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Abstract: Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space 

Exploration Agency (JAXA), a program to develop an Earth Science Data Record (ESDR) 

for inundated wetlands was funded by NASA. Using established methodologies, extensive 

multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument 

onboard ALOS were used to classify the inundation state for South America for delivery as  

a component of this Inundated Wetlands ESDR (IW-ESDR) and in collaboration with JAXA’s 

ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and 

the final classification of the inundation state, then compared this with results derived from 

dual-season data acquired by the JERS-1 L-band SAR mission in 1995 and 1996, as well as 

with estimates of surface water extent measured globally every 10 days by coarser resolution 

sensors. Good correspondence was found when comparing open water extent classified from 

multi-temporal ALOS ScanSAR data with surface water fraction identified from coarse 

resolution sensors, except in those regions where there may be differences in sensitivity to 
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widespread and shallow seasonal flooding event, or in areas that could be excluded through 

use of a continental-scale inundatable mask. It was found that the ALOS ScanSAR 

classification of inundated vegetation was relatively insensitive to inundated herbaceous 

vegetation. Inundation dynamics were examined using the multi-temporal ALOS ScanSAR 

acquisitions over the Pacaya-Samiria and surrounding areas in the Peruvian Amazon.  

Keywords: SAR; wetlands; ALOS; inundation; double-bounce 

 

1. Introduction 

The lakes, rivers, and wetlands of the lowland Amazon Basin span at least 800,000 square 

kilometers [1,4]. Each year the runoff from heavy seasonal rains causes extensive and prolonged 

flooding of vegetated environments. These seasonally, semi-permanently or permanently inundated 

areas, in addition to forming biologically diverse habitats, also regulate biogeochemical processes such 

as the generation of methane and the outgassing of CO2 [2–5]. The flooding dynamics will also be 

impacted by any future changes in rainfall and evapotranspiration; some global circulation models 

predict that annual rainfall rates in the Amazon Basin could decrease substantially in the next several 

decades (e.g., [6,7]). The ability to accurately monitor changes in inundation extent, including 

uncertainties and possible biases, would support the study of possible climatological tipping points in 

regions where extensive inundation is prevalent [8]. 

Earth’s globally distributed wetlands are the largest natural sources of methane. However, extensive 

disagreements exist between wetland maps and available remotely sensed inundation data sets, in 

particular those that specifically target the extent of vegetated wetlands. Of particular note for global 

methane modeling, saturated non-inundated wetlands are also important, given that many wetlands will 

continue producing methane at depth even if there is no standing water [5].  

The flooding dynamics of the wetland areas be can difficult to study by traditional optical  

remote sensing techniques due to frequent cloud cover and the difficulty of detecting sub-canopy 

inundation [9,10]. One alternative approach is to use a suite of complementary satellite measurements 

to estimate factional extent of inundation at a coarse scale [11]; however, these data sets necessitate the 

masking of non-wetland areas and could have difficulty detecting inundated areas under the dense forest 

canopies in tropical regions [5]. One recent technique consists of using very coarse resolution gravity 

data from the National Aeronautics and Space Administration (NASA) Gravity Recovery and Climate 

Experiment (GRACE) mission in combination with satellite altimetry data and other sources of data to 

estimate the volume of water filling and draining from large wetlands [12,13]. Perhaps, the best results 

for the detection of inundated vegetation and open water at fine resolution scales and on large regional 

scales (though not yet global) have been obtained through the use of Synthetic Aperture Radar (SAR) 

polarimetric backscatter data (e.g., [2,9,14–18]). An important feature of SAR is that cloud cover is 

irrelevant to the detection of inundation, and SAR technology therefore allows for a detailed examination 

of the seasonal dynamics of the flooding extent at resolutions better than 100 m. 

We will describe the development of regional-scale moderate-resolution inundation products based 

on space-borne L-band Synthetic Aperture Radar (SAR) data from the Japan Aerospace Exploration 
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Agency’s (JAXA) ALOS PALSAR instrument. ALOS PALSAR data were provided to this task through 

an international science program led by JAXA called the Kyoto and Carbon (K&C) initiative. The 

objective of the K&C Initiative is to support data and information needs of international environmental 

conventions, carbon cycle science, and conservation of the environment. The initiative established a 

global systematic observation strategy for ALOS PALSAR that includes repetitive and consistent 

mapping of the world’s major wetland regions [19]. For several years, the K&C Initiative was based on 

three coordinated themes relating to global biomes (Forests, Wetlands, Deserts and Semi-Arid Regions), 

and a fourth theme dealing with the generation of regional ALOS PALSAR mosaics. One of the 

motivations of the mosaicking theme lies in the historical context of the Global Rain Forest Mapping 

project (GRFM) [19] in which JERS-1 SAR imagery from selected forest areas around the globe 

(Southeast Asia, Amazon Basin, Africa, Boreal North America) were calibrated and mosaicked for 

further use by the scientific user community.  

Since the GRFM project, there have been several technology enhancements that made mosaic 

generation more straightforward: path processing of the image strips, reductions in cost of resources, 

improved position accuracy for the ALOS satellite, and the existence of a near global high resolution 

Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) for  

ortho-rectification and calibration [20]. 

The results of this work, funded by the NASA Making Earth System Data Records for Use in 

Research Environments (MEaSUREs) program office, are to become part of an Earth Science Data 

Record (ESDR) documenting inundated wetlands. 

2. Methodology 

The production of regional scale inundation products required the following processing steps: 

accurate orthorectification of the data, radiometric terrain correction, relative and absolute calibration 

corrections, image mosaicking, and image classification. Many of the described processing steps are 

CPU intensive. To facilitate the processing of these data, in particular the ortho-rectification of the data, 

some processing was conducted at the NASA Advanced Supercomputing Division located at the NASA 

Ames Research Center (NASA Ames, 2014) [21].  

2.1. Description of Satellite Data 

ALOS PALSAR, an orbiting L-band SAR launched by the JAXA in 2006, pursued a global 

observation strategy through the mission’s end of life in April 2011. By restricting both the mode and 

the look angle for many of the observations, a time sequence of regionally consistent imagery was 

produced [22]. Here, results will be shown from using ALOS PALSAR while it was operating in 

ScanSAR mode. When in ScanSAR mode, ALOS PALSAR had a swath width up to a 350 km, a 

resolution of 100 m with three looks, and a noise equivalent σ° better than −23 dB [23]. 

During orthorectification and radiometric calibration of the ALOS ScanSAR data, the DEM generated 

by the SRTM mission was utilized. There are several processing versions available for the SRTM DEM, 

but this study used SRTM processing version 2.1 [24]. In South America, the pixel spacing was 

3 arcseconds, which corresponds to about 90 m at the equator. Vertical height accuracy of this DEM was 

found to be better than 7 m in South America [25]. 
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JERS-1 SAR was an L-band SAR launched by Japan Aerospace Exploration Agency (then known as 

“NASDA”) in 1992 and discontinued operations in 1998. The HH polarization SAR imaged the Earth 

at an incidence angle centered at 35 degrees, and at its full resolution of 18 m the data had three looks. 

Its noise equivalent σ° was −18 dB [26]. 

