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Abstract: Segmentation, which is usually the first step in object-based image analysis (OBIA), 

greatly influences the quality of final OBIA results. In many existing multi-scale segmentation 

algorithms, a common problem is that under-segmentation and over-segmentation always 

coexist at any scale. To address this issue, we propose a new method that integrates the 

newly developed constrained spectral variance difference (CSVD) and the edge penalty 

(EP). First, initial segments are produced by a fast scan. Second, the generated segments 

are merged via a global mutual best-fitting strategy using the CSVD and EP as merging 

criteria. Finally, very small objects are merged with their nearest neighbors to eliminate the 

remaining noise. A series of experiments based on three sets of remote sensing images, 

each with different spatial resolutions, were conducted to evaluate the effectiveness of the 

proposed method. Both visual and quantitative assessments were performed, and the results 

show that large objects were better preserved as integral entities while small objects were also 

still effectively delineated. The results were also found to be superior to those from 

eCongnition’s multi-scale segmentation. 

Keywords: remote sensing image segmentation; region merging; multi-scale; constrained 

spectral variance difference; edge penalty 
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1. Introduction 

The launch of a number of commercial satellites such as IKONOS, GeoEye and WorldView-1, 2, and 3 

in the late 1990s has been an exciting development in the field of remote sensing. These satellites provide 

improved capability to acquire high spatial resolution images. Compared with low and medium resolution 

images, high spatial resolution images are endowed with more detailed spatial information; however, this 

detail poses great challenges for traditional image processing approaches, such as pixel-based image 

classification. Although successfully applied to low and moderate spatial resolution data, pixel-based 

classification schemes, which treat single pixels as processing units without considering contextual 

relationships with neighboring pixels, are not sufficient for high spatial resolution data. Because of the 

well-known issues of spectral and spatial heterogeneity, pixel-based classification often results in a large 

amount of misclassified noise. As an alternative, object-based image analysis (OBIA or GEOBIA) 

approaches were developed to classify high spatial resolution data [1–5]. OBIA first partitions imagery into 

segments, which are homogeneous groups of pixels (often referred to as objects). Then the image 

classification is performed on the objects (rather than pixels) using various types of information extracted 

from the objects, such as mean spectral values, shapes, textures and other object-level summary statistics. 

Since it is the image segmentation process that generates image objects and determines the attributes of the 

objects, the quality of the segmentation significantly influences the final results of OBIA. 

Image segmentation has long been studied in the field of computer vision, and has been widely 

applied in industrial and medical image processing [6,7]. In the field of remote sensing, image 

segmentation gained popularity in the late 1990s [8], and numerous segmentation algorithms have since 

been developed. Generally, segmentation algorithms applied in remote sensing can be classified as  

point-based, edge-based, region-based or hybrids [9–11].  

Point-based algorithms usually apply global information of entire image to search and label 

homogeneous pixels without considering neighborhood [10]. The most well-known point-based 

algorithm is histogram thresholding segmentation, which assumes, that valleys exist in histogram 

between different classes. Generally, histogram thresholding includes three steps: histogram modes 

recognizing, valleys (thresholds) between modes searching and thresholds applying [12]. Point-based 

methods are simple and quick, but require that different classes have evidently different values in the 

images. This method may encounter difficulty when processing remotely sensed imagery of a large 

coverage that exhibits inter-class spectral similarity and intra-class heterogeneity, which may severely 

deform the histogram modes. Therefore, the histogram thresholding segmentation method is usually 

applied in the delineation of local objects [12]. 

Edge-based algorithms exploit the possible existence of a perceivable edge between objects. The  

two best known algorithms are optimal edge detector [12,13] and watershed segmentation [14,15]. The 

optimal edge detector first uses the Canny operator [16] to detect edges and then the “best count” 

method is utilized to close the edge contours [17]. Watershed segmentation first extracts the gradient 

information from the original image, and the watershed transformation is then applied to the gradients 

to generate basins and watersheds. The basins represent the segments and the watersheds the division 

between them. Edge-based algorithms can quickly partition images; the process is highly accurate for 

images with obvious edges. However, because edge-based algorithms are primarily based on local 

contrasts, they are particularly sensitive to noise, which may lead to over-segmentation where a real world 
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object is incorrectly partitioned into several small objects. Additionally, because most edge-based 

algorithms rely on the step edge model [12,18,19], they are less sensitive to “blurry” boundaries, which 

may lead to under-segmentation where all or part of a real world object is incorrectly combined with 

another object.  

