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Abstract: In-situ soil moisture was widely used to validate and calibrate the  

satellite-retrieved data of different footprints. However, it contained unavoidable 

uncertainty when used as spatial representative. This paper examined the uncertainty in 

pixel-wise soil moisture designed for satellite validation in the HiWATER project.  

Two in-situ data sets were used for the examination, which were carefully designed to 

capture the spatial heterogeneity of soil moisture at different scales. Our results indicated 

that the pixel-wise uncertainty increased with increasing extent. At a small area, the 

uncertainty referred to the natural spatial variability of in-situ soil moisture. With respect to 

a large area, sampling error of spatial soil moisture played an important role, particularly of 

dry condition. Temporally, the uncertainty was higher during rainfall than that after then.  

It suggested that in-situ soil moisture could be more spatially representative at a small area 

after rainfall, valuable for satellite validation. Uncertainty was correlated to soil moisture. 

It was strongly correlated to spatial mean at a small scale and was to the spatial pattern at a 

large scale. Results of this study offered some clues to examine the uncertainty of in-situ 

soil moisture for satellite validation. 
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1. Introduction 

Soil moisture is an important state variable in the land surface systems. It plays an important role in 

water cycle [1] and plant growth [2]. In-situ measurement is a traditional method for directly 

measuring soil moisture within a few square meters [3–7]. For hydrological studies, it is important to 

monitor soil moisture at a large scale (e.g., the basin scale) [8]. In recent decades, remote sensing has 

been widely used to determine large-scale soil moisture because of its spatially consistent view [9]. 

Unfortunately, remote sensing is criticized for its inherently coarse spatial resolution [10]. This 

limitation weakens the reliability of the satellite retrievals due to spatial heterogeneity within a satellite 

pixel [11]. In practice, in-situ data is commonly used to validate and calibrate satellite-retrieved data at 

basin [9], regional [12] or global [13] scales. However, the in-situ soil moisture involves notable 

uncertainty when it is used as spatial representatives for remote sensing footprints [6]. Thus, this 

uncertainty must be quantified for satellite validation and calibration. 

The uncertainty comes from natural spatial variability of soil moisture and varies with spatial scales 

due to environmental factors. At small scale, the uncertainty strongly depends on variability of soil 

property [14], which mainly affects infiltration [15,16]. As the scale increases, vegetation [17] and 

topography [18] become the dominant causes of the uncertainty by altering evapotranspiration [19] and 

infiltration [20,21]. At regional or global scale, climate factors (particularly of rainfall) add additional 

influences on the uncertainty [22,23]. Each factor exerts a degree of spatial organization on the 

distribution of soil moisture by introducing (removing) water into (from) the soil. Furthermore, the 

factors produce combined influences on soil moisture and its uncertainty through complex interactions 

at different scales. Thus, each factor either enhances or reduces the uncertainty, depending on its 

spatial distribution and combination with other factors [24]. There are numerous previous studies 

investigated the interactive effects. Entekhabi and Rodriguez-Iturbe [25] revealed that homogeneous 

soil properties can reduce the uncertainty created by heterogeneous precipitation. In contrast,  

Peters-Lidard and Pan [26] showed that heterogeneous soil textures can increase the variability under 

homogeneous precipitation conditions. Teuling and Troch [27] demonstrated that plant transpiration, 

soil water drainage, and their spatial variations could significantly alter the spatial variability of soil 

moisture. It is important to evaluate the uncertainty generated from combined effects of different 

influences across spatial scales. 

