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Abstract: Soil and vegetation component temperatures in non-isothermal pixels encapsulate 

more physical meaning and are more applicable than composite temperatures. The component 

temperatures however are difficult to be obtained from thermal infrared (TIR) remote sensing 

data provided by single view angle observations. Here, we present a land surface temperature 

and albedo (T-α) space approach combined with the mono-surface energy balance (SEB-1S) 

model to derive soil and vegetation component temperatures. The T-α space can be 

established from visible and near infrared (VNIR) and TIR data provided by single view 

angle observations. This approach separates the soil and vegetation component temperatures 

from the remotely sensed composite temperatures by incorporating soil wetness iso-lines for 

defining equivalent soil temperatures; this allows vegetation temperatures to be extracted 

from the T-α space. This temperature separation methodology was applied to advanced 

scanning thermal emission and reflection radiometer (ASTER) VNIR and high spatial 

resolution TIR image data in an artificial oasis area during the entire growing season. 

Comparisons with ground measurements showed that the T-α space approach produced 

reliable soil and vegetation component temperatures in the study area. Low root mean square 
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error (RMSE) values of 0.83 K for soil temperatures and 1.64 K for vegetation temperatures, 

respectively, were obtained, compared to component temperatures measurements from a 

ground-based thermal camera. These results support the use of soil wetness iso-lines to derive 

soil surface temperatures. It was also found that the estimated vegetation temperatures were 

extremely close to the near surface air temperature observations when the landscape is well 

watered under full vegetation cover. More robust soil and vegetation temperature estimates 

will improve estimates of soil evaporation and vegetation transpiration, leading to more 

reliable the monitoring of crop water stress and drought. 

Keywords: land surface temperature and albedo space; SEB-1S; soil and vegetation 

component temperatures; validation; advanced scanning thermal emission and reflection 

radiometer (ASTER) 

 

1. Introduction 

Land surface temperature is a key parameter in the physics of land surface processes at regional and 

global scales; it is a metric representative of surface-atmosphere interactions and energy fluxes between 

the atmosphere and the ground surface [1]. Currently, satellite data offer the possibility to map land 

surface temperature over the entire globe effectively, with sufficiently high spatial and temporal 

resolution [2]. The spatially distributed land surface temperature estimated from thermal infrared (TIR) 

remote sensing data is widely used in studies of evapotranspiration, climate change and the hydrological 

cycle [3–6], soil moisture estimation [7,8], forest fire detection [9,10], vegetation water stress [11], urban 

heat island monitoring [12] and many other environmental monitoring applications. Passive microwave 

(PW) remote sensing can also provide land surface temperature observations [13], which is unaffected 

by clouds. However, the satellite based PW sensors have very coarse spatial resolutions compared with 

the thermal infrared (TIR) remote sensing. In addition, estimation of land surface temperature from the 

PW have limitations associated with restricted response depth and producing more uncertainties over 

barren and sparse vegetation covered land surfaces compared to TIR, which is commonly used in 

modeling evapotranspiration [14]. In a heterogeneous and non-isothermal pixel, however, the radiance 

observed by the remote sensor at the top of atmosphere (TOA) is the ensemble radiance of several 

components (i.e., sunlit and shaded soil and vegetation) [2] so the pixel-average temperature cannot 

reveal the real temperature of each component, particularly in the sparse vegetation-covered arid and 

semi-arid areas where the soil and vegetation component temperatures are usually significantly different. 

Additionally, the component temperatures of a mixed pixel encapsulate more physical information than 

the composite temperature that relate to soil and vegetation heat fluxes and hydrologic states [2]. By 

deriving component soil and vegetation temperatures, the accuracy of surface fluxes estimated by  

two-source (soil + vegetation) energy balance models should improve capabilities to monitor crop water stress 

and drought, estimate surface soil moisture and result in more accurate weather forecasts [5,8,11,15,16]. 