Because of these defects with edge-based segmentation algorithms, region-based approaches were 

developed and are widely used. Region-based approaches use regions as the basic unit. Attributes of 

regions are extracted to represent heterogeneity or homogeneity. Heterogeneous regions are then 

separated and homogeneous regions are merged to form segments. Two major region-based algorithms 

are the split-and-merge algorithm [20] and the region-growing algorithm [21,22]. The split-and-merge 

algorithm begins by treating the entire image as a single region. Regions are then iteratively split into 

sub-regions (usually 4 regions via a quad tree) according to a homogeneity/heterogeneity criterion. The 

splitting continues until all the regions become homogeneous. A final stage merges homogeneous 

regions and ensures that neighboring objects are heterogeneous. The region-growing algorithm begins 

from a set of seed pixels that are successively merged with neighboring pixels according to a 

heterogeneity/homogeneity criterion. The merging ends when all the pixels are merged and all 

neighboring objects are heterogeneous. The most significant problem of region-based algorithm is that 

segmentation errors often occur along the boundaries between regions. 

To combine the advantages of edge-based and region-based methods, increasingly more researchers 

have developed hybrid approaches. For example, Pavlidis and Liow [23] and Cortez et al. [24] used 

the edges generated by edge detection to refine the boundary of split-and-merging segmentation to 

improve the results. Haris et al. [25] and Castilla, Hay and Ruiz [26] used watersheds for initial 

segmentation and then merged these initial segments via a region-merging algorithm. Yu and Clausi [27] 

and Zhang et al. [28,29] added edge information as part of the merging criterion (MC) of a region 

growing algorithm. These hybrid methods generally provide superior results when compared with 

those of edge-based or region-based methods. 

Among existing algorithms, multi-scale segmentation, used by the eCognition software, has been 

the most widely employed. For example, Baatz and Schäpe [22] adopted a region-growing method using 

spectral and form heterogeneity changes as merging criteria to generate multi-resolution results. 

Robinson, Redding and Crisp [30] employed a similar approach by combining spectral variance 

difference (SVD) and common boundary length as the MC. Zhang et al. [28,29] employed a hybrid 

method that integrated edge penalty (EP) and standard deviation changes as merging criteria to generate 

multi-scale segmentation. In these multi-scale segmentation algorithms, the concept of scale plays a key 

role. However, scale as a threshold for MC often leads to similarly sized segments [22], but the real 

world is more complicated and contains objects with a large variation in size. Partitioning the image 

into segments similar in size may simultaneously cause over-segmentation and under-segmentation at a 

specific scale [31]. The solution to this problem, as offered by the multi-scale approach, is to segment 

images into differently scaled segmented layers that are linked by an object relation tree; this technique 

is known as the Fractal Net Evaluation Approach (FNEA) [32]. In FNEA, a layer of segments generated 

by a specific scale parameter is called an image-object level. Objects at a higher image-object level, in 

which the scale parameter is larger, are merged from the objects derived from a lower level. 

Consequently, the same real world objects may have a number of representations at different scale 

levels. To utilize the information at different scales, multi-scale classification must analyze the attributes 
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of various objects at different scales and construct corresponding classification rules. As a result, the 

analysis in multi-scale segmentation can become formidably complicated. 

The goal of this study is to develop a new segmentation algorithm that can generate various-sized 

image objects that are close to their real world counterparts using a single scale parameter. Many 

existing algorithms [22,30,32–37] use SVD as a MC to describe changes in spectral heterogeneity. 

However, the SVD is excessively influenced by the object sizes, which is the main cause for the 

simultaneous over-segmentation and under-segmentation. To address this problem, the proposed 

approach devises a constrained SVD (CSVD) in the MC to limit the influence of the segment size. 

Additionally, an EP is incorporated into the MC to increase boundary accuracy. Given these 

characteristics, the proposed algorithm can be categorized as a hybrid segmentation method. 