AMSR-E was a dual-polarized total-power passive microwave radiometer provided by JAXA with 

12 channels and six frequencies ranging from 6.9 to 89.0 GHz. It was launched onboard the Aqua 

satellite and discontinued operations in October 2011. The instrument was designed to measure 

precipitation, oceanic water vapor, cloud water, near-surface wind speed, sea surface temperature, soil 

moisture, snow cover, and sea ice parameters [27,28]. 

2.2. Orthorectification and Radiometric Terrain Calibration 

Orthorectification of the data consisted of resampling the geocoded slant range data into a well-known 

projection and file format. SAR image radiometry is impacted by topographic slope. This terrain-induced 

change in backscatter can mimic the signature of inundated wetlands in areas where there should be no 

inundated wetlands (i.e., hilly terrain). It is well known how to correct the radiometry of the image for 

this effect, but it requires that the imagery be well registered to the topographic data (e.g., [29]). In 

addition, the elevation of the ground impacts the geometric translation of the slant range imagery when 

projected onto the topographic model of the Earth. 

The JAXA Earth Observation Research Centre (EORC) provided ScanSAR mode slant range image 

strips for use by the science team of the ALOS K&C Initiative. These ScanSAR image strips were 

typically thousands of kilometers in length, but have reduced resolution compared to that obtained during 

standard processing. JAXA refers to these image products as “path” image products [30]. 

First, topographic data were constructed from the publicly available SRTM DEM. Since the image 

strips extend across continental-scale regions, we created SRTM—like “tiles” of topography information 

corresponding to Universal Transverse Mercator (UTM) zone definitions, each tile therefore being 

approximately 6° × 8° in size. The tiles are reconstructed from the SRTM data to be slightly larger than 

the strict UTM zone definition to accommodate edge effects. These tiles remained in the standard SRTM 

projection, a rectangular latitude/longitude grid with a pixel spacing of 3 arcseconds. Since the ScanSAR 

path image products have a spatial resolution of approximately 100 m, the resolutions of the DEM and 

ScanSAR imagery are roughly comparable.  

For orthorectification and radiometric terrain correction, a software package from Gamma Remote 

Sensing [31] was employed. Each processed path image was projected onto the DEM of each UTM zone 

that it passed through. To correct residual geolocation errors, the Gamma Remote Sensing package 

includes software for well-known techniques for estimating and correcting offsets between images [32]. 

This software is designed to assist in co-registering pairs of SAR images prior to interfering them, but 

also can be used to correct the image geocoding parameters.  

Wetland areas in our study regions are challenging, as they are highly dynamic. The rivers and 

wetland areas frequently change in appearance and sometimes slightly in location. However, we found 

that cross-correlating the imagery against a SAR image based on the SRTM DEM (i.e., as described 

in [33]) can be effectively used to determine geocoding errors. 
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The range and azimuth offsets sampled from 388 UTM grid-zone-projected images prior to correction 

were examined (see Figure 1). The mean range offset was found to be −0.22 pixels in range, and 

−0.54 pixels in azimuth, with a standard deviation of over 4 pixels. If we exclude outliers from one 

particular orbit path in which the offsets were consistently greater than 10 pixels, we found that the mean 

range offset was 0.34 pixels and the mean azimuth offset was −0.22 pixels, with a standard deviation of 

about 2 pixels. The range spacing for the path images was 37.5 meters in range and 70 m in azimuth, 

which led to a mean range offset of 12.8 m ± 82.5 m, and a mean azimuth offset of −15.4 m ± 119 m 

(excluding RSP424). Although the mean offset was quite small, the offset for each image was not a 

simple overall range and azimuth shift, but a varying shift in both range and azimuth. To compensate 

for this variability, a standard 6th order polynomial was fit to the varying range and azimuth offsets and 

used to correct the varying shift for each UTM grid-zone-projected path image. 

 

Figure 1. Mean offsets of 388 UTM grid-zone-projected path images from SRTM DEM. 

Once the data were accurately geocoded with respect to the UTM grid-zone tiles, the radiometric 

terrain correction could be applied. The objective of the radiometric terrain correction is to determine 

the normalized radar backscatter γ° in the ground plane from the slant range σ° imagery provided by 

JAXA. The following equation was implemented by a set of code from Gamma Remote Sensing: 

γ°x,y = σ°x,y × Ax,y × cos(θmid)/cos(θx,y)  (1)

where γ°x,y is normalized, terrain-corrected radar backscatter for each pixel (x,y); σ°x,y is the ground 

projected sigma-naught values from JAXA for each (x,y) ground pixel; θmid is the mid-swath incidence 

angle used by JAXA when calculating the original sigma-naught image; θx,y is the local incidence angle 

at each (x,y) ground pixel; and Ax,y is the pixel size normalization factor for each (x,y) pixel calculated 

from the projection angle, which is the angle between the surface normal and the image plane normal. 

Note this correction is only effective if we have an accurate assessment of the slope of the imaged terrain. 

Radiometric errors due to sub-pixel topographic slope variability cannot be corrected.  
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2.3. Relative and Absolute Calibration 

Although the data have been generally corrected for radiometric error due to measured slope, errors 

in relative and absolute calibration remain in the imagery. Relative calibration errors are generally visible 

as brightness trends in the along-track or cross-track directions. Absolute calibration errors are absolute 

offsets that are noticeable when examining a temporal sequence of images from the same orbit geometry 

and observation mode. 

There were several empirical approaches taken to correct for these remaining radiometric errors. 

When we use an empirical approach during calibration refinement, we must make some assumptions 

that may on occasion be violated. Some environmental conditions will result in changes in  

radar-backscattered brightness, and these changes in brightness may be incorrectly interpreted as 

calibration errors. When these “calibration errors” are “corrected”, the resultant imagery will actually be 

obscuring a real physical change in radar brightness. However, we chose to enforce consistent 

radiometry across the multi-temporal sequence of SAR images to more robustly enable the detection of 

inundation. Fortunately, the signatures of inundation, open water and inundated vegetation, are generally 

quite distinct from second order radiometric changes caused by physical changes in the environment 

such as changes in moisture content.  

When calibrating the long path image strips from the JAXA EORC path image product, we also must 

assume that the relative calibration accuracy may vary in both the along-track and cross-track direction. 

We must therefore take care to insure that the average calibration correction applied to any given image 

is 0 dB, so as not to introduce absolute calibration errors when calibrating relative calibration errors. The 

most common relative calibration error that required correction was visibly apparent as “banding” in the 

radiometry, typically aligned in the cross-track direction. Absolute calibration errors were evaluated by 

comparing individual images with the average image brightness of the multi-temporal stack of images 

Ia, then comparing with the radar image brightness in adjacent UTM grid zones; sometimes several 

iterations of calibration were required before the imagery converged to a stable value. 

Two simple methods were used to identify and evaluate absolute calibration errors. First,  

the ortho-rectified image segments can be stitched into a single image to form a mosaic. There are several 

available options for deciding which pixel from multiple images is preserved in the mosaic when a 

location on the ground is imaged in more than one pass. The option we chose was to have the far-range 

portion of the imagery take precedence over the near range-imagery. We chose this option because the 

backscatter from open water can be more variable in the near range due to wind roughening of the water 

surface. We ignored zero-fill areas. Second, after a mosaic is constructed, it sometimes is visibly 

apparent that adjacent images have a significant difference in brightness. This manifests as a banding 

effect within the mosaic and may make it problematic to correctly classify the status of inundation in 

wetland areas. We therefore compared individual orthorectified image strips with the average image 

brightness of all the images within the UTM grid-zone, then performed the adjustments described below. 