The task of retrieving the component temperatures, however, is difficult, due to the variability in the 

distribution of internal components and the definition of effective emissivity and thermal anisotropic 

radiation regimes in forward processes of TIR remote sensing data. Currently, studies of soil and 
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vegetation component temperatures retrieval have concentrated on two aspects: multi-angular observation 

and multi-visible and near infrared (VNIR) and TIR band optimization. The multi-angular method 

generally establishes a model for reflecting the thermal infrared radiation in a continuous vegetation 

distribution but non-isothermal mixed pixel according to the thermal anisotropic radiation regimes. It 

then applies the Monte Carlo method to simulate the relationship between the component effective 

emissivities and variables. Through the aforementioned step, at least two equations including the 

parameters of soil and vegetation temperatures are established, and the soil and vegetation component 

temperatures are retrieved combining thermal infrared data observed by multi-angular sensors such as the 

Along Track Scanning Radiometer (ATSR), ATSR2, Advanced ATSR, and some airborne multi-angular 

thermal infrared systems [11,15,17–19]. However, the multi-angular methods may not provide accurate 

enough component temperatures for reliable component flux estimation. In addition, the different 

viewing zenith angles correspond to different pixel resolution, which means the various viewing angles 

are sampling a different size footprint of the land surface [2,20]. Although the different image spatial 

resolutions can be converted to the same level using pixel resizing and re-sampling methods, the radiation 

received by the sensor at these two viewing angles reflect a different land surface contribution [2,21]. 

Unfortunately, ATSR has been out of operation for over 10 years and its successor, the Advanced ATSR, 

provided data until 2012. Since then, dual-angle observations in thermal infrared have not been available. 

The multi-VNIR and TIR band optimization method usually applies the ancillary information 

provided by the VNIR remote sensing data to obtain component fractions of soil and vegetation.  

The soil and vegetation component temperatures are then simulated using an optimized algorithm or 

Bayesian theorem from TIR remote sensing data. However, the correlations between the neighboring TIR 

channels cannot be neglected when applying the optimization method, which always leads to ill-posed 

equations with solutions that are relatively unstable [16]. In addition, the utilization of spatial dependences 

among adjacent pixels decreases the spatial resolution of the initial TIR images [16], and the spatial 

resolution of the TIR channels is usually much coarser than the VNIR pixels. 

In recent years, the surface temperature-vegetation (T-fvg) and surface temperature-albedo (T-α) spaces 

have been successfully applied to estimate surface evaporative fraction [22] and evapotranspiration [23] 

to disaggregate the land surface temperature and surface soil moisture [7,24–26]. Moreover, in T-fvg and 

T-α space, surface soil wetness iso-lines can be generated [27,28]. Assuming a relatively uniform soil 

texture over the image, the soil temperature values for all pixels along the soil moisture iso-line are 

presumed to be equivalent, as are the vegetation temperature values [29–31]. The soil and vegetation 

component temperatures are invariant, and the land surface temperatures thus vary only with the 

vegetation fraction cover or the surface albedo. Therefore, if one of the equivalent temperatures can be 

derived, the other then can be calculated using the Stefan-Boltzmann law for the soil and vegetation 

system while neglecting the scale affection in the non-isothermal pixels. 

The main objective of this study is to develop a practical method for separating the soil and vegetation 

component temperatures based on the T-α space according to the mono-surface energy balance (SEB-1S) 

model described below. ASTER data are used to test the method having a single viewing angle 

observation with high spatial resolution. The method is validated with ground component temperature 

measurements and evaluated based on the theory of equal soil and vegetation temperatures along the soil 

wetness iso-lines. Finally, some suggestions on how to validate retrieved soil and vegetation component 

temperatures from satellite observations are presented. 
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2. Study Area and Datasets 

2.1. Study Area and Meteorology Data 

The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program supports 

watershed-scale eco-hydrological experiments designed from an interdisciplinary perspective to address 

complex problems related to impacts of heterogeneity, scaling, and uncertainty in closing the water cycle [32]. 

One of the three key experimental areas of HiWATER is located in the middle reaches of Heihe, which is an 

artificial oasis ecosystem containing irrigated agriculture along with wetland and desert components. The 

first thematic experiment launched in HiWATER was the Multi-Scale Observation Experiment on 