Similar to some other region-based approaches, the proposed approach adopted a three-step 

strategy. Firstly, a fast scan [37] was applied to produce an over-segmented result. In this stage, every 

pixel was first treated as a segment, and then the SVD was used as a simple MC to quickly partition the 

image. In the second stage, a more complex MC based on CSVD and EP was employed to continue the 

merging process. Region adjacent graph (RAG) [38,39] and nearest neighbor graph (NNG) [25] were 

used to expedite the merging process. Moreover, the global mutual best-fitting [22] strategy was 

employed to optimize the merging process. In the third and final stage, minor objects with size smaller 

than a pre-defined threshold were merged into their most similar neighboring objects to eliminate 

remaining noise. 

In order to assess the performance of the proposed method, we performed two groups of 

experiments. In the first experiment, different parameters of the proposed algorithm were tested to 

analyze their effects on segmentation performance. For the key parameters, both visual and 

quantitative assessments were provided. In the second experiment, the results of the proposed method 

were compared to those from eCognition based on both visual and quantitative assessments. In those 

quantitative assessments, the rate of over-, under- and well-segmentation was used to evaluate the 

segmentation quality on small, medium and large objects. Results showed that the proposed algorithm 

was able to segment the objects properly well regardless of their size using single scale parameter, 

meanwhile, achieved higher accuracy compared to eCognition multi-scale segmentation.  

Section 2 presents the study area and data, followed by Section 3 where the proposed method is 

described in detail. Section 4 shows the experimental results. Finally, conclusions and discussions are 

provided in Section 5. 

2. Study Area and Data 

Three sets of images with different spatial resolutions, WorldView 2, an aerial image and RapidEye 

(Figure 1), were chosen as test datasets. Table 1 gives the basic information for these images. Figure 

1a shows a pan-sharpened WorldView-2 image with a resolution of 0.6 m; the image covers an area in 

Hanzhong, China, where the main land cover types are farmland, road and buildings. Figure 1b is an 

aerial image with a resolution of 1 m covering part of the Three Gorges area, China, containing a small 

village, farmland and part of a river. Figure 1c is a subset of a RapidEye image for Miyun, China with  

a spatial resolution of 5 m. A residential area and farmland are located in the center of the image. The 

upper-left area (colored black in Figure 1c) is a reservoir, and the remainder is mainly forest. For 
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convenience, Figure 1a–c are hereafter referred to as R1, R2 and R3, respectively. All have 4 bands 

(blue, green, red and NIR), stretched to the 0–255 gray scale for parameter comparability. 

 

(a) (b) 

 

(c) 

Figure 1. Images of test data. (a) A WorldView-2 image; (b) An aerial image; (c) A RapidEye 

image. The specific parameters of these images are listed in Table 1. 

Table 1. Specific parameters of the test images. 

Image Platform Size Spatial Resolution Position Code 

a WorldView-2 872 × 896 0.6 m Hanzhong R1 

b Aerial plane 835 × 835 1 m Three Gorges R2 

c RapidEye 622 × 597 5 m Miyun R3 
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3. Methodology 

The proposed method comprises the following general steps (Figure 2). Initial segments are first 

produced by a fast scan method. The RAG and NNG are then built based on the initial segmentation. 

Region merging is applied to the RAG and NNG by using CSVD and EP. Finally, minor objects are 

eliminated to generate the final result. The segmentation results are quantitatively assessed by an 

empirical discrepancy method. 

 

Figure 2. General steps of the proposed method. 

3.1. Initial Segmentation 

The objective of initial segmentation is to quickly generate segments for the subsequent region-

merging step. In this stage, over-segmentation is allowed, but under-segmentation should be avoided. 

The initial segmentation is conducted by a quick scan of every pixel from the top-left to the  

bottom-right of the image. During the scan, each pixel is considered an image object and is compared 

to its upper-left neighboring objects. If the calculated MC is smaller than a given threshold, then the 

pixel object is merged with its neighboring object. In this step, only the spectral heterogeneity 

difference is used as the MC, formulated as follows [22]: 

)()( 221121 hnhnhnnh mdiff 
 (1) 

where h1, h2 are the heterogeneity of two adjacent objects before merging, hm is the heterogeneity after 

h1 and h2 are merged, and n represents the object size. 