The image brightness can vary for a variety of reasons. In addition to environmental factors, the 

instrument calibration may be in error, or there may be processing errors introduced at some stage. Given 

that the radar backscatter of targets varies with incidence angle and with target type, and given that 

ScanSAR data have a wide range of incidence angles within a swath (from 20°+ to 40°+), some banding 

may be due to the varying nature of the scattering of whatever is on the ground. Recent changes in 
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moisture content of vegetation and/or ground soils can result in significant changes in backscatter as 

well [34]. In the context of making it easier to identify locations of inundated wetlands, this change in 

brightness, whatever its cause, can be compared with adjacent images or an image average, and an 

empirical adjustment performed. This may, however, obscure physical signatures in the data. Changes 

in backscatter texture and contrast due to some of these effects, in particular those due to varying 

incidence angles within an image, cannot be easily corrected. 

To examine this phenomenon more fully, 70 ScanSAR image strips were analyzed from UTM  

grid-zone tile 19 M in South America. For each pixel in the tile, the mean and standard deviation of the 

radiometrically corrected backscatter values were calculated, as well as the ratio of the standard 

deviation to the mean. If this ratio was less than 0.3 (which we found by observation typically indicated 

that the pixel was not predominately open water or occasionally inundated vegetation), the mean 

difference between the mean value and the individual value was determined. For these 70 ScanSAR 

image strips within tile 19 M, millions of pixels satisfied this criterion. The average mean-difference for 

each ScanSAR image strip was then calculated and plotted as a function of acquisition date (Figure 2). 

 

Figure 2. Average mean-difference between average image brightness and each of 

70 ScanSAR image strips in UTM grid-zone tile 19M. 

As can be seen from Figure 2, the mean difference typically varied less than 0.5 dB, with occasional 

divergence of almost 2 dB. For each UTM grid zone, the temporal sequence of imagery was examined 

for each path, and when necessary, an empirical correction to the absolute calibration was applied. 

Images from adjacent UTM grid zones were then visually compared to insure that systematic bias was 

not introduced. 

We expected that these radiometric and geometric terrain correction as well as other calibration 

adjustments when applied to the ALOS PALSAR data provide a more robust calibrated product for 

classification of inundation.  
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2.4. Mosaicking 

Mosaicking involves combining together orthorectified and calibrated image products into a single 

calibrated image product. Evaluation of the image mosaic products is helpful for determining processing 

and acquisition gaps, identifying residual calibration errors, visualization of the data, and inundation 

product development. For this work, we produced a multi-temporal image mosaic for the entire study 

region of South America, where each pixel on the ground represented the average of all SAR image 

pixels for that location on the ground. The advantage of this type of mosaic is that it represents  

a time-averaged history of each image pixel. Even if the temporal sampling interval is erratic, if the time 

sequence is long enough, the average brightness will be representative of the typical state of  

that pixel. The impacts of random calibration errors in the individual image segments are reduced 

through the averaging process. The disadvantage of this type of mosaic is that the actual temporal 

uniqueness of each SAR image is lost, as well as variation due to incidence angle. However, if the 

individual image segments are preserved as well, it is still possible to temporally track environmentally 

distinguishable changes. One advantage of all mosaicked products is that mosaicking eliminates 

overlapping coverage, simplifying the interpretation of the imagery.  

A Basic Observatory Strategy (BOS) for ALOS PALSAR was implemented by JAXA to facilitate 

temporally consistent acquisitions of data by PALSAR [22]. The BOS allocates the ALOS observations 

within its 46-day orbit cycle such that certain combinations of regions and modes were given high 

priority for scheduled observations. However, the success rate for this strategy varied slightly by region, 

mode and time period. 

To quantify the typical success rate, we examined intervals between successive ScanSAR 

acquisitions, where the intent was to image each pixel at least once every 46 days for a randomly selected 

1° by 1° area in South America (coordinates 7°S, 65°W) over an 18-month time period. The average 

interval between acquisitions somewhere in this region was 33 days. However, due to scheduling and 

other conflicts, there was one gap of 128 days and another gap of 90 days. A total of 18 ScanSAR 

acquisitions crossed this zone during this time period. The temporal sampling for each ground location 

was uneven, despite the use of an observing strategy designed to increase the likelihood of temporally 

consistent observations.  

Once the mosaic was constructed and calibrated from the slant range path images, a simple stitching 

algorithm for aggregating the UTM grid-zone tiles into a single image file could be used to obtain wider 

scale image mosaics. We generated multi-temporal ScanSAR mosaic of South America from 323 

ScanSAR path images acquired between late-2006 and mid-2010 (Figure 3). This mosaic is  

a time-averaged image and, therefore, not necessarily straightforward to interpret. However, it clearly 

delineates areas of interest for studying wetland dynamics using the individually ortho-rectified and 

calibrated path images. Martinez and Le Toan [35] showed that temporal filtering plus some spatial 

filtering increased the equivalent number of looks for improved classification of the imagery. 

Figure 4 shows the detailed appearance of the multi-temporal ScanSAR image mosaics at full 

resolution (3 arc seconds, or approximately 100 m). Due to the higher number of looks at each pixel, the 

image contrast is high compared to individual ScanSAR image swaths, and often makes it possible to 

clearly distinguish open water from sparsely vegetated areas and low-stature vegetated areas (which we 

will henceforth call “low vegetated areas”), and different gradations of vegetation density and height, 
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as well as clearly signifying those areas that experience inundation during some of the ALOS 

PALSAR acquisitions. 

 

Figure 3. Orthorectified ScanSAR mosaic of most of South America, late-2006 to mid-2010. 

Colored letters correspond to details shown in subsequent figures. © JAXA,METI. 

 

Figure 4. Cont. 



Remote Sens. 2015, 7 5449 

 

 

Figure 4. Yellow scale bar corresponds to 50 km, and the location of each sub-figure is 

shown in Figure 3. Generally, we may associate the brighter areas as caused by double-bounce 

reflections in inundated vegetation areas or urban regions. Water and bare soil appear dark 

and forest areas are medium-grey shades. Locations are indicated in Figure 3. (a) Noel Kempff 

National Park, Bolivia; (b) Deforestation near the city of Rio Branco, Brazil (bright area at 

center) and inundated Iquiri River floodplain; (c) Pacaya-Samiria Reserve, Peru; (d) middle Rio 

Negro; and (e) Orinoco Delta. © JAXA, METI. 