The uncertainty also strongly depends on artificial sampling configuration of in-situ  

measurements [28–31]. Blöschl and Sivapalan [32] defined the sampling configuration with three 

components: spacing, extent and support. Specifically, “spacing” refers to the distance between the 

samples that is negatively correlated to the sampling density, “extent” is the overall coverage, and 

“support” represents the area that is integrated by each sample. When single in-situ soil moisture is 

used as spatial representative, its uncertainty commonly increases with increasing spacing and 

decreases with increasing support [33–35]. Relationship between uncertainty and spacing (sampling 

density) is controversial. Western et al. [23,29] indicated that the uncertainty does not change with 

spacing in southeastern Australia. However, Crow et al. [28] showed that it decreases as the sampling 

density increased in the National Airborne Field Experiments 2005 (NAFE’05) field campaign. These 

studies displayed the complex characteristics of uncertainty and the sampling configuration. 
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In addition, the uncertainty may change temporally, which is strongly correlated to soil moisture 

dynamics [8,24]. The temporal behavior can be illustrated by two indices. The first one is the mean 

soil moisture defined as a mean of spatially distributed soil moisture within an extent. Relationship 

between uncertainty and spatial mean of soil moisture varies in different studies. Bell et al. [33] and  

Famiglietti et al. [36] showed that spatial variability of soil moisture decreased with soil drying. 

However, Famiglietti et al. [30] observed an increasing variability when the mean soil moisture 

decreased. Furthermore, Li and Rodell [22] and Cho and Choi [37] showed an upward convex 

correlation between spatial variability and the spatial mean of soil moisture when statistics from dry, 

intermediate, and wet climates were combined. Another index is the probability density function (PDF) 

bounded between the wilting point and porosity. It represents spatial pattern or sub-grid variability of 

soil moisture [38]. Similar to the spatial mean, PDF correlates to the uncertainty in a complex way.  

Western et al. [23] pointed out that bounded PDF typically become skewed and less variable as the 

mean approaches a boundary. Famiglietti et al. [24] present a positive relationship between spatial 

variability and skewness (a index of PDF) of soil moisture in Oklahoma and Iowa in the central USA. 

The uncertainty versus soil moisture relationship is useful for characterizing the soil moisture 

variations because it exhibits a predictable exponential pattern, even when a limited number of samples 

are collected. Therefore, the mean soil moisture and the PDF should be considered jointly to 

characterize the temporal behavior of the uncertainty. 

To explore spatial and temporal characteristics of uncertainty, this study takes advantages of the 

field campaign sponsored by the Heihe Watershed Allied Telemetry Experimental Research 

(HiWATER) project. The project was carried out in the Heihe River Basin in the arid region of 

northwest China in 2010. One of its main objectives was to improve the observability of hydrological 

process and enhance the applicability of remote sensing at the basin scale [39]. Several eco-

hydrological Wireless Sensor Networks (WSN) were launched for satellite validation in the 

HiWATER project, which were carefully designed to investigate spatial variability of hydrological 

variables. In this study, WSNs of WaterNET and SoilNET are used to examine the uncertainty. Firstly, 

uncertainty is quantified with consideration of spatial variability and sampling configuration. Next, the 

uncertainties at scales of 1 × 1 km2 (SoilNET) and 4 × 4 km2 (WaterNET) are analyzed during a 

changing soil moisture. Finally, the correlations between uncertainty and soil moisture (spatial mean 

and PDF) are examined. 

2. Methods 

2.1. Data Sampling and Spatial Representativeness of in-Situ Soil Moisture 

It needs to capture the spatial representative to quantify the uncertainty of in-situ soil moisture. 

Several studies focused on the sample number for estimating spatial soil moisture at the satellite footprint 

scale. Crow et al. [28] summarized the number of sample stations that were used in previous studies, 

which varied from 12 to 41 with averaged station spacing from 2 × 2 to 50 × 50 km2. The study also 

revealed that the accuracy of spatial soil moisture increases with the increasing sample numbers at a 

certain scale. Besides the number of samples, the spatial distribution is also critical to the accuracy of 

spatial soil moisture [40]. To obtain accurate spatial soil moisture, the sampling configuration should 
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represent the heterogeneity of soil and environmental variables. The in-situ data sets of this study adopt a 

hybrid model-based sampling method for the requirement [39,41]. The sampling method optimizes the 

distribution by satisfying two sub-criteria: one for improving the accuracy of the spatial soil moisture to 

evaluate remote sensing productions, another for reducing the variogram to represent the variability of 

in-situ soil moisture. Specifically, the model is described as [41]: 

1 2( ) ( )norm norm
hybrid SP EPS S       (1)

where hybrid  is a weighted sum of two sub-criterions with weighted coefficients of 1  and 2 .  