Evapotranspiration over heterogeneous land surface (HiWATER-MUSOEXE). This experiment involved 

a flux observation matrix including a network of 21 flux towers deployed over oasis-desert surfaces in 

the middle reach of the Heihe River Basin from May to September in 2012 [33]. In this study, the 

upwelling and downwelling longwave radiation measured from the four-conponent radiometers installed 

at the flux towers are collected to compute land surface temperature for validating the land surface 

temperature retrieved from ASTER TIR data. Combining the uncertainty or error in sensor calibration, 

assumed emmissivity, and the spatial heterogeneity, the uncertainty in site-specific land surface 

temperature is likely to be on the order of 1.0 K [34]. At these sites, meteorological, soil and vegetation 

parameters, e.g., fraction of vegetation coverage, soil temperatures and moistures at multiple depths were 

measured. Soil and vegetation component emissivities were estimated using FT-IR spectrometer (102 F) 

measurements applied to the Iterative Spectrally Smooth Temperature Emissivity Separation (ISSTES) 

algorithm. The composite emissivity was computed from the measured soil and vegetation component 

emissivities based on fractional vegetation cover estimates. In addition, a Fluke Ti55 thermal infrared 

camera was manually operated on a 25-m-high platform on a flux tower at site 15 (Daman superstation, 

presented in Figure 1 to measure the thermal radiation of the cropland during the HiWATER experiment. 

The images including VNIR and TIR were recorded by the camera. Then, the soil and vegetation 

component temperatures were calculated according to the fraction of vegetation and soil viewed by the 

camera based on the VNIR data [35]. Due to a lack of other reliable independent observations of soil 

and vegetation temperatures, the component temperatures measured from the thermal infrared 

radiometers were converted to composite surface temperature and then compared to the hemispherical 

observations from the tower-based four-component radiometer [36]. A mean bias of 0.6 K and a root mean 

square error of 1.67 K was obtained, with the bias indicating a tendency for the thermal-infrared sensors to 

estimate a higher temperature compared to the hemispherical temperature from the four-component 

radiometers. Finally, the atmospheric profiles including air pressure, mean air temperature, mean air 

humidity, visibility and elevation were collected from the meteorological station in Zhangye City on DOY 

167, 176, 192, 215, 224, 231, 240, 247 and 256. 
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Figure 1. Spatial distribution and ground photographs of the six vegetation surface sites in 

this study. The upper left image is the landscape of the experimental HiWATER-MUSOEXE 

area, and the study area is the black rectangle with a length of 13 km and a width of 11 km. 

2.2. Determination of Input Remote Sensing Data 

2.2.1. Fraction of Vegetation Cover and Surface Emissivity 

The fraction of vegetation cover (fc) is calculated from the normalized difference vegetation index 

(NDVI) values, which are estimated from the surface reflectances of ASTER bands 2 and 3 with pixel 

resolution of 15 m. The reflectances are obtained through the image atmospheric correction using the 

MODTRAN model. The value of fc is calculated from the following equation [37–39]: 

minmax

min

NDVINDVI

NDVINDVI
fc −

−
=  (1)

where NDVImin represents the normalized vegetation index of bare soil, and NDVImax represents the 

maximum value of the normalized vegetation index. However, the spectral signature of land surface 

varies due to factors including mineralogy, moisture content and grain size, and also those associated 

with differences in species, plant health, leaf water content, and other factors [40]. Most of NDVImin and 

NDVImax values need local calibration [37–39]. In this study, NDVImin and NDVImax were calculated from 

the 2nd and more than 95th percentiles of the statistical NDVI histogram of the study area image, 

respectively [39]; the NDVImin values were set to 0.05, while the NDVImax were set to 0.85 for the study area. 

Although ASTER standard products of LST and emissivity have been widely used, significant 

uncertainty in the Temperature and Emissivity Separation algorithm often occurs in areas of high and 

low spectral contrast [41], which could introduce relative large errors in LST estimation. In addition, 
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uncertainty from the atmospheric corrections also leads to errors in LST estimation. Here, a hybrid 

procedure was utilized to estimate the surface emissivity from the ASTER image using the NDVI 

Thresholds Method-NDVITHM in this study [42] and applying the radiative transfer algorithms with 

atmospheric profiles measured from Zhangye Meteorological Observation radiosondes at ASTER 

overpassed time [43]. The NDVITHM method obtains the surface emissivity considering different cases: 

(a) NDVI < 0.2, here the pixels consist of bare soil. The surface emissivity values can be calculated 

from the surface reflectivity (ρred) in the red channel: 

redρε −=1  (2)

(b) NDVI > 0.5, here, the pixels are considered fully vegetated, and the surface emissivity distribution 

is calculated from in situ measurements of vegetation emissivity. 

