z and intensity values, nDSM, and slope of the nDSM. 

In all three training methods, Z deviation was the most important variable, implying that wetland and 

upland subclasses are distinguishable by looking at the variability of the height of all LiDAR returns 

within a grid cell. For the image object area training method, the slope of the nDSM was also highly 
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important, implying that horizontal changes in feature height within wetland and upland subclasses are a 

distinguishing attribute (i.e., transition zones or boundaries).  

Table 7. Cloquet site Producer’s and User’s accuracies for each Level 2 class, overall 

accuracy (95% CI in parentheses), Kappa statistic, and Z statistic of the three methods for 

land cover classification: point training, buffer area training, and object area training.  

 Point Training Buffer Area Training Object Area Training 

Class 
Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Water 67 89 67 89 100 100 

Emergent 39 26 39 26 88 88 

Forested 59 56 59 56 61 71 

Scrub/Shrub 44 55 44 55 68 82 

Agriculture 69 64 69 64 80 86 

Forest 78 73 78 73 84 75 

Grassland 31 42 31 42 70 58 

Shrub 14 8 14 8 40 14 

Urban 69 82 69 82 100 92 

Overall Accuracy (%) 57 (±6%) 57 (±6%) 77 (±5%) 

Kappa Statistic 0.49 0.49 0.72 

Z Statistic 13.8 * 13.8 * 24.2 * 

* Values were significant at an alpha of 0.05. 

Other variables that were identified as important across all three training methods included: the 

summer season optical layers (blue, green, and red), and intensity minimum and intensity deviation. The 

optical variables were important due to the distinguishable visual differences in land cover type during 

a summer with above normal precipitation (i.e., full canopy deciduous trees, open grass fields, parking 

lots and buildings, healthy urban lawns, emergent wetlands along shorelines, coniferous bogs, etc.). 

Intensity values are different depending on land cover type and target material [16,22], where lower 

values may be associated with wetter areas (LiDAR pulse is absorbed more) and higher values may be  

areas with less absorption and more specular reflectance of the LiDAR pulse. Intensity deviation can be  

an indicator of the land cover types within a grid cell. 

Table 8. Variable importance (in decreasing order). Top ten selected from each training 

method for Level 2 classification of the Cloquet study site. 

Point Training Buffer Area Training Object Area Training 

Z Deviation Z Deviation Z Deviation—Mean 

nDSM nDSM Slope Intensity Min—Mean 

Intensity Mean Intensity Minimum Z Mean—SD 

nDSM Slope nDSM Intensity Min—SD 

NDVI Intensity Mean Green Band—Mean 

DEM Z Maximum nDSM Slope—Mean 

Intensity Minimum Red Band Blue Band—Mean 

Z Maximum NIR Band Z Deviation—Max 

Red Band Intensity Deviation Red Band—Mean 

Intensity Deviation Blue Band Intensity Deviation—Mean 
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3.2.2. Mankato 

The image object training method was the most accurate approach (93%), but the point and buffer 

area training methods were not significantly different (89% and 88%, respectively). The Producer’s and 

User’s accuracies for each class of each method did not reveal a strong pattern of commission or omission 

error for any of the methods (see Table 9). For all three methods, the water, emergent and forested 

wetland, agriculture, and urban classes had high User’s and Producer’s accuracies, whereas the upland 

and wetland shrub classes had the lowest User’s and Producer’s accuracies. In terms of a visual comparison 

(Figure 6), the biggest differences are seen in the grassland and urban classes, where the image object 

training appears to have included more urban area around Mankato’s city center, but the point and buffer 

area training approaches included more grasslands within agricultural areas. 

The dataset used to sub-classify the wetland class into emergent, forested, and scrub/shrub wetlands 

included (the same set as for Cloquet): DEM, slope, CTI, spring and summer aerial orthophotos, and 

LiDAR grid statistics. The dataset used to sub-classify the upland class included (the same set as for 

Cloquet): slope, nDSM, slope of the nDSM, spring and summer aerial photos (including NDVI of the 

spring imagery), and LiDAR grid statistics. Among all of these variables, the mutually important variable 

for all three training methods was spring season NDVI (shown in Table 10). The most important variable 

for the point and buffer area training was the slope of the nDSM and the most important variable for the 

image object area training was the mean nDSM value. Other than NDVI, optical data did not rank very 

highly in importance, but nDSM-related attributes did rank highly in all three methods. This result shows 

the high importance of topographical derivatives (i.e., slope, nDSM, CTI, and Z) corroborates what we 

discussed in the Level 1 section: land cover classes in an agricultural area are more often distinguishable 

by topographical data, alone. 

Table 9. Mankato site Producer’s and User’s accuracies for each Level 2 class, overall 

accuracy (95% CI in parentheses), Kappa statistic, and Z statistic of the three methods for 

land cover classification: point training, buffer area training, and object area training.  