S refers to the optimized point set. SP and EP are methods that are effective for calculating spatial soil 

moisture and estimating variogram parameters. The goal of the sampling method is to develop an 
optimal scheme with a fixed number of sampling stations via minimization of the hybrid  value.  

The calculation of the criterions (SP and EP) and weight coefficients ( 1  and 2 ) could be seen in 

reference of Kang et al. [41] in detail. Through hybrid , the uncertainty of in-situ soil moisture can be 

divided into two parts, which helps to capture the error sources and quantify them. 

To evaluate the uncertainty, this study uses the spatial mean of in-situ measurement values to 

represent the spatial soil moisture. PDF is adopted to describe the spatial pattern of soil moisture.  

PDF presents the probabilities of in-situ soil moisture within different intervals, which reflect the 

spatial distribution of the in-situ soil moisture [42]. Skewness and kurtosis are the two most important 

variables for PDF. Skewness measures the symmetry of the distribution. The distribution is 

symmetrical or asymmetrical when the skewness is equal to or unequal to 0, respectively. For an 

asymmetrical distribution, a positive skewness indicates that a soil moisture peak is left-skewed in the 

PDF curve, while a negative value indicates that the peak is right-skewed. Kurtosis describes the 

sharpness of the probability peak. The peak is high or low when the kurtosis is greater than or less than 

3, respectively. For a normal distribution, the skewness and kurtosis are equal to 0 and 3, respectively. 

The equations for skewness and kurtosis are as follows: 
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where Sx and Kx refer to the skewness and kurtosis,   is standard deviation of the in-situ soil  

moisture, x  is the mean in-situ soil moisture, xi is the in-situ soil moisture at station i, and n is the 

number of stations. 

2.2. Uncertainty of in-Situ Soil Moisture 

There is unavoidable uncertainty when single in-situ soil moisture is used as spatial representative. 

According to Equation (1), the uncertainty includes two different forms. The first one is the sampling 

error between the spatial soil moisture and the “actual” value. The second form is the spatial variability 

of in-situ soil moisture. It is assumed that the two data samplings (sample_A and sample_B), with 

equal sample numbers, are designed for a large area, A, and a small area, B, through the optimization 

method above. Furthermore, several sample stations of sample_B (sample_BA) locate in the extent of 
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A. As mentioned, the sampling configurations capture the variations of soil and environmental 

variables at the corresponding scales. The spatial mean soil moisture of sample_B is accurate for the 

sufficient sample stations in a small area. However, since the sample number and environment change, 

mean value of sample_BA is inaccurate to reflect the spatial representative, the sampling error can be 

described as: 

( )A BASEU abs SM SM   (4)

where SEU  is the uncertainty of sampling error. ASM  and BASM  are the spatial mean of sample_A 

and sample_BA. abs means the absolute value. 

Standard deviation (SD) is used to evaluate the natural spatial variability of in-situ soil moisture. 

This index describes the variance between the in-situ soil moisture and the spatial mean, which refers 

to the error when single in-situ soil moisture is selected to represent the spatial mean [24,30]. 

Furthermore, this study uses the coefficient of variation (CV), which is obtained by the division of SD 

to spatial mean, to evaluate the relative variability [43]. 

Absolute and relative uncertainties are finally calculated. The absolute uncertainty (Uabs) is the 

summarization of sampling error and spatial variability. The relative uncertainty (Urel) is also proposed 

to measure the degree with spatial mean. Two uncertainties are written as: 

abs SE

abs
rel

U U

U
U

x

 


 (5)

where Uabs and Urel refer to the absolute and relative uncertainties. SEU  is defined for Equation (4),  

x  and   are spatial mean and standard deviation. 

3. Materials and Data Processing 

The study area is located in the Daman irrigation district of the Heihe River Basin, China (Figure 1). 