(c) 0.2 ≤ NDVI ≤ 0.5, here, the given surface is considered as a mixture of bare soil and vegetation. 

The emissivity of a heterogeneous surface is then expressed as [39] 

εεεε dff cscc +−+= )1(  (3)

In Equation (3), εc and εs are the emissivities of full vegetation and bare soil, respectively, which were 

calculated from in situ measurements [39] and fc is the fraction of vegetation cover. The term dε is given as: 

)1()1( ccs fFd −−= εεε  (4)

where F is a shape factor whose value depends on the geometrical structure of the vegetation, the mean 

value is 0.55. 

2.2.2. Land Surface Temperature 

Using the aforementioned land surface parameter of surface emissivity and the atmospheric parameters 

including upwelling and downwelling radiance and transmittance, the atmospheric correction method 

based on the radiative transfer equation is then applied to estimate the land surface temperature [43]. The 

following expression of the simplified radiative transfer equation was applied to the thermal  

infrared images: 

λλλλλλλλ τετε ↓↑ −++= LLTBLsensor )1()(,  (5)

where Lsensor,λ is the radiance at the top of atmosphere (TOA; the value after radiation calibration) in 

Wm−2·sr−1·μm−1; ελ is the land surface emissivity; Bλ(T) is the radiance emitted by a blackbody at 
temperature T, where T is in K and Bτ(T) is in Wm−2·sr−1·μm−1; ܮఒ↑  and ܮఒ↓ are the atmospheric 

downwelling and upwelling radiances in Wm−2·sr−1·μm−1, respectively; and τλ is the atmospheric 

transmittance. Atmospheric radiative transfer models (e.g., LOWTRAN and MODTRAN codes) are 
often used to calculate τλ, ܮఒ↑  and ܮఒ↓  if simultaneous atmospheric profiles are available. 

The land surface temperatures retrieved from the ASTER TIR data with pixel resolution of 90 m, 

were compared to that calculated from the upwelling and downwelling long-wave radiation measured 

by four-component radiometer in the tower sites or calculated from the measured air temperature and 

relative humidity while the flux tower without four-component radiometers in the study area during the 

HiWATER-MUOEXE. The results indicate that the ASTER land surface temperatures for the selected 

overpass dates (DOY 167, 176, 192, 215, 224, 231, 240, 247 and 256) are in acceptable agreement with 
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the ground observations having an average bias of −1.12 K and an average root mean square error 

(RMSE) value of 2.25 K. 

2.2.3. Land Surface Albedo 

Land surface albedo was estimated as a linear combination of ASTER waveband reflectances. Due to 

deficient shortwave infrared channels since 2008, we computed the surface albedo only using the visible 

and near infrared channels according to the method proposed by Liang (2000) [44]. The non-snow/ice 

surface albedo computation formulation was given as following:  

0178.04086.03652.00771.0 321 +++= αααα  (6)

where α1, α2 and α3 are the surface albedos of the visible and near infrared channels, respectively.  

The ASTER broadband albedo showed good agreement with the ground observations for the 19 sites 

where the four-component radiometers were installed (Figure 2), with a mean bias (overestimate) of 

0.004, a mean absolute percent difference of 2.6% and an RMSE value of 0.013. This result supports the 

use of the ASTER broadband albedo for the T-α space method. 

 

Figure 2. Comparison between the modeled and measured land surface parameters, (a) is 

land surface temperature and (b) is surface albedo 

3. Methodology 

3.1. Methods for Estimating Soil and Vegetation Component Temperatures 

In this study, the separation of the soil and vegetation component temperatures for a pixel is based on 

the theory of the soil wetness iso-line in the T-α space according to the SEB-1S model [25]. Figure 3a 

illustrates the T-α space, and concepts of surface soil moisture isopleths and the temperature and albedo 

end-members. Figure 3b shows the procedures used to decompose composite temperatures (T) into soil 

temperature (Ts) and vegetation temperature (Tc). In the T-α space, the dry edge (Figure 3, red line) is 

generally interpreted as representing the limiting conditions of soil moisture or evapotranspiration. In 

(a) (b) 
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contrast, the wet edge (Figure 3, blue line) represents potential evapotranspiration [45]. The study area 

used to evaluate the T-α space approach is approximately 150 km2 and is an irrigated cropland (primarily 

corn) located in a strongly adevective arid region with flat terrain (an artificial oasis). Superimposed in 

Figure 3a, are the soil wetness iso-lines, and it is assumed that all pixels which pass through the same 

iso-line have the same Ts, allowing derivation of Tc [28–30]. In the T-α space, the intersection of the  

iso-line and bare soil line is Ts, while for Tc, the value was derived from the intersection of the iso-line 

and the full vegetation cover line. 