The heterogeneity h can be computed as the variance of the object: 
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where x is the spectral value of each pixel in an object, μ is the mean spectral value of the object, and 

SS represents the sum of squares of the pixel values. 

Applying Equation (2) to Equation (1), we obtain the following: 
2 2 2
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where SS1, SS2 is sum of squares before merging, SSm is sum of squares after merging. 

Two hidden relationships exist: 
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By applying Equations (4) and (5) to Equation (3), we obtain the final spectral heterogeneity 

difference, which is also referred to as SVD: 
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3.2. RAG and NNG Constructing and Region Merging 

3.2.1. RAG and NNG Construction 

RAG is a data structure which describes the segments and their relationships, defined as: 

),( EVG   (8) 

where V is the set of segments, called nodes, and E is the set of edges each of which stands for a 

neighborhood of two adjacent nodes. Each node carries particular object-level information, including 

the object ID, size, mean spectral value, and location. Each edge contains information, such as the IDs 

of adjacent objects, their dissimilarity, and common edge length and strength. Once RAG is 

established, all information necessary for the merging process, such as the mean spectral value and 

number of pixels, is stored with the nodes thus the original image is no longer needed. All subsequent 

processes, including region merging, minor objects elimination and the output of results occur solely on 

the basis of RAG. 

The NNG is implemented to accelerate the global mutual best-fitting strategy (see Section 3.2.2) in 

our algorithm. The NNG is a directed graph that can be described as follows: 

),( mmm EVG 
 (9) 

where Vm represents the set of nodes as in RAG, but Em here represents the directed edges of the nodes, 

which differs from those in RAG because every edge is directed toward only the neighboring node 

with the minimum MC in NNG.  

Figure 3 shows a simple example of RAG and NNG. Figure 3a illustrates the location of the objects, 

and its corresponding RAG is shown in Figure 3b. Every edge in the RAG represents the neighborhood 

of two objects, and the number on every edge indicates the MC. Figure 3c shows the NNG that was 

built based upon the RAG. In the NNG, each node is only linked to its nearest neighbor, which has the 

minimum MC among its neighbors. Taking node C as an example, C’s nearest neighbor is D because D 

has the minimum MC with C among all of C’s neighbor nodes. Thus, an edge is built starting from C to D. 

There is a special case for the edges in NNG, where bidirectional edges exist between two nodes, 

such as the two edges between A and B in Figure 3c. This is called a cycle. A global best-fitting object 

pair must be a cycle. Consequently the global best-fitting merging procedure can be described as 

follows. First, a cycle heap is constructed by storing all the cycles in the heap. The process of 

searching for global best-fitting node pairs is actually a search for a cycle with the smallest MC value 

among all the cycles. Merging is then performed on the object pair that is connected by the cycle with 
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the smallest MC. As the merging continues, the RAG, NNG and cycle heap are updated synchronously to 

ensure the MC between every object pair is correct each time. Since a cycle is composed of two edges, 

the worst case would be that the size of the cycle heap is half of the edge number. In other words, all edges 

are cyclic. Consequently, using a NNG to implement global mutual best-fitting can significantly reduce 

the merging time. 

 

Figure 3. An Example of region adjacent graph (RAG) and nearest neighbor graph (NNG). 

(a) The location of objects; (b) The RAG and (c) The NNG. 

3.2.2. Region Merging 

For a given set of initial segments, the merging result depends on the merging order and termination 

condition. The merging order is decided by the MC and merging strategy. The termination condition is 

also related to the MC. 

Merging Criterion 

The aim of region merging is to integrate homogeneous partitions into larger segments and keep 

heterogeneous segments separate. Therefore, the MC can be based on either homogeneity or 

heterogeneity between two objects. In this research, MC is based on heterogeneity; therefore, object 

pairs with a smaller MC will be preferentially merged. 