The basin is the second largest inland river basin and is representative of all of the inland river basins 

in China. The water-ecosystem-economy relationship at the basin has attracted considerable researcher 

attention [44]. With respect to the study area, topography is flat, with the terrain slope gently tilting 

downward from west to east, with elevation ranges from 1560 to 1447 m [45]. Land cover is relatively 

heterogeneous, which is covered by large areas of corn and non-vegetation. Two data sets are used in 

this study. The first one is the WaterNET (44 sample stations) dataset observed by Hydro Probe II with 

an extent of 4 × 4 km2 (10.3972/hiwater.118.2013.db). The second one is the SoilNET (50 sample 

stations) dataset observed by SImple SOil MOisture Probe (SISOMOP) with an extent of 1 × 1 km2 

(10.3972/hiwater.120.2013.db). Overall, 6 sample stations of WaterNET (sub_WaterNET) locate 

within the extent of SoilNET. The Hydro Probe II is the first moisture sensor to use the digital 

microwave moisture measurement technique. Measurements are taken 25 times per second as the 

material passes over or around the sensor face, meaning that the sensor can rapidly detect changes in 

moisture levels. Soil moisture measuring part of SISOMOP is based on a ring oscillator whose 

frequency is changing with water content. It allows on site water content measurements without 

knowledge of the tested soil. Two types of probes are installed horizontally at a depth of 4 cm and 
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measure soil moisture at 10 min intervals [46]. The observed data sets are obtained from the Cold and 

Arid Regions Sciences Data Center at Lanzhou from 1–31 July 2012 [47]. To eliminate random errors, 

the hourly mean soil moisture is calculated and used in this study. Because two types of probes are 

used in this study, the systematic measurement difference should be calibrated. For this aim, data sets 

from the nearest in-situ stations of WaterNET and SoilNET are selected. Then, the measurement 

difference is eliminated through the method of regression analysis. 

 

Figure 1. Study area. 

Rainfall plays an important role in soil moisture and its spatial variability. It causes sharp changes in 

soil moisture that is helpful for capturing the dynamic characteristics. Furthermore, rainfall also 

generates a heterogeneous surface that covered by ponded and non-ponded area, which increases the 

spatial variability of soil moisture [48]. Therefore, it is important to analyze the uncertainty during a 

typical rainfall process. As shown in Figure 2, the highest daily rainfall (15.8 mm) occurred on the 

16th day of the observation period. Under this condition, spatial mean of soil moisture increases from 

20.5% to 39.7% for WaterNET and from 25.3% to 37.6% for SoilNET. The changes of soil moisture 

cover from capillary disrupting moisture to field capacity of the study area [49]. It indicates that the 

maximum range of soil moisture change could be observed under this rainfall event. In other words, 

the uncertainty in every soil moisture conditions could be captured. Therefore, the period from the 16th 

to 19th is selected as the study period. Next, the two phases are further divided according to the soil 

moisture dynamics. Phase I (16 July 2012 5:00 p.m.~17 July 2012 1:00 a.m.) occurs during rainfall as 

the soil moisture increases, and phase II (17 July 2012 2:00 a.m.~19 July 2012 11:00 p.m.) occurs after 

rainfall as the soil moisture decreases. 
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Figure 2. Hourly mean soil moisture and rainfall for the WaterNET and SoilNET datasets 

during the observation period. 

4. Results 

4.1. Overall Condition of Soil Moisture 

As shown in Figure 2, there are similar temporal trends between WaterNET and SoilNET, while the 

soil moisture values are different. The mean soil moisture of WaterNET and SoilNET are 31.3% and 

32.6% throughout the study period, 31.9% and 32.1% during rainfall, and 31.2% and 32.7% after 

rainfall. The PDF also varies in different phases. During rainfall, a sharp peak at high soil moisture is 

observed. After rainfall, however, the peak occurs at low soil moisture and is depressed, which results 

in a flat PDF. Specifically, the mean skewness and kurtosis of WaterNET are 0.55 and 4.25 throughout 

the study period. During rainfall, these values are 0.27 and 3.23, which are lower than the values after 

rainfall (0.59 and 4.38). With respect to SoilNET, the mean skewness and kurtosis values are 0.07 and 

2.24 throughout the study period, 0.22 and 2.76 during rainfall, and 0.05 and 2.18 after rainfall. 