(a) (b) 

Figure 3. A sketch of the polygon T-α space involved in soil and vegetation component 

temperature separation. Points A and D pass through the dry line, and points B and C pass 

through the wet line according to SEB-1S model. The lines AB and CD represent the bare soil 

surface and fully vegetated surfaces, respectively. Slanting straight lines represent 

superimposed isopleths of soil moisture availability, which increase from dry edge to wet edge. 

(a) illustrates temperature and albedo end-members in the T-α and (b) illustrates the separation 

of soil and vegetation component temperatures from composite temperatures. 

To determine the position of the T-α space in Figure 3, the value of seven end-members in the T-α 

space are required: The maximum soil temperature (Ts,max), the minimum soil temperature (Ts,min), the 

maximum vegetation temperature (Tc,max), the minimum vegetation temperature (Tc,min), the wet soil 

albedo (αs), the green vegetation albedo (αvg) and the senescent vegetation albedo (αvs). The study area 

is irrigated farmland with relatively uniform atmospheric conditions and the images were collected from 

the early crop growing season through senescence and included DOY 167, 176, 192, 215, 224, 231, 240, 

247 and 256. Consequently, this image set can provide estimates of the seven end-members in the application 

of the T-α space approach [7,24–26]. The end-members of albedo are set to α s = 0.10, α vg = 0.17, αvs = 0.32, 

and the temperature end-members are estimated by the synergy between T-α and T-fvg spaces based on 

the procedure developed by Merlin et al. [7,23,24]. 

With the aforementioned analysis, for a given pixel point (J) along a random soil wetness iso-line in 

the T-ɑ space, its soil temperature can be calculated based on the law of tangents: 
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TJJs +− βαα )(  (7)

In Equation (7), αs, Ts, T and αJ are the wet soil albedo, soil temperature, surface temperature and 

albedo of point J, respectively. βJ is slope of the iso-line line going across point J, which can be derived 

by interpolating the slope of the wet edge (βw) and that of the dry edge (βd). βw is the ratio of the 

differences between Ts,max and Tc,max and between αs and αvs. Similarly, βd is the ratio of the differences 

between Ts,min and Tc,min and between αs and αvg: 

dwdJ IK

IJ ββββ +−= )(  (8)
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22 )()( IJIJ TTIJ −+−= αα (11)

22 )()( IKIK TTIK −+−= αα
 (12)

The bare soil line (AB) and the full vegetation covered line (CD) cross each other at O (α0, T0), and, 

according to the linear interception of the iso-line in the T-α space, the surface temperature and albedo 

of the pixel K (αk, Tk) on the full wet line can be obtained, 

sO αα =  (13)
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The surface temperature and albedo of the pixel I (α1, T1) on the full dry line: 



Remote Sens. 2015, 7 5837 

 

 

s
dOJ

Os
I

TT
α

ββ
α +

−
−

= max,  (23)

)(max, sIdsI TT ααβ −+= (24)

where O (α0, T0) is the auxiliary point on the extension of AD and IJ, a, b, θ1 and θ2 are the ancillary 

parameters (see Figure 3), and the slope of the IJ is given by the following equation, 

sJ

OJ
OJ

TT

αα
β

−
−=  (25)

When neglecting the scale affection in the non-isothermal pixels, based on the Stefan-Boltzmann law 

for the soil and vegetation system, the Tc in the pixel J can then be expressed as [36,46]: 
4/144 )1(
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 (26)

3.2. Validation Procedure 

To validate the estimated soil and vegetation component temperatures, this study used the ground 

measurements of soil and vegetation component temperatures from the thermal camera. The performance 

of the approach in reproducing soil and vegetation component temperatures was evaluated using two 

statistical measures, one was computing a bias between the component temperatures derived from the 

approach using the ASTER images and the ground measured component temperatures from the thermal 

camera is computed as: 

 observedseparated TTbias −=  (27)

where Tseparated is the soil and vegetation component temperature separated from the ASTER data using 

the proposed method in this study, and Tobserved is the observed temperatures including soil and vegetation 

temperatures. The second statistical measure was computing a root mean square error (RMSE) using the 

following equation:  


=

−=
N

i
observedseparated TT

N
RMSE

1

2)(
1

 (28)

where N is the total number of observations. In addition, as mentioned earlier, the soil temperatures are 

equal along the soil wetness iso-lines, as are the vegetation temperatures, which mean the component 

temperatures along these lines should be identical as the surface albedo varied. This is evaluated 

qualitatively with the factors including scopes of the lines consisted by the points and the fluctuation of 

points in the scatter plots of soil or vegetation temperature and surface albedo. 