2.5. Image Classification 

The mechanisms responsible for the detection of inundation by L-band SAR are well known 

(e.g., [2,9,14,17,18,35]). Microwave energy scatters off open water, generally specularly reflecting off 

of the smooth water surface away from the radar. The resulting radar backscatter is low. Wind 

roughening can cause the backscatter from inland waters to increase, brightening the radar image. Where 

it is possible to choose from a catalogue of images, giving preference to those that imaged the target 

from larger incidence angles can often minimize this problem. Radar parameters such as the Signal to 

Noise Ratio (SNR) can affect the ability to distinguish open water from other dark targets such as bare 

ground. However, in general it has been found possible to identify open water in L-band radar imagery 

(e.g., [36]) due to the specular scattering mechanism. More interesting is the ability to distinguish 

inundation beneath a vegetation canopy. The microwaves transmitted by the radar, especially 

horizontally polarized radiation, scatter off both the flat open water surface and the vertically emerging 

vegetation (i.e., a “double-bounce” reflection). The latter results in a large fraction of the transmitted 

power being reflected directly back to the radar. The penetration by the microwaves through the 

overlying vegetation canopy can be quite effective and, despite volume scattering by the vegetation 

canopy and attenuation of the radar signal by the vegetation canopy, there is a strong return back to the 

radar. However, inundated vegetation is not the only landscape feature that results in double-bounce 

reflections. For instance, urban areas often exhibit double-bounce reflections off streets and vertically 
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oriented building structures (when the street is oriented parallel to the flight track of the radar system). 

Additionally, double-bounce is not the only mechanism resulting in bright image returns in an HH image; 

an extremely rough surface such as that often found in lava flows, also may produce very bright returns.  

The most common method by which scientists have been using L-band SAR data to detect inundated 

vegetation is through examination and classification of HH polarized imagery. One technique is to 

determine image brightness thresholds that are indicative of inundation (e.g., [1,18]). Other approaches 

employ image segmentation to classify the inundation characteristics based on characteristics of the 

spatially segmented region, though still dominantly based on the HH backscattered brightness [1]. Due 

to the extensive collection of multi-temporal ALOS ScanSAR data, we can also include the  

multi-temporal observations as factors in the classification of the imagery. 

Our objective was to use established algorithms for identifying inundation extent. Previous work has 

shown that (1) certain L-band brightness thresholds identify inundation and (2) dramatic temporal changes 

in L-band brightness can often indicate a change in inundation state. We describe here a classification 

approach used to identify inundation classes in South America from ALOS PALSAR acquired between 

late-2006 and mid-2010 while in ScanSAR mode. Because of uneven temporal sampling, a consistent time 

sequence showing periodic change in inundation for the entire Amazon basin was problematic. However, 

we assumed that after four years of numerous, yet sporadic, ScanSAR acquisitions, each pixel area on the 

ground would have been imaged in all inundation states that it might experience: not inundated, inundated 

vegetation, and/or open water. This was similar to the approach of Martinez and le Toan [35], where multi-

temporal JERS-1 data were classified into several different inundation classes. 

We did not attempt to explicitly identify aquatic macrophytes, as the range of L-band backscatter values 

that characterize floating macrophytes overlaps with other more distinct conditions. Aquatic macrophytes 

are believed to occupy between 5% and 8% of the wetland areas of the central Amazon Basin [1]. 

We first produce a multi-temporal radar backscatter image Ia, averaging the data from each acquisition, 

as described previously. When the terrain land cover does not change, the speckle from the individual 

ScanSAR images is reduced. For those areas experiencing environmental changes, the average will reflect 

the varying backscatter at the various time periods represented by the imagery. However, since open water 

and inundated vegetation are at opposite ends of the range of radar backscatter values, the average will 

tend to show evidence of these inundation events, especially if they are persistent.  

The first step was to examine Ia, and use threshold image brightness values to determine an initial 

class. The threshold backscatter values were obtained from Arenson et al. [18]. Examining ALOS 

ScanSAR data over the Curuai Lake floodplain, Arneson et al. obtained GPS-located photographs at 

one-degree incidence angle intervals across a ScanSAR image swath acquired at similar water level 

stage as the ScanSAR data. Using Landsat-5 TM data, Arneson et al. determined land cover type. They 

then used image segmentation techniques, to determine the range of backscatter values corresponding 

with various land cover types including non-flooded forest, flooded forest, open water, bare soil, and 

water bodies with emergent macrophytes. These backscatter values form the basis for the threshold 

image brightness values that we used in determining an initial class.  

We used the ESA GlobCover 2009 land cover classification product [37] sampled every 300 m to 

establish the location of urban areas that are difficult to distinguish from flooded vegetation based on 

radar backscatter values alone. See Table 1 for the criteria for each of eight classes. These initial classes 

may represent a typical land cover/inundation state for the period in question, but in areas where the 
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inundation state is variable, this initial class can only represent one of the possible inundation states that 

those areas may experience. In addition, an area that experiences both open water and inundated 

vegetation conditions on average may indicate non-inundated forest or low vegetation from the averaged 

radar backscatter. Individual ScanSAR acquisitions must be examined to clarify the variability, where 

the ratio of each ScanSAR image to Ia was used to indicate the likelihood that the inundation state found 

in the initial classification was variable. 

Table 1. Initial class identification from multi-temporal average radar backscatter and ESA 

GlobCover land cover classification product. 

Initial Class Radar Backscatter (dB)  GlobCover Class 

Urban  Ia > −5.9  190 1 

Flooded vegetation  Ia > −5.9  Any 

Forest  −5.9 > Ia > −9  Any 

Low vegetation  −9.0 > Ia > −13.7  Any 

Open water/low veg or bare  −13.7 > Ia > −19.0  Any 

Open water 1  Ia < −19  210 2 

Open water 2  Ia < −19  Any 

Topographic slope mask  

(if SRTM height difference to adjacent pixels exceeds 18 m) 
Any  Any 

1 Artificial surfaces and associated areas; 2 Water bodies. 

For identifying change in inundation state from the typical (initial) classification, we needed to 

identify those pixels where the individual ScanSAR images indicate a change in scattering signature 

from that given by the initial class. As single ScanSAR images are speckled due to the small number of 

looks at the posted spacing, we applied a 3 × 3 moving average filter to these data. We refer to the ratio 

of these multi-looked ScanSAR image pixel values to Ia as Δb. 

If the initial class for a set of pixels was forest, the typical state of those pixels as revealed by Ia 

corresponded with what we would expect in radar backscatter values for non-inundated forest. However, 

if one or more of the ScanSAR images was significantly brighter than Ia in these areas it indicated there 

had been an increase in double-bounce scattering for those ScanSAR image dates, which we therefore 

identified as being associated with inundation. If the initial class was open water, and we observed a 

large positive Δb, we assumed it was due to an increase in volume scattering and associated with 

vegetation rather than open water. In some cases, the incidence angle may have influenced the 

interpretation of changes in relative brightness. An important case was variations in brightness with 

incidence angle due to inundated vegetation. A variable threshold for inundated vegetation applied to 

the individual image strips was found to improve the classification consistency between near and  

far-range results, and could be used to incrementally improve the multi-temporal image classification. 

A variable threshold for inundated vegetation as a function of incidence angle was determined by 

examining image strips in the near-range/far-range overlap in the ScanSAR imagery acquired just five 

days apart (see Figure 5). Using this simple empirically derived threshold versus incidence angle, 

Figure 6 shows a comparison of the inundation classification of two pairs of images acquired five days 

apart. Figure 6a,b shows a comparison of the ScanSAR mid-swath classification with that derived from 
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data acquired five days earlier in the near-swath range, and Figure 6c,d shows a comparison of the 

ScanSAR mid-swath classification to that acquired five days later.  