More specifically, this study selects three typical moments to investigate the PDF changes: the start, 

maximum and end. The first moment refers to the beginning of the study period, the second one is the 

time at which the highest soil moisture occurs and last one refers to the end of the study period. PDF in 

these three moments capture the possible changes over the study period. Figure 3 shows the PDFs of 

WaterNET and SoilNET at the three moments. Regarding WaterNET, the in-situ soil moisture  

presents a pulse distribution at the start (start-W). Overall, 70.45% of the in-situ soil moisture varies 

from 24% to 28%. Under this distribution, the skewness and kurtosis values are 0.47 and 2.96. These 

results imply that the in-situ soil moisture is close to each other, which potentially generates 
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homogeneous spatial soil moisture with low spatial variability. The PDF shows normal distribution 

when the spatial mean reaches maximum (maximum-W). The skewness and kurtosis values are −0.59 

and 3.61, with 77.27% of the soil moisture falls into the range from 36% to 48%. After rainfall, the soil 

moisture of SoilNET decreases and generates a new peak at the low soil moisture, with 70.45% of the 

soil moisture varies from 24% to 28% (end-W). Under this condition, the in-situ soil moisture is 

similar with minor differences, which generates homogeneous spatial soil moisture. 

 

Figure 3. The probability density function (PDF) of soil moisture during rainfall for 

WaterNET (at top) and SoilNET (at bottom). “start”, “maximum” and “end” refer to the 

three typical moments of soil moisture begins to increase, reaches its maximum and the 

end of the study period. “W” and “S” are the abbreviations of WaterNET and SoilNET. 

For SoilNET, a soil moisture peak occurs at the low soil moisture at the start, with skewness  

and kurtosis values of −0.24 and 2.62 (start-S). At this moment, 86.18% of the in-situ soil moisture 

varies from 24% to 32%. Next, the soil moisture increases during rainfall. The distribution becomes 

flat when the mean soil moisture reaches its maximum (maximum-S). Specifically, 96.23% of the  

in-situ soil moisture varies from 28% to 52%, with skewness and kurtosis values are 0.23 and 2.72. 

This finding indicates that the soil moisture presents significant spatial variations, which may result in 

a high uncertainty. At the end of the study period, the soil moisture decreases to its minimum value. At 

this time, the soil moisture peak occurs at low soil moisture (with a skewness of 0.01 and a kurtosis of 

2.02) (end-S). Meanwhile, 78.54% of the soil moisture is between 28% and 36%. Soil moisture returns 

homogeneous, which would reduce the uncertainty. 

4.2. Spatial and Temporal Characteristics of Uncertainty 

As mentioned above, the uncertainty contains sampling error and spatial variability. This study 

firstly examines the sampling error of WaterNET soil moisture. Figure 4 shows the mean soil moisture 

of sub-WaterNET, WaterNET and SoilNET. The change trends are highly similar, while the values are 

different. The soil moisture of sub-WaterNET is close to that of WaterNET but lower than that of 
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SoilNET, particularly in dry period. As described in the Section 2, spatial mean of SoilNET is accurate 

for the sufficient sample stations in a small area. However, the value of WaterNET is relatively 

inaccurate, which contains unavoidable sampling error. Taken the spatial mean of SoilNET as a 

reference, the sampling error of WaterNET is calculated through Equation (4), with a mean error of 

2.9% over the study period. Temporally, the values of sampling error are 3.3% and 2.8% during and 

after rainfall. Furthermore, the sampling error varies with soil moisture condition, which is relative low 

in wet period and high in dry soil moisture. 

 
Figure 4. Comparison of the mean soil moisture of sub-WaterNET, WaterNET and SoilNET. 

The spatial variability of WaterNET and SoilNET soil moisture are shown in Figure 5. SD of 

WaterNET is 5.9% throughout the study period, 8.3% during rainfall and 5.6% after rainfall.  