4. The Temporal and Spatial Variability of the Soil and Vegetation Temperatures 

The two-dimensional plots of surface temperature-albedo throughout the growing season over the 

research site were derived from the nine scenes (see Figure 4). In the plots, Ts,max and Tc,max refer to the 

maximum soil temperature and minimum canopy temperature which were derived from maximum and 

minimum land surface temperatures, respectively, retrieved from the ASTER thermal images in the 
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study area. However, the minimum soil temperature (Ts,min) and maximum canopy temperature (Tc,max) 

are the average values, which are computed from the two-dimensional plots according to the 

aforementioned procedure. According to Figure 4, it is clearly seen that these points vary considerably 

over the course of the season. The values of the four temperature end-members declined from the early 

season toward the later season, and the population of points moved gradually towards the x-axis except 

on DOY 240. In addition, the position and magnitude of the temperature end-menbers are closely related 

to changes in vegetation phenology over the course of the growing season. In conclusion, the correlation 

of the surface temperature-fractional cover and surface temperature-albedo spaces significantly 

enhances the capability to accurately derive the temperature end-members phenological changes. 

The soil and vegetation component temperatures were successfully separated using the T-ɑ space 

method in the study area from the early season to the later season (DOY 167, 176, 192, 215, 224, 231, 

240, 247, 256) using the ASTER image data (Figure 5). 

 

Figure 4. The spaces of surface temperature-albedo and surface temperature-green 

vegetation fraction, the position of dry edges, wet edges, bare soil and the full vegetation 

cover edge in the spaces, established by using nine senses ASTER images. 
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Figure 5. The spatial distribution of soil and vegetation component temperatures from nine 

ASTER images during the growing season. 

Obviously, the temporal and spatial distribution of the soil temperature and vegetation temperatures 

demonstrated a cooling-down process during the growing season, with the exception of DOY 240. 

Furthermore the variation has good consistency with maize phonological period in the oasis, the land 

surface temperature is higher in the early season when the plant start to grow and stable and medium in 

the mid-season when the fields are nearly full covered with vegetation. There is a high spatial 
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heterogeneity not only of the soil temperature but also of the vegetation temperature during the early 

season when the row crops were partial canopy cover conditions, especially on DOY 167 and 176. The 

spatial variability of temperatures including soil and vegetation in the early season can be attributed to 

the different sowing dates of the crop, in which the different sowing dates contributed to the variation 

fraction canopy cover. This in turn leads to spatial variation in photosynthesis, water use and fraction of 

incoming solar radiation of the soil surface. Irrigation was scheduled on different days in the various 

fields during the four times periods with flood irrigation during the growing season. This means that the 

soil moisture content for the various fields differed when the satellite passed over the study area. The 

compounding effects from the spatial heterogeneity of the soil moisture content and the fractional 

vegetation cover contribute to the spatial variation in soil and vegetation component temperatures 

derived from the ASTER TIR images in the early growing season. However, when crops were near full 

canopy cover condition in the mid and late of crop growing season, the spatial distribution of the 

separated soil and vegetation component temperatures gradually became homogenous, especially on the 

DOY 231, 240 and 247, where the values of the vegetation temperature were nearly uniform over the 

croplands. In addition, with the fields at nearly full canopy cover, the soil below the canopy received 

little radiation and hence the soil temperature was fairly homogeneous. 