 

Figure 5. HH backscatter threshold versus incidence angle for the detection of inundation, 

derived empirically such that similar classifications were obtained in the near and far range 

of overlapping images acquired five days apart. 

 

Figure 6. Black bar indicates 10 km scale. (a) Mid-swath classification from 27 June 2007 

(coordinate: −5.98°, −64.83° shown by “x” in Figure 3); (b) near-swath classification from 

22 June 2007; (c) mid-swath classification from June 27, 2007 (coordinate −4.13°, −63.42° 

shown by “y” in Figure 3); (d) far-swath classification from 22 June 2007. Yellow indicates 

inundated vegetation and dark blue indicates open water. All other areas are unclassified. 

We also refined the open water classification based on the SRTM slope; if the class was bare ground 

or low vegetation, but the slope was zero, the class was changed to “SRTM open water”. This association 

may be made because the only exactly zero-gradient areas in the DEM in bare ground/low vegetation 
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areas are those pixels manually edited by the National Geospatial-Intelligence Agency (NGA) to level 

the elevation of water bodies in version 2.1 of the SRTM DEM [38]. This mainly impacted narrow river 

areas that were not captured as open water by the ALOS ScanSAR inundation classification. To address 

ambiguities in radar brightness between open water and some low vegetated and bare ground areas, we 

used the ESA GlobCover 2009 land cover classification product to establish a secondary category for 

croplands, as the time sequence of L-band backscatter for harvesting and growth of croplands can mimic 

those due to inundation events.  

The objective for the refinement in the classification described above was to change the initial 

classification results, when indicated, from a non-inundated class to an inundated class, or from an 

inundated class to an occasionally inundated class. A maximum and minimum inundation classification 

may now be derived. Table 2 shows the criteria for the revised classification based on Δb for each 

available date, SRTM slope, and GlobCover class. There were other cases examined, such as inundated 

vegetation to open water transitions, but these other cases represented a very small percentage of the 

area classified. 

Table 2. Criteria for classification refinement. 

Initial Class Condition Final Class 

Forest Δb > 3 dB Occasionally inundated vegetation

Inundated vegetation Δb < −3 dB Occasionally inundated vegetation

Inundated vegetation Variable with incidence angle Occasionally inundated vegetation
Low vegetation Δb < −3 dB Occasionally open water

Open water Δb > 6 dB Occasionally open water
Inundated vegetation Δb < −12 dB Variable inundation state

Low vegetation Δb > 10 dB Occasionally inundated vegetation
Forest Δb < −10 dB Variable inundation state

Any except topographic slope Ia +Δb > −5.9 dB Occasionally inundated vegetation
Any open water or inundated Maximum SRTM slope = 0 SRTM open water vegetation class
Any except topographic slope 11 ≤ GlobCover2009 class ≤ 201 1  Crops 

1 These GlobCover classes correspond to croplands. 

Figure 7 shows the resulting maximum and minimum inundation classification for those areas for 

which we had ALOS ScanSAR multi-temporal image coverage. Given we used a 3 × 3 spatial averaging 

filter to remove speckle noise from the individual ScanSAR image values, we estimate our classification 

of minimum inundation (Figure 7b) was sensitive to inundation occurring at 1–10 hectare scales. 

There are two areas in South America where the ALOS classification results are likely  

over-estimating the area of open water: south and east of the Amazon River Basin where many 

agricultural areas were not classified as such by GlobCover; and west of the Andes, where some desert 

areas, due to their dark radar signature, were classified as open water. 
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Figure 7. Inundation classification late-2006 to mid-2010; same location as shown in Figure 3. 

(a) maximum inundation, (b) minimum inundation. Black-topographically excluded; dark blue: 

open water; light blue: open water maximum; green: not inundated; yellow: inundated 

vegetation; light yellow: inundated vegetation maximum; brown: croplands from GlobCover 

2009; grey: unclassified. 

3. Results and Discussion 

3.1. Comparison with JERS Results 

During portions of 1995 and 1996, the NASDA JERS-1 L-band SAR regularly imaged the Amazon 

River Basin [39]. The satellite orbit was well suited to monitoring inundation dynamics, as it progressed 

westward one image swath per day, as opposed to ALOS PALSAR in ScanSAR mode, in which adjacent 

swaths are between five and 46 days apart. The disadvantage of the JERS-1 SAR was that the image 

noise level was higher, which resulted in increased ambiguity when attempting to distinguish open water 

from low vegetation and bare ground [40]. 

Individual JERS-1 SAR images were averaged down to approximately 100-meter pixels and 

mosaicked. A “high” flood mosaic and a “low” flood mosaic were produced. These GRFM mosaics 

represent average high-water conditions, and lower than average low-water conditions, for the central 

mainstem floodplain [1]. These image mosaics composed a part of the GRFM project led by 

NASDA/JAXA and were freely distributed to the scientific community [41]. A “wetland mask” was 

produced from this imagery, which delineated non-inundated areas from inundated area including both 

open water and inundated vegetation [4]. Figure 8 shows a comparison of the high flood mosaic, the low 

flood mosaic, and the wetland mask for the Amazon Basin. The JERS SAR mosaics were created prior 

to the existence of a high quality DEM for South America; therefore, the mosaics were not 

radiometrically corrected for terrain slope effects. 

While the JERS-1 SAR-derived wetland mask is based on the JERS-1 SAR image mosaics, there is not 

a direct relation between pixel values of the image mosaics and the wetland mask. The wetland mask was 
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constructed though several steps: region-growing segmentation of the image mosaics, unsupervised 

classification and merging of classes, an editing process to eliminate false positives, manual refinement to 

include areas adjacent to or surrounded by inundation, and classification of the inundation state. The results 

for the Central Amazon portion of the mask were carefully validated at strategic locations using airborne 

videography data [4]. This wetland mask represented the maximum inundatable area, not necessarily the 

area actually inundated on the dates of the JERS-1 SAR image acquisitions. 

 

Figure 8. Location shown in Figure 3 by yellow box where horizontal extent is 3500 km.  

(a) JERS-1 SAR-based wetland mask (white is inundatable; black is not) [4]; (b) JERS-1 

SAR image mosaic—Amazon River low flood (late–1995); (c) JERS-1 SAR image  

mosaic—Amazon River high flood (mid-1996). ©NASDA. 

In addition, Melack and Hess (MH; [4]) describe the results of classifying the above JERS imagery 

into wetlands types within this coverage area. The MH inundation classes are shown in Table 3. Figure 9 

shows the MH classification in comparison with four aggregated inundation classes (maximum open 

water extent, minimum open water extent, maximum inundated vegetation extent, and minimum 

inundated vegetation extent) and a class representing steep slopes unlikely to be inundated, extracted 

from the ALOS classification in Figure 7. We note that there are some geographically distinct differences 
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in the inundation classifications; in particular, outside the JERS-1 mask on the eastern coast north and 

south of the Amazon River, and in the Bolivian wetlands on the southern border of the JERS-1 mask. 

 

 

Figure 9. Location shown in Figure 3 by yellow box where horizontal extent is 3500 km. 