These values are 5.6%, 6.9% and 5.5% for SoilNET. The mean values of CV are 0.19 for WaterNET 

and 0.17 for SoilNET. Temporally, the values of CV are 0.26 and 0.21 during rainfall and 0.18 and 

0.16 after rainfall for WaterNET and SoilNET, respectively. It can be seen that spatial variability 

increases with the increasing extent, which is consistent with the prior studies [22–24,28–30]. It is 

because land cover is more heterogeneous in large area, which enhances soil moisture variation. In 

addition, the variability shows significant temporal dynamics. Both SD and CV are high during rainfall 

and low after rainfall. It is mainly attributed to the spatial variability of soil property, which would 

generate heterogeneous infiltration [50]. Ma et al. [49] measured the soil moisture characteristic curves 

with matric potential increases from 0.2 to 13 bar. The data includes one measurement sample at 

SoilNET and 11 at WaterNET. As shown in Figure 6, the curves are quite different, which 

demonstrates that the soil property is heterogeneous in the study area. Furthermore, the difference of 

in-situ soil moisture increases from 14.0% to 17.2% with the spatial mean increases from 18.6% to 

46.4%. It implies that the increasing rate for in-situ soil moisture is quite different during rainfall. The 

spatial variability would increase with the increasing soil moisture. It is worth noting that SD and CV 

of WaterNET increase at hour 37. The reason is that the field station 14# location is irrigated by the 

farm owner. The single in-situ soil moisture therefore increases from 22.7% to saturation (53.6%), 

which also increases the variance of in-situ soil moisture. Because the irrigation area is small, its effect 

on the spatial variability over the extent of WaterNET can be neglected. To represent the actual 

condition, soil moisture of station 14# is preserved in the later statistics and analysis. 
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Figure 5. Dynamics of the spatial variability for SoilNET and WaterNET. 

 
Figure 6. Soil moisture characteristic curves of the SoilNET and WaterNET samples.  

S means the measurement sample at SoilNET and W*# means the samples at WaterNET. 

The “actual” uncertainty is the combination of sampling error and spatial variability. Figure 7 shows 

the uncertainty of WaterNET, sub-WatetNET and SoilNET. The lowest uncertainty occurs in SoilNET. 

Specifically, the mean Uabs are 8.8%, 6.6% and 5.6% for the WaterNET, sub-WaterNET and SoilNET. 

These values are 11.7%, 10.0% and 6.9% during rainfall, and 8.5%, 6.2% and 5.5% after rainfall. 

Meanwhile, the Urel are 0.26, 0.21 and 0.17 over the study period, 0.34, 0.32 and 0.26 during rainfall, 
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and 0.25, 0.19 and 0.16 after rainfall. The uncertainties of sub-WaterNET and SoilNET are lower than 

those of WaterNET, which is attributed to the heterogeneous environmental variables. Temporally, 

uncertainty is high during rainfall and low after rainfall. For SoilNET, soil moisture increases as 

rainwater enters the soil. However, this increased rate is different for the heterogeneous soil properties. 

After rainfall, soil moisture decreases through evapotranspiration. Because the main influencing 

factors of evapotranspiration (i.e., soil property, land cover) are homogeneous in a small area, similar 

soil moisture decreases would be observed. Under this condition, soil moisture is homogeneous and 

uncertainty is low. Uncertainty of WaterNET increases consistently during phase II after rainfall; the 

reason is that the sampling error of WaterNET increases and enhances the uncertainty with the drying 

soil moisture (Figure 4). 

 
Figure 7. The absolute (top) and relative (bottom) uncertainties of SoilNET,  

sub-WaterNET and WaterNET. 

It is important to identify the representative in-situ soil moisture for validation or calibration of 

satellite-retrieved data. Previous studies that employed the “temporal stability” analysis revealed that 

in-situ data has similar trend with spatial soil moisture of a large area, which helps to identify the 

representative in-situ soil moisture [51–54]. Figure 8 shows the differences between each in-situ soil 

moisture and the spatial mean of WaterNET and SoilNET. The minor differences occur in station 2#  

(<0.1%) for WaterNET and station 5# (0.2%) for SoilNET. Meanwhile, the corresponding time 

standard deviations are also minor. It means that soil moisture from these two in-situ stations are 

closed to the spatial mean continuously, which could be used to represent the spatial soil moisture and 

validate the corresponding satellite-retrieved data sets. 
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Figure 8. Rank ordered mean relative differences with standard deviation (vertical bar) for 

the soil moisture monitoring campaigns carried out for: (a) WaterNET and (b) SoilNET. 