5. Results and Validation 

5.1. Validation with Ground Component Temperature Measurements 

In this study, ground component temperature measurements were used to validate the instantaneous 

soil and vegetation component temperatures from the ASTER images. Using a high-resolution thermal 

camera over heterogeneous surfaces can allow the acquisition of the soil and vegetation component 

temperatures including sunlit and shaded soil and vegetation temperatures over land surface areas 

exceeding 500 m2. However, because the soil and vegetation temperatures were manually observed on 

the ground, their measured times cannot exactly match satellite overpass times. The surface soil and 

vegetation temperatures at the specific times of satellite overpass were interpolated from the ground 

observed data and the diurnal temperature cycle (DTC) model [47,48]. The simulated temperatures 

agreed well with the observed temperatures at specific manual measurement times (Figure 6), indicating 

that the simulated temperatures can be applied to validate the separated soil and vegetation component 

temperatures when the timely ground observed data are absent. 
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Figure 6. The interpolation of daytime surface soil temperatures (a) and vegetation 

temperatures (b) validated with the observed temperatures. 

The performance of the proposed T-α space approach was validated with the interpolated ground-based 

soil and vegetation temperatures. Figure 6 shows the comparisons among the separated component 

temperatures, the ground measurements from the thermal cameras and the simulated data from multiple 

daytime ground measurements. There is a good agreement in the component temperatures derived from 

the ASTER images using the T-α space approach when compared with the measured soil and vegetation 

component temperatures, with the exception of the significant underestimation of the vegetation 

temperature on DOY 224 and 231. The errors in vegetation temperature on these days are due to the 

underestimation of land surface temperatures from the ASTER TIR data by more than −1.7 K, compared 

to the measured land surface temperatures calculated from the four-component radiometers and 

meteorological observations and computed composite emissivity. Further error analysis shows that the 

bias for the soil temperature ranges from −1.68 to 0.67 K, with an average of −0.27 K and an RMSE 

value of 0.83 K, and the bias of the vegetation temperatures range from −3.46 to 0.95 K, with an average 

of −1.29 K and an RMSE of 1.64 K, compared with the measured/interpolated component temperatures 

from the thermal camera. These errors are tolerable and comparable for soil and vegetation component 

temperatures separated using the T-α space method from the ASTER images, even though the soil and 

vegetation component temperatures are both underestimated. 
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For this study area it appears that the component temperatures from the ground-based thermal camera 

are in good agreement with soil and canopy temperatures derived from the T-α space using ASTER images 

having 90 m pixel resolution. Underestimated land surface temperature from the satellite will lead to 

underestimates of the component temperatures, so it is important to have accurate land surface 

temperatures compared to the ground measurements associated with the underestimations of both 

separated soil and vegetation temperatures [35]. Finally, the accuracy in deriving soil temperature is higher 

than vegetation temperature. Relatively large errors were found for vegetation temperature estimates, 

especially on DOY 224 and 231 (Figure 6b), which were caused by an underestimate in land surface 

temperature from the satellite. Increased errors in estimating vegetation temperatures may be due in part 

to errors in estimated fraction of vegetation cover, which is most significant during the growing period 

when canopy cover is less than 75%. In addition, there may be errors from the fraction of vegetation cover 

and neglecting the scale affection in the non-isothermal pixels when using Equation (26). 

5.2. Evaluation with Existing Soil Wetness Iso-Lines 

According to the approach assumption, the soil temperatures for all of the pixels along the iso-line of 

equal water availability in the T-α space are equivalent and are also similar for vegetation temperature. 

The basic theory of soil wetness iso-line is appropriate for the croplands in the oasis of Zhangye City, 

which are fully irrigated. The irrigated region mainly covers an area of 11 km × 13 km and there are 

more than 30,000 thermal-IR pixels; however, the wetness iso-lines have a wide range in value, from near 

zero to on the order of hundreds. Thus, there were only a few pixels to define the water stress iso-line in 

the T-α space, which may likely introduce additional uncertainties. For these reasons, defining a water 

stress iso-line may not be valid. In addition, the soil temperatures or vegetation temperatures at the water 

stress iso-line show fluctuations that are not physically realistic when compared to changes in values of 

surface albedo. Therefore, in this study, the water stress iso-line was defined using more pixels, and the 

resulting soil and vegetation temperatures along this iso-line are then illustrated in the two dimensional 

plot of surface temperature-albedo (Figure 7). 