Many region-merging segmentation algorithms use SVD as part of the MC. SVD includes two 

parts: f(n1,n2) and (μ1-μ2)2. The former represents the influence of object size, and the latter reflects the 

impacts of spectral difference. The formula for f(n1,n2), infers that it is a monotonically increasing 

function given that n1 and n2 are never less than 1. However, when objects in the image vary greatly in 

size, segmentation using SVD as part of the criterion may cause problems. For example, consider two 

pairs of objects: one pair has a size of 100 pixels for each object and a spectral difference of 100 gray 

scales; the other pair consists of two objects that are 10,000 times larger in size but with a spectral 

difference of 1.01. According to Equation (6), the SVD of the first pair is 500,000, and that of the 

second pair is 510,050. Therefore, the former pair has a higher merge priority due to its smaller SVD, 

even though it has a much greater spectral difference. That means smaller objects are more prone to be 

merged to their neighbor than larger objects using SVD as part of MC. As a result, many small objects are 

often incorrectly merged (i.e., under-segmented) due to their higher merge priority, whereas many large 
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objects are often partitioned into small objects (i.e., over-segmented) because of their lower merge 

priority. Consequently, under-segmentation and over-segmentation can simultaneously exist in the 

results of SVD-based segmentation if the real world objects vary greatly in size. 

To address this problem, we devised a CSVD to evaluate the spectral heterogeneity difference of  

two neighboring objects, defined as: 

bCNCN

CNCN
CSVD

b

i









 1

2

21

21

21

)( 

 

(10) 

)3,2,1(
,

,









 T

TnifT

Tnifn
CN

 
(11) 

where n is the object size in the unit of number of pixels, and T is a threshold for object size 

determined by users. 

 

Figure 4. Comparison of f(n1,n2) and f(CN1,CN2). The black contour is the plot for f(n1,n2). 

The colorful surface is the plot for f(CN1,CN2), in which T equals 200. 

Figure 4 shows a contour plot of f(n1,n2) and surface plot of f(CN1,CN2). It can be seen that, as n1, 

and n2 increase, the corresponding f(n1,n2) always becomes larger. While the introduction of threshold 

T for the f(n1,n2) component in CSVD significantly constrains the effects of the object size (see the 

surface plot in Figure 4). For an object pair in which both objects are larger than T in size, the 

f(CN1,CN2) is the same as f(T, T). Therefore, spectral difference will be the main factor that determines 

the MC because their size factor, denoted by f(CN1,CN2), is the same and will not increase further with 

object size increases. For a pair in which both objects are smaller than T in size, both the spectral 

difference and object size exert their full influence on the MC. For a pair in which one object is larger than 

T and the other is smaller than T, the spectral difference can exert its full influence on the MC, but the 

object size only partially impacts the MC. The concept is similar to that of human recognition, where 
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both the size of an object and its difference in color relative to the background may jointly determine 

whether it is detected or missed. When two neighboring objects are small, a person may not be able 

differentiate them, even though the objects have very different colors (similar to being merged 

together). When two neighboring objects are both larger than a particular size, we can usually 

differentiate them if their color is sufficiently different (similar to being kept separated). When a small 

object is next to a large object, the size of the smaller object and the color difference between the small 

and large objects codetermine whether the small object can be detected by human perception.  

In order to enhance boundary delineation, an EP [27,29] is also introduced as part of the MC. An EP 

is a function of edge strength (ES). ES refers to the mean spectral difference between two objects that 

share a common edge. The formulas for EP and ES are given in Equations (12) and (13), respectively: 
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where ε is a variable used to adjust the effect of EP, ESmax is the maximum ES of the initial segmentation, 

ESP is the pixel spectral difference between the two sides of the common edge, with each side 2 pixels in 

width, and n is the length of their common edge in pixels. A smaller ES of an object pair corresponds to a 

greater possibility that merging will occur because the objects’ EP values are small. 

The proposed algorithm combines CSVD and EP to generate the final MC. Most previous  

studies [40–42] integrated various kinds of normalized values in the MC via addition. However,  

Xiao et al. [43] found that this practice would desensitize particular important components. Sakar, Biswas 

and Sharma [44] suggested using multiplication to combine area, spectral difference and variance to 

obtain the final MC; the authors produced good results. To sensitize both CSVD and EP, our algorithm 

adopts a multiplication strategy to calculate the final MC:  

EPCSVDMC   (14) 

To re-scale MC to its original order of magnitude, we use the geometric mean to compute the  

final MC: 

EPCSVDMC   (15) 

According to Equation (15), if either CSVD or EP equals 0, then the value of MC will be 0, which 

leads to merging of the object pair.  