4.3. Correlations between Uncertainty and Soil Moisture 

This study then examines the correlations between uncertainties with spatial mean and PDF  

(Table 1). At WaterNET scale, correlations with PDF are mainly higher than that with spatial mean. 

That is because sampling error influences the uncertainty significantly at a large scale. In other words, 

the spatial pattern, which is determined by sampling configuration, is strongly correlated to the 

uncertainty. Temporally, the correlations are weak during rainfall. The correlation coefficients (R) are 

mainly less than 0.4, except for the correlation between the uncertainties of the mean soil moisture and 

kurtosis. After rainfall, however, this significance increases (R > 0.7). Moreover, the coefficients of 

relative uncertainty (Urel) are much greater than those of the absolute uncertainty (Uabs). It means that 

Urel after rainfall could be estimated from soil moisture if the regression is built at a large area. 

Meanwhile, both Uabs and Urel present negative correlations to spatial mean after rainfall. The reason is 

that soil moisture decreases in this phase, while the uncertainty increases with the increasing sampling 

error in dry condition. 

In contrast with WaterNET, uncertainty is mainly positively correlated to the spatial mean in 

SoilNET. Meanwhile, correlations with spatial mean (R > 0.8) are higher than with PDF (R < 0.8).  

It means that as environmental variables (i.e., land cover and topography) are relatively homogeneous 

at a small area, uncertainty of in-situ soil moisture is strongly correlated to the spatial mean. 

Furthermore, the correlation coefficients of Uabs are greater than those of Urel. That is because Urel 
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eliminates the effects of spatial soil moisture according to its calculation equation. Temporally, the 

correlations are mainly lower during rainfall than after rainfall. That is because soil property is the 

main influencing factor of soil moisture variability at small area. It generates heterogeneous infiltration 

during rainfall and increases the uncertainty, which weakens the correlation with soil moisture. 

Table 1. Correlations between uncertainties with the mean soil moisture and PDF. 

WaterNET 

phase index 
Uabs Urel 

R p R p 

I 

mean 0.59 0.091 −0.10 0.839 

skewness −0.28 0.45 0.40 0.288 

kurtosis −0.57 0.112 0.17 0.659 

II 

mean −0.08 0.688 −0.74 <0.001 

skewness 0.37 0.001 0.85 <0.001 

kurtosis 0.69 <0.001 0.93 <0.001 

SoilNET 

phase index 
Uabs Urel 

R p R p 

I 

mean 0.95 <0.001 0.82 0.007 

skewness 0.66 0.051 0.80 0.01 

kurtosis −0.14 0.689 −0.07 0.945 

II 

mean 0.96 <0.001 0.89 <0.001 

skewness 0.57 <0.001 0.55 <0.001 

kurtosis 0.65 <0.001 0.62 <0.001 

5. Discussion 

It was necessary to discuss and distinguish the concepts of measurement uncertainty, error and 

accuracy. Error and accuracy referred to the difference and closeness between a specific measurement 

result and the true value, which were usually adopted to evaluate the measurement quantity.  

However, the measurement result varied in measurement exercises, which usually present a random 

distribution pattern and generated significant uncertainty for the specific measurement [55,56]. 

Therefore, it was required to quantify this uncertainty before evaluating the measurement quantity. 

This study revealed the complex characteristics of uncertainty at different spatial scales, which 

required a further discussion. In previous studies, sampling configurations were the same across 

different spatial scales, and the sampling error was neglected [22–24,28–30]. However, in-situ soil 

moisture networks were usually built using multiple strategies, which would generate significant 

sampling error. Result of this study revealed that sampling error increases in drying condition at a large 

extent, which played an important role in the degree and dynamics of uncertainty. Thus, sampling error 

should be considered when examining uncertainty. 