 Point Training Buffer Area Training Object Area Training 

Class 
Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Water 100 100 80 100 80 100 

Emergent 95 95 95 90 100 90 

Forested 83 94 94 94 84 100 

Scrub/Shrub 50 25 67 50 67 50 

Agriculture 96 96 96 92 96 100 

Forest 67 75 60 75 100 88 

Grassland 64 88 64 88 100 75 

Shrub 83 56 75 38 89 89 

Urban 100 93 93 93 100 100 

Overall Accuracy (%) 89 (±6%) 88 (±7%) 93 (±5%) 

Kappa Statistic 0.86 0.83 0.92 

Z Statistic 13.8 * 13.8 * 24.2 * 

* Values were significant at an alpha of 0.05. 
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Figure 6. Output Level 2 classifications for point training pixel classification (a); buffer area 

training pixel classification (b); and object area classification (c) for the Mankato site. 

Table 10. Importance of variables (in decreasing order). Top ten selected from each training 

method for Level 2 classification of the Mankato study site. 

Point Training Buffer Area Training Object Area Training 

nDSM Slope nDSM Slope nDSM—Mean 

NDVI Blue Band NDVI—Mean 

Z Deviation Z Deviation nDSM—Minimum 

Intensity Minimum NDVI NDVI—SD 

DEM Slope nDSM—SD 

Z Minimum Green Band Slope—Mean 

Blue Band DEM CTI—Mean 

Z Maximum Intensity Maximum Slope—SD 

Intensity Deviation Intensity Minimum CTI—Minimum 

nDSM Intensity Deviation Slope—Minimum 

4. Discussion 

4.1. Cloquet 

The image object area training method was the most accurate (86%) approach for both the Level 1 

and Level 2 classification and was significantly more accurate than the other two approaches at Level 1. 

Our results show that the image object approach mapped wetland areas accurately, only incorrectly 

mapping wetlands 7% of the time and omitting wetlands 19% of the time. Uplands, on the other hand, 

were mapped incorrectly 23% of the time and were omitted about 10% of the time, where the upland shrub 

class had the poorest accuracy for all three training approaches, in terms of both User’s and Producer’s 

accuracies. These results imply that more information is needed, perhaps from other remotely sensed data 

or additional dates of imagery, to differentiate wetland from upland areas (see Tables 3 and 7). 

The dataset that was used to separate the non-water class into upland and wetland areas included: 

slope, CTI, spring and summer aerial photos, and LiDAR grid statistics. Among these variables, the 

majority of the most important variables (shown in Tables 4 and 8) were LiDAR grid statistics on Z and 
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intensity values. For the Level 2 classification, the slope of the nDSM was also highly important, 

implying that horizontal changes in feature height within wetland and upland subclasses are a distinguishing 

attribute (i.e., transition zones). In all three methods of Level 1 model training, CTI was found to be the 

most important variable. This finding confirms the usefulness of this index for differentiating areas that 

have potential wetness from areas that are drier and less conducive to wetland conditions [7,21].  

Other variables that were considered important for all three training methods for the Level 1 

classification included: the summer season optical layers (blue, green, and red), and spring season NIR 

band. Though upland and wetland areas may be optically similar (i.e., forested uplands versus forested 

wetlands; upland shrubs versus wetland shrubs), in all three training methods for a Level 2 classification 

Z deviation was the most important variable, implying that wetland and upland subclasses are distinguishable 

by looking at the variability of the height of all LiDAR returns within a grid cell. Another consideration 

is that some of the optical data over this study site was acquired during a period of above-normal 

precipitation that may have made wetland areas wetter and more optically differentiable. On the other 

hand, the spring season optical data (which includes the NIR band) was acquired during below normal 

precipitation conditions. The timing of this data collect may have aided in making vegetative land cover 

types, such as coniferous or deciduous trees, more distinguishable due to leaf-off conditions. The lower 

amount of precipitation in this dataset may have also aided in distinguishing areas with drier soil 

conditions from areas that are more permanently wet.  

4.2. Mankato 

The image object training method was the most accurate method for both Level 1 and Level 2 

classifications, where for Level 1 the image object training method had the same accuracy as the point 

training approach (96%) and the Level 2 classification accuracy was only slightly lower at 93%. These 

results were not significantly different from each other. The Producer’s and User’s accuracies for each 

Level 1 class of each method did not reveal a strong pattern of commission or omission error for any of 

the methods in any of the classes (see Tables 5 and 9), however, the upland and wetland shrub classes 

had the lowest User's and Producer’s accuracies. The largest visual differences are with the Level 1 

wetland class, where the image object training approach appears to have included more wetland area 

around the water bodies but the point and buffer area training approaches include more wetlands 

scattered within upland areas. For Level 2, the largest visual differences are with the grassland and urban 

classes, where the image object training approach appears to have included more urban area around 

Mankato’s city center, whereas the point and buffer area training approaches included more grassland 

scattered within agricultural areas. 