(a) Melack and Hess inundation classification (mid-90s); (b) ALOS inundation classification 

(2007–2009). Yellow—always inundated vegetation; off-yellow—occasionally inundated 

vegetation; dark blue—always open water; medium blue—occasionally open water; brown 

(ALOS only)—high topographic slopes. 

Table 3. Inundation categories from Melack and Hess [4]. 

Inundation Category 

Open water (one date) 

Open water (both dates) 

Flooded herbaceous vegetation (one date) 

Flooded herbaceous vegetation (both dates) 

Flooded shrub vegetation (one date) 

Flooded shrub vegetation (both dates) 

Flooded woodlands (less than 60% canopy cover) (both dates) 

Flooded forest (one date) 

Flooded forest (both dates) 

Although standard methods and brightness thresholds have been utilized to generate an inundation 

classification from the ALOS imagery as shown in Figure 7, it is not possible to do a rigorous validation 
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because widespread validation data for inundation extent are not available for the time period of the data 

acquisition. However, a quantitative comparison between the validated mid-90s JERS-1 based 

inundation classification by MH and the classification of the multi-temporal 2007–2009 era data from 

ALOS may be made. There are three caveats: (1) the JERS-1 classification results and mask sometimes 

exhibit non-uniformly distributed geolocation differences when compared with the ALOS classification 

results of 400 m or more, due to geolocation errors present in the JERS-1 mosaics [42]; (2) inundation 

patterns captured by the dual season mid-90s JERS-1 based classification may be different than those 

captured by the 2007–2010 ALOS-based classification; (3) the temporal sampling of both the dual 

season JERS-1 and the multi-temporal ALOS ScanSAR imagery are insufficient to insure that maximum 

or minimum inundation extent were present during at least one image acquisition. 

Table 4. Comparison of ALOS classification results from Figure 7 and Melack and Hess 

(MH) classification results (from [4])) for two cases: for those locations where both 

classifications indicated an inundation class and for those locations where the JERS-1 

classification alone indicated an inundation class. 

Within JERS Mask 

% of All Pixel Locations Where ALOS and 

MH Classifications Both Show Inundation  

(Refer to Table 3) 

% of All Pixel Locations Where 

MH Classification Shows 

Inundation (Refer to Table 3) 

Maximum Inundation 

Flooded forest extent 86% 58% 

Flooded woodland extent 7% 8% 

Flooded herbaceous extent 2% 22% 

Flooded shrubs extent 3% 13% 

Minimum Inundation 

Flooded forest extent 99% 73% 

Flooded woodlands extent 0% 13% 

Flooded herbaceous extent 1% 15% 

We examined the relative sensitivity of the ALOS classification with respect to the four wetland 

vegetation types of the MH classification (Table 4). First, at both maximum and minimum inundation, we 

summed the total pixel area where inundated vegetation was indicated in both classifications and calculated 

the percentage distribution between the MH inundated vegetation classes. Second, we found the percentage 

distribution between the MH inundation classes for a subset of the JERS-1 mask. Assuming in the first 

case that the sampling was random and only limited by either change in the inundation state between the 

two sets of observations or change in inundation patterns rather than vegetation differences, we found 

when compared to the entire classification within the JERS-1 mask that the ALOS inundated vegetation 

class was sensitive to only a small portion of the flooded herbaceous regions (and to a lesser degree, 

flooded shrubs). In the case of flooded herbaceous vegetation, Figure 10 illustrates an example where these 

areas were classified by the ALOS classification as occasionally open water, as the L-band backscatter 

signature in these areas was dominated by the open water surface scatter rather than the herbaceous 

vegetation. In the case of flooded shrubs, Figure 11 shows an example where these areas were classified 

as not inundated, as the L-band backscatter signatures for these flooded environments were not easily 

discernable from other non-flooded environments. Given the lack of sensitivity to these vegetation types, 
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we found that the best correspondence of the ALOS inundated vegetation class was with the MH flooded 

forest class and flooded woodland class; however, the MH flooded woodlands class was not observed 

within the ALOS inundated vegetation class at minimum inundation. 

 

Figure 10. (a) Melack and Hess classification, where yellow and off-yellow indicate 

maximum extent of flooded herbaceous vegetation; (b) ALOS classification, where dark 

blue and medium blue indicate maximum extent of open water and yellow and off-yellow 

indicate always or occasionally flooded vegetation, respectively. The flooded herbaceous 

classes tend to be classified as open water (and sometimes as not inundated) in the ALOS 

classification. (center coordinates: −1.978°, −53.708°, shown by letter “w” in Figure 3. The 

black bar indicates 50 km scale). 

 

Figure 11. (a) Melack and Hess classification, where off-yellow indicate maximum extent 

of flooded shrubs; (b) ALOS classification, where dark blue and medium blue indicate 

maximum extent of open water and brown represents areas of steep slope not likely to be 

inundated. The flooded shrub classes tend to be classified as not inundated in the ALOS 

classification. (center coordinates: −8.487°, −61.788° shown by letter “z” in Figure 3, black 

bar indicates 50 km scale). 

Table 5 indicates the total area of inundated vegetation and open water at maximum and minimum 

inundation within the JERS-1 mask for both the MH classification and the ALOS classification shown 
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in Figure 7. The most striking difference was the area of inundated vegetation at minimum inundation. 

The ALOS classification indicated a much smaller minimum inundated vegetation area, possibly due to 

the improved temporal sampling of the ALOS ScanSAR imagery during minimum inundation. It is also 

possible the larger number of looks present in the JERS-1 SAR imagery provide a more robust 

assessment. The area of inundated vegetation as shown in Figure 7 from ALOS at maximum inundation 

was less than that indicated by the MH classification. The ALOS classification had a much larger 

increase in open water at maximum inundation, predominantly due to the large wetland area in Bolivia, 

classified in the ALOS classification as mostly open water at maximum inundation, but as flooded 

herbaceous and flooded woodlands in the MH classification.  

Table 5. Maximum and minimum area of inundation within the JERS-1 mask from both the 

Melack and Hess classification and the ALOS classification shown in Figure 7. 

Within 

JERS Mask 

ALOS Inundated 

Vegetation (Mha) 

MH Flooded 

Forest (Mha) 

MH, Flooded 

Woodland (Mha) 

ALOS Open 

Water (Mha) 

MH, Open 

Water (Mha) 

MH, Flooded 

Herbaceous (Mha) 

Maximum 

inundation 
20.7 23.8 5.2 8.8 8.4 9.3 

Minimum 

inundation 
4.8 9.3 5.2 4.7 5.9 3.7 

3.2. Monitoring Inundation Dynamics 

To examine inundation dynamics, we needed to analyze individual ScanSAR imagery from specific 

dates. As the ALOS ScanSAR path images had only three looks, the inundation state classification of 

individual image strips could be much noisier in quality than that developed using all of the ScanSAR 

imagery. Therefore, our approach was to incrementally add to inundation extent from the minimum 

ALOS ScanSAR estimated inundation state if Δb within occasionally inundated areas clearly indicated 

an identifiable change in inundation state. Table 6 tabulates the conditions that determine the estimated 

inundation state for each ScanSAR path image. 

Table 6. Criteria for assessing inundation state for each ALOS ScanSAR acquisition. 