The land surface characteristics (land cover, topography and soil property) were main factors 

influencing on soil moisture spatial variation at basin and regional scales [57,58]. Wind was also an 

important factor affecting evapotranspiration and subsequently the uncertainty, while its effect was 

temporary when compared with the factors above. The study area was characterized by the flat 
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topography and heterogeneous land cover and soil property with the increasing extent. Under this 

condition, the uncertainty was higher at a large scale than at small scale. Because of the heterogeneous 

infiltration that generated by soil property (Figure 6), uncertainty was high during rainfall. The spatial 

and temporal characteristics of uncertainty were useful for obtaining accurate spatial soil moisture and 

for validating and calibrating satellite-retrieved data sets. They could also help to identify the 

representative in-situ soil moisture (station 2# for WaterNET and station 5# for SoilNET in this study) 

through the time stability analysis. Uncertainty was strongly correlated to spatial mean at small scale 

(SoilNET). That was because environmental variables are homogeneous at small scale, the uncertainty 

was mainly correlated to the soil properties and soil moisture itself. At large area (WaterNET), the 

heterogeneity of soil moisture increased for the effects of environmental factors, which generated a 

significant correlation between relative uncertainty to the PDF. Through the correlations, the empirical 

regressions between uncertainty and soil moisture could be built. These regressions can be further used 

to calculate the uncertainty, including its evolution with drying and wetting [24]. 

The results of this study could be used to evaluate the uncertainty of in-situ soil moisture for 

different remote sensing footprints. The environmental variables play complex and interactive role in 

the uncertainty, which are generally difficult to isolate and measure [28]. Famiglietti et al. [24] further 

concluded that each factor can either enhance or reduce the spatial variability of soil moisture 

depending on how it is spatial distributed and how it is combined with other factors. Because soil 

moisture was influenced by several factors with complex interactions, no single factor can fully 

explain soil moisture variability. Thus, a comprehensive investigation regarding the causes of the 

spatial variability of soil moisture and their effects on uncertainty should be performed. 

6. Conclusions 

In this study, the uncertainty of in-situ soil moisture was quantified with the combination of spatial 

variability and sampling error. Table 2 summarized the composition of uncertainties at different scales 

with examinations of WaterNET and SoilNET. The weights of spatial variability and sampling error to 

the uncertainty varied with scales. At a small scale, the effect of sampling error could be neglected and 

the uncertainty referred to the spatial variability of soil moisture. At a large scale, however, sampling 

error played an increasing role. 

Table 2. Uncertainties of WaterNET and SoilNET. 

Network Time Sampling Error (%) SD (%) CV Uabs (%) Urel 

WaterNET 

study period 2.9 5.9 0.19 8.8 0.26 

phase I 3.3 8.3 0.26 11.7 0.34 

phase II 2.8 5.6 0.18 8.5 0.25 

SoilNET 

study period -- 5.6 0.17 5.6 0.17 

phase I -- 6.9 0.21 6.9 0.21 

phase II -- 5.5 0.16 5.5 0.16 

The results of Table 2 revealed that the uncertainty of soil moisture increased with increasing 

extent, which were consistent with the previous studies [22–24,28–30]. Temporally, the uncertainty 

was higher during rainfall than that after then. It could be concluded that uncertainty of in-situ soil 
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moisture was relative low at a small scale after rainfall, which could be used to validate  

satellite-retrieved soil moisture. The uncertainty was strongly correlated to soil moisture, which varied 

with spatial and temporal scales. Generally, the uncertainty was strongly correlated to mean soil 

moisture at a small scale and was to the spatial pattern at a large scale. Temporally, the correlations 

were weak during rainfall. Therefore, researchers should consider the temporal characteristics and 

influencing factors when discussing the uncertainty. 

This study evaluated the uncertainty of in-situ soil moisture at different scales. As mentioned above, 

the uncertainty was influenced by several factors with complex interaction. The relationship between 

the uncertainty and its influencing factors would be investigated in the further research. 
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