The dataset that was used to separate the non-water class into upland and wetland areas was the same set 

as for Cloquet, where the most important variables were LiDAR grid statistics on Z (shown in Table 6). The 

most important variable for all three training methods was Z minimum. This result implies that the 

minimum Z value is not spatially variable over our training sites and is therefore equally important at 

the pixel level, a fixed window (buffer area) around the pixel, and an object area containing the pixel 

(feature scale). The high importance of Z attributes (minimum, mean, maximum, and standard deviation 

within a 5 m grid cell) shows that the land cover classes in Mankato are more often distinguishable by 

height, alone. Among the variables used to sub-classify the wetland and upland classes, the mutually 
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important variable for all three training methods was spring season NDVI. Other than NDVI, optical 

data did not rank very highly in importance for a Level 2 classification, but nDSM related attributes did 

rank highly in all three training methods. This result shows the high importance of topographical 

derivatives (i.e., slope, nDSM, CTI, and Z) corroborates what we found for the Level 1 classification: 

land cover classes in an agricultural area are more often distinguishable by topographical data, alone. 

Other variables that were identified as important for all three training methods included: CTI and the 

summer season blue and green bands. The summer season optical data had been acquired during a year 

with above-normal precipitation, which may have contributed to the health of the cultivated vegetation 

and its relative ‘greenness’. The above-normal precipitation may have also contributed to the amount of 

water in the wetland areas; these conditions tend to reveal more change in the values of the blue band in 

optical imagery. The spring season aerial orthophotos were collected during a period of below-normal 

precipitation and none of these data layers were among the top variables of importance for any of the 

three methods for classifier training. This result possibly indicates two things: spring season imagery are 

not as important as summer imagery for an agricultural region or low precipitation conditions in the 

spring are not conducive to making optical imagery more useful than topographical data. 

5. Conclusions 

This research investigated techniques to produce an accurate land cover classification using methods 

and datasets that were affordable, relatively simple, moderately reliant on expert knowledge, and, as  

a result, more easily repeated at larger geographic scales. Given the increased availability of the input 

datasets used in this research for other regions throughout the United States, including comparable 

resolution satellite imagery and the lowering costs of collecting LiDAR data, the methods developed in 

this research are applicable to many other regions for updating land cover classifications more 

frequently. We found that for both the northern-forested areas surrounding Cloquet, Minnesota and the 

agricultural areas surrounding Mankato, Minnesota, the image object approach to training was the most 

accurate method for classifier training. This method uses the information from multiple pixels to train 

the model, as opposed to information from a single pixel or a fixed window (buffer area) surrounding a 

field reference point. 

We found that the most important freely available datasets to produce a Level 1 classification (upland, 

water, and wetland) for both Cloquet and Mankato included: CTI, summer season green and blue bands, 

and grid statistics from all returns of point cloud LiDAR data, especially those that related to the height  

of the return. For a Level 2 classification (sub-classifying the upland and wetland classes), the most 

important input data layers for Cloquet using image object area training included: Z deviation and mean, 

intensity minimum, and summer season blue and green bands. For Level 2 classification in Mankato, the 

most important data layers included: nDSM, NDVI, slope, and CTI. These results showed that in  

a forested region, a variety of data sources (optical, LiDAR height, and LiDAR intensity) were important 

for maintaining an acceptable degree of accuracy (>75%), but for an agricultural region, topographical 

models (surface and potential wetness [CTI]) were important and provided very good classification 

accuracy (>95%). 

In terms of increasing classification accuracy using the randomForest classifier, we suggest a few 

options: improve the image segmentation polygons and therefore improve the area statistics being used 
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for classifier training; include additional remotely sensed input data, such as radar, that shows other 

feature characteristics (such as structure, density, and below canopy attributes); increase the number of 

image dates to incorporate more seasonality; and include additional spectral bands from satellite imagery 

to test further improvement in the accuracy of sub-classifying land cover types. We thoroughly tested 

training methods and found that using a fixed window (approximate to a buffer radius) is not appropriate 

for classifier training. For forested regions, we propose that additional data, such as more dates of 

imagery or additional data types such as radar, be explored to complement the information provided by 

optical and LiDAR data. We also showed that in some cases, image object area training did not 

significantly improve the accuracy of land cover classification over point training, particularly in 

agricultural regions such as Mankato, Minnesota. In such limited cases, a pixel classification approach 

can yield similar classification accuracy with lower cost. This study has provided detailed information 

on successful techniques used to aid in the design of programs to map and update maps of wetlands, 

thereby increasing the efficiency of monitoring these valuable and dynamic ecosystems. 
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