ALOS Maximum Inundation Class  Criteria Temporal Class 

Occasionally inundated vegetation or forest Δb >3 dB Inundated vegetation 

Occasionally inundated vegetation or forest Δb < −10 dB and θx,y > 29° Open water 

Low vegetation, forest, or occasionally open water Δb < −3 dB and θx,y > 29° Open water 

Low vegetation or occasionally open water Δb < 10 dB Inundated vegetation 

Low vegetation or occasionally open water Δb > 10dB Inundated vegetation 

Always inundated vegetation  Open water 

Always inundated vegetation  Inundated vegetation 

These Δb values were chosen to increase the likelihood that inundation (or lack thereof) would be 

detected as well as be robust in the presence of calibration errors or more subtle environmental changes 

separate from inundation. However, there are other environmental changes that result in changes in 

backscatter of this magnitude, such as deforestation or growth and harvesting of crops. This is why crop 

areas were masked out using ESA’s GLOBCOVER land cover classification product (see Table 1). 
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There is evidence, however, that GLOBCOVER underestimates crop area, which together with its 

coarser scale, could affect the accuracy of this classification in cropland areas [43]. 

To assess the fidelity of these single date inundation products, the inundation dynamics of the large swamp 

forests in the western Amazon lowlands were examined. The inundated vegetation in this region is 

categorized, in order of degree of water logging, as herbaceous marshes, shrub swamps, palm swamps, and 

forest swamps [44]. Shrub swamps often surround the herbaceous marshes. Palm swamps are found 

throughout the region, inundated by rains or ground water, or less frequently near rivers. Forest swamps are 

often transitional zones around other types of swamps and also are found along small streams and interfluvial 

sites with poor drainage. Forest patches with dead or dying trees are not uncommon and often are surrounded 

by open water. Some areas are characterized by a mosaic of herbaceous and forested swamps occurring in 

depressions, with forests on the ridges [44]. We expect the shrub swamps and herbaceous marshes to be 

difficult to detect. Each of these wetland types will vary slightly in the ALOS ScanSAR HH radar backscatter 

signature, where the herbaceous marshes will have the most ambiguity of detection.  

Table 7 shows the inundation classes within the MH inundatable mask of 100,000 km2 surrounding the 

Pacaya-Samiria Reserve, shown in Figure 12a. Our results are similar to the 24,900 km2 of swamp 

vegetation estimated by Kalliola et al. [44] in this area using Landsat TM, in situ data, aerial surveys and 

side-looking airborne radar data. We found that open water at minimum inundation decreased by 28% 

from maximum inundation, but flooded vegetation decreased by a substantially larger fraction, 73%. 

Table 7. Results from within the inundatable mask for Pacaya-Samiria, Peru and 

surrounding areas. 

 Area from ALOS ScanSAR Classification (km2) 

Maximum 

Open water 1504 

Flooded vegetation 26,074 

Combined 27,578 

Minimum 

Open water 1085 

Flooded vegetation 6939 

Combined 8024 

Melack and Hess [4] mask inundatable area: 103,673 km2 

We also examined the fractional area of inundation for a large site (2000 km2) within the  

Pacaya-Samiria Reserve for six dates in 2007 (Figure 12b). The inundation duration was broad for this 

area, with maximum inundation occurring late April or early May 2007. The dry season occurred roughly 

between June and September, where its lowest water levels were 10 m or more below those of the peak 

water levels. The inundation fraction within the indicated box in Figure 12 ranged from 0.6 (late April) 

to 0.1 (end of September) during this time period. Figure 13 shows the progression of inundation for this 

for the six observation dates. 

We examined relative inundation duration from the results shown in Figure 13, along with classification 

results from a seventh SCANSAR image from 3 August 2008, all obtained from orbit path 445. We 

categorized each image pixel according to how many times inundated vegetation was identified during 

the seven observation dates. (Figure 14, Table 8). Areas that were inundated in every acquisition accounted 
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for over 25% of the inundated area, whereas over 30% of the inundated area was inundated in only a 

single acquisition. Examining the pattern of inundation, we found that areas to the north of the Marañon 

River and south of the Ucayali River were more likely to be permanently inundated than those areas 

between the two rivers. 

 

Figure 12. (a) Inundation classification for Pacaya_Samiria, Peru, and surrounding 

locations, overlaid on JERS-1 based wetland mask, centered on letter “c” in Figure 3. The 

black box is 45 km by 45 km. The colors of the inundation classification are overlaid on the 

JERS-1 based wetland mask, (light grey indicates inundatable and dark grey indicates outside 

the inundatable area; (b) ALOS ScanSAR estimated inundation dynamics for box shown in (a) 

depicting fractional total inundation versus time. yellow: always inundated vegetation;  

off-yellow: occasionally inundated vegetation; dark blue: always open water;  

medium blue: occasionally open water; brown (ALOS only): high topographic slopes. 

 

Figure 13. Cont. 
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Figure 13. Classification overlaid on low contrast multi-temporal image mosaic of the area 

within the box from Figure 12 for specific ScanSAR observations acquired from the same path 

orbit, at letter “c” in Figure 3. Area shown is 45 km by 45 km. (a) 29 January 2007; (b) 16 March 

2007; (c) 1 May 2007; (d) 16 June 2007; (e) 1 August 2007; (f) 16 September 2007. Yellow is 

inundated vegetation on the date of observation; black is open water. Area shown is 2000 km2. 

Yellow: inundated in all seven observations; 

light green: inundated in six observations;  

dark green: inundated in five observations; 

turquoise: inundated in four observations;  

red: inundated in three observations;  

pink: inundated in two observations;  

dark blue: inundated in one observation;  

dark grey: inundation not observed 

Figure 14. Inundation duration (for vegetated areas) estimated from seven images acquired 

between 2007 and 2008 from a single orbit path for the Pacaya-Samiria Reserve (area “c” in 

Figure 3) and surrounding areas in Peruvian Amazon. The area shown spans 300 km from east 

to west and 350 km from north to south. The yellow bar shows 50 km scale. Background is low 

contrast multi-temporal image mosaic. 
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Table 8. Area of each category of relative inundation duration (i.e., number of dates 

inundated). Colors correspond with those shown in Figure 14. 

Relative Inundation Duration Area 

7 (Yellow) 6939 km2 

6 (Light Green) 540 km2 

5 (Dark Green) 911 km2 

4 (Turquoise) 1715 km2 

3 (Red) 2952 km2 

2 (Pink) 4778 km2 

1 (Dark Blue) 8237 km2 

3.3. Comparison with Coarse Resolution Surface Water Fraction Estimates 

Finally, we compared wetland classifications generated from high resolution ALOS PALSAR data 

with that generated from much lower resolution (but much shorter orbit repeat intervals of three days or 

less) spaceborne sensors such as AMSR-E, which is a passive microwave radiometer. The coarse 

resolution surface water fraction product from these sensors was generated globally and aggregated to 

10-day intervals. Each 25 × 25 km grid cell represented fractional surface water area. The AMSR-E 

inundation product used herein was that of Schroeder et al. [45], extended to all snow-free days from 

July 2002 through July 2009 [46].  