Figure 7 illustrates the variation in soil and vegetation component temperatures along the water stress 

iso-line. The soil and vegetation temperatures for all pixels along the iso-line are nearly identical. Based 

on these results, the performance of component temperatures separated from the composite land surface 

temperatures derived from ASTER thermal infrared bands verifies a theory of water stress iso-line in the 

space. The results further indicate that the soil and vegetation component temperatures were successfully 

separated using the T-α space method. Although there were slight temperature fluctuations, they ranged 

within 1 K, and changes in the soil temperatures on the iso-line were relatively stable, but fluctuations 

of vegetation temperatures are still relatively larger. The slight fluctuations of soil temperature according 

to the changes in the surface albedo are reasonable, and the slight fluctuations may be attributed to the 

uncertainty produced by the process of determining the maximum vegetation in the space. As in the 

early season, the crops grow extremely quickly, and it is difficult to acquire the withered vegetation 

pixels from the images with a spatial resolution of 90 m. The limited number of withered vegetation 

pixels, if they do exist, is likely to cause significant uncertainty in determining the dry edge in the T-α 

space. The relatively large fluctuations of vegetation temperatures can be mainly attributed to the 
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accuracy of separated soil temperatures and land surface composite temperatures derived from the 

ASTER images when using Equation (5). 

 

Figure 7. Evaluations in separated soil temperatures and vegetation temperatures at the 

water stress iso-line at the ASTER overpass times. 

6. Conclusions 

Developing approaches for separating soil and vegetation component temperatures from multiple or 

single view angle TIR observations sensors is seen as a major advantage for monitoring plant water use 

and stress. Multi-VNIR, TIR optimization method, and multi-angle methods have been developed. These 

methods do not appear capable of providing reliable component temperatures except under certain 

(limited) conditions. The former method always leads to ill-posed nature equations. Although the later 

method can remove the ill-posed nature equations during retrieval of the component temperatures, it is 

far from satisfactory considering the coarse accuracy and complex process and so on. This study 

proposed using T-α space to separate the soil and vegetation component temperatures according to the 

SEB-1S modeling approach using remote sensing imagery data obtained from satellite sensor with 90 m 

TIR pixel resolution (ASTER). Finally, the soil and vegetation component temperatures were 

successfully separated using T-α space with analytical geometry with the defined seven end-members 



Remote Sens. 2015, 7 5844 

 

 

and determining the slopes of the soil moisture iso-lines in the space. This approach is robust, and 

provides accurate component temperatures at the regional scale, even though the TIR remote sensing 

data products are mainly from single view angle observation sensors, such as ASTER, Landsat, MODIS, 

environmental and disaster monitoring and forecasting satellite constellation (HJ-1 Satellite) and so on. 

The validation in the HiWATER study area demonstrates that reasonable soil and vegetation component 

temperatures have been derived using the T-α space derived from ASTER observations. However, 

several improvements are foreseen to optimize the separated results and to extend its applicability: 

(1) there is a considerable need for ground-based soil and vegetation component temperatures at pixel 

scale to validate the satellite-derived component temperatures; (2) although the methodology using T-α 

space can be operationally applied to irrigated regions surrounded by an arid landscape (oasis areas) using 

the remote sensing image data, applications for more heterogeneous semiarid areas containing natural 

vegetation should be examined to see if additional parameterizations are required to obtain reliable results, 

for example, by introducing the aerodynamic resistance to constrain the minimum vegetation temperature; 

(3) achieving an accuracy of 1.0 K for land surface temperature from the satellite image data will improve 

component temperature separation. 

The T-α space approach derived according to the SEB-1S model was used to estimate soil and 

vegetation component temperatures from the ASTER TIR and VNIR data. The validations demonstrate 

a good agreement between the estimated and measured/interpolated soil and vegetation temperatures. 

For the soil temperatures, the average bias and RMSE values were −0.26 K and 0.83 K, respectively, while 

for the separated vegetation temperatures, the average bias and RMSE values were −1.29 K and 1.64 K 

respectively. The derived soil and vegetation temperatures along the selected soil moisture iso-line are 

equal, though with slight fluctuations. In addition, the derived vegetation temperatures are extremely 

close to the measured near surface (5 m, above ground level) air temperatures when the remote sensing 

pixels were nearly full vegetation cover and soil are well. These validations means the proposed T-α 

space approach is appropriate to derive soil and vegetation temperatures from single view angle 

observations which could improve in estimating the soil evaporation and vegetation transpiration, 

monitoring crop drought and soil moisture and forecasting climate change at the regional scale. 
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