Merging Strategy 

Baatz and Schäpe [22] listed four potential merging strategies for merging object A with its 

neighboring object B: fitting (if their MC is smaller than a threshold); best-fitting (if their MC is 

smaller than a threshold while the MC of A and B is the smallest among those between A and A’s 

neighboring objects); local mutual best-fitting (if their MC is smaller than a threshold and A is the 

best-fitting neighboring object of B and B is the best-fitting neighboring object of A); and global 

mutual best-fitting (if A and B are a pair of mutual best-fitting objects and their MC is smallest among 

all pairs in the image and also smaller than a threshold). 

Among these four strategies, the latter two are adopted in most region-merging methods because the 

first two are too simple to work well. Local mutual best-fitting tends to result in segments with similar 



Remote Sens. 2015, 7 5990 

 

size [22]. In our algorithm, global mutual best-fitting is adopted to determine the order of object 

merging for objects with similar spectral values. 

3.3. Minor Object Elimination 

After the above steps are performed, minor object elimination is conducted by merging the minor 

objects, whose sizes are smaller than a threshold, with their most similar neighboring object. 

3.4. Quantitative Assessment Method 

An empirical discrepancy method [31,45], which uses manually identified regions as reference 

objects, was adopted to quantitatively assess segmentation quality. First, clearly separable areas were 

manually segmented as the reference objects. Then, over-segmentation and under-segmentation were 

evaluated by two criteria, the AFI [46] and the EPR [31]. 

The AFI is defined as follows: 

refer
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A

AA
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
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(16) 

where Arefer and Alargest, are, respectively, the areas of the reference object and the largest segment 

within it. A larger AFI value corresponds to more over-segmentation of the object. 

To understand EPR, we need to introduce the term effective sub-object, which represents objects 

“consisting of more than 55 percent of the pixels from the reference area” [31]. The extra pixels are 

those pixels included in the effective sub-objects but not included in the reference area. The definition 

of an effective sub-object and extra pixels are illustrated in Figure 5. The bold black rectangle is the 

reference area which includes 6 sub-objects. Other polygons are the sub-objects of the reference area, 

which are produced by segmentation. Sub-object A, B and C are effective sub-objects and the gray 

areas are the extra pixels. 

 

Figure 5. A schematic representation of segmentation illustrating “effective sub-objects” 

and “extra pixels”. The bold black rectangle is the reference area which includes 6 sub-objects. 

Sub-object A, B and C are effective sub-objects and the gray areas are the extra pixels. 
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The EPR is defined as follows: 
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where Aextra is the area of extra pixels and Arefer is the areas of the reference object. EPR indicates the 

degree of under-segmentation. A larger EPR value corresponds to more under-segmentation of the 

object. In special cases, no effective sub-object exists, or the area of effective sub-objects in the 

reference area is too small (less than 55 percent of the reference area in this research). In this situation, 

we set the EPR to 1, which means that the object is completely under-segmented. 

In this research, an object is considered over-segmented if the AFI of the object is greater than a 

given threshold (we used 0.25 as an empirical number in this research). In contrast, when the EPR of 

an object is greater than a threshold (also 0.25 in this research), the object is considered  

under-segmented. An objects is regarded as being well-segmented when its EPR and AFI are both 

smaller than 0.25. The rates of over-, under- and well-segmented objects are used to assess the 

accuracy. To assess its performance on objects of varied sizes, all the objects are divided into 3 groups, 

including small, medium and large objects. The rates of over-, under- and well-segmented objects are 

calculated for each of these 3 groups. 

4. Results and Discussion 

4.1. The Effect of Algorithm Parameters 

In the proposed method, five parameters control the quality of the final segments: the initial 

segmentation scale, T (the constraining threshold for the object size in CSVD), ε (the control variable 

in the EP), the scale parameter of MC for region merging, and lastly the minimum object size in the 

minor object elimination process. Since minor object elimination is a simple process, the effect of the 

minimum object size on the segmentation results was