To facilitate this comparison, we generated a 25 km pixel-spacing fractional open water map and a 

25 km pixel-spacing fractional inundated vegetation map from our maximum and minimum inundation 

classifications derived from ALOS ScanSAR data (refer to Figure 7). Likewise, we examined  

the 10-day coarse resolution surface water fraction product for the time span roughly corresponding to 

the ALOS acquisitions (November 2006 to July 2009) and produced a maximum and minimum surface 

water fraction product. As can be seen from Figure 15, the coarse resolution surface water fraction most 

closely agreed with the fraction of open water estimated from ALOS ScanSAR, rather than the fraction 

of inundated vegetation, perhaps because the coarse resolution sensors are less sensitive to water beneath 

a vegetation canopy. We found qualitative agreement between the coarse resolution surface water 

fraction and the ALOS derived open-water fraction at both maximum and minimum inundation. 

In general, we found that the maximum coarse resolution surface water fraction was slightly less than 

or similar to the ALOS maximum open water fraction, except in the northwestern and southeastern 

quadrants of the mapped area and along major rivers, where the maximum ALOS open water fraction 

was substantially greater. These open water areas are regions where seasonal flooding can occur and are 

either being overestimated by the ALOS ScanSAR classification or underestimated by the coarse 

resolution surface water fraction product. Since it is likely water depth is quite shallow in these areas, it 

could be a matter of the definition of what constitutes “open water;” the ScanSAR data are sensitive to 

shallow but widespread flooding, but the coarse resolution product requires a noticeable change in 

measured emissivity by AMSR-E. It also may be that bare soil or low vegetation associated with 

agriculture or ranching in these areas has backscatter values as low as open water. The ALOS ScanSAR 

classification results over agricultural areas and ranchlands present in some of these areas, and not masked 

by ESA’s GlobCover land cover classification product, may account for part of the discrepancy, as well 

as desert areas to the west of the Andes where the dark radar returns are similar to those for open water. 
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Figure 15. Comparison of inundation and coarse-resolution surface water fraction products 

for the same area shown in Figure 3. (a) Minimum fraction of open water from ALOS 

ScanSAR classification; (b) minimum fractional surface water area from coarse resolution 

sensors; (c) minimum fraction of inundated vegetation from ALOS ScanSAR classification; 

(d) maximum fraction of open water from ALOS ScanSAR classification; (e) maximum 

fractional surface water area from coarse resolution sensors; (f) maximum fraction of 

inundated vegetation from ALOS ScanSAR classification. Blue indicates masked pixels; 

grey scale indicates relative fractional inundation with white indicating maximum surface 

water fraction and black indicating no inundation. 

We examined the relationship of these coarse resolution surface water fraction data sets to each other 

quantitatively. Figure 16 shows, within the JERS-1 image mosaic region area, plots of the maximum ALOS 

open water fraction, the maximum ALOS inundated vegetation fraction, and the JERS-1 based wetland 

fractional mask versus the maximum coarse resolution surface water fraction, aggregated for every 1° 

by 1° in latitude and longitude. We found that, in general, there was close to a one-to-one relation between 

ALOS open water fraction and the coarse resolution surface water fraction (slope = 0.89), but the maximum 

inundated vegetation fraction and JERS-1 based wetland mask showed a significant divergence from a 

one-to-one slope. Note that by choosing the JERS-1 image mosaic area, we excluded the areas where the 

values diverge. This not only demonstrates the correspondence of SAR classification of open water extent 

to coarse resolution inundation fraction products such as that derived by AMSR-E, but also the need for 

L-band products for monitoring inundation beneath forest canopies. 
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Figure 16. Comparison of ALOS and JERS-1 products with coarse-resolution surface water 

fraction. (a) ALOS open water fraction; (b) ALOS inundated vegetation fraction;  

(c) JERS-1-based mask (where there is overlap) versus the coarse resolution surface water 

fraction. Note that the scale of (c) is much larger. Only the ALOS open water fraction has  

a significant relation to the coarse resolution surface water fraction estimates. 

   

(a) 

(b) 

(c) 
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4. Conclusions 

The objectives of this work were to assemble and mosaic JAXA L-band ALOS PALSAR ScanSAR 

imagery for analysis of wetland dynamics at continental scales, then use existing algorithms for 

identifying inundation, both open water extent and inundated vegetation extent. The ALOS PALSAR 

ScanSAR data obtained through JAXA’s ALOS Kyoto and Carbon Initiative, in coordination with a 

NASA MEASURES task to produce an Earth Science Data Record (ESDR), have been used to classify 

inundation state for all of South America north of 24°S latitude. 

With properly orthorectified and calibrated data, we found, as expected, that the radar signatures for 

inundated vegetation and open water were easily identified. Classification parameters were assigned 

from published criteria derived from extensive field measurements, together with a multi-temporal 

analysis of backscatter change. 

We compared the ALOS ScanSAR classification results at maximum and minimum inundation state 

with a JERS-1 based wetland classification. We also compared results against a JERS-1 based wetland 

mask that identified inundatable area. Our results showed that the ALOS ScanSAR classification of 

inundated vegetation was relatively insensitive to inundated herbaceous vegetation. Polarimetric L-band 

SAR observations, or additional observations at a shorter wavelength, may improve the capability of 

future spaceborne SAR missions to detect these marshes. 

The existence of an inundatable mask significantly improved the likelihood of a correct classification, 

as it eliminated areas unlikely to be inundated; some of the areas eliminated may have radar signatures 

similar to those from inundation events. An inland inundatable mask, based on data sources such as 

SRTM (for examining slope) and products like GlobCover, could be constructed to include all known 

inland floodplains, rivers, and lakes, but exclude urban areas, most desert areas, most agricultural areas, 

volcanic lava flows, ocean boundaries, and areas of large slopes. Using such a mask, even if  

it overrepresented the inundatable area, would significantly improve the classification accuracy by 

excluding those areas that are unlikely to be inundated. 

Inundation dynamics were examined using the multi-temporal ALOS ScanSAR acquisitions over 

the Pacaya-Samiria and surrounding areas in the Western Amazon lowlands of Peru. Relative 

inundation duration was estimated, revealing distinct local variations likely associated with differing 

swamp characteristics. 

Lastly, we compared inundation results from the ALOS multi-temporal ScanSAR classification with 

independent results from the coarse resolution sensor AMSR-E, acquired during the same time period. 

Good correspondence was found when comparing open water extent with surface water fraction, except 

in regions where there may be differences in sensitivity to widespread and shallow seasonal flooding 

events, or in areas that would be masked out from analysis if a continental scale inundatable mask was 

available, one conceptually similar to the JERS-1 based wetland mask for the lowland Amazon. 

These results compose a portion of an Inundated Wetlands Earth Science Data Record (IW-ESDR) 

funded by NASA’s MEaSUREs program. Through this program, these data products are made available 

through the ASF wetlands portal at the Alaska Satellite Facility Data Active Archive Center (ASF 

DAAC) [47]. 

Further study is required to fully understand the uncertainties in these results; in particular, polarimetric 

and interferometric L-band SAR data such as will be collected on a wide scale by the JAXA ALOS-2 
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L-band SAR mission and the forthcoming NASA/ISRO L-band SAR mission, will be capable of 

enhanced monitoring of large-scale wetland dynamics. Validation using HH and HV over a broad range 

of incidence angles and incorporating zero-baseline interferometric results to identify inundation state 

have not yet been conducted over globally representative regions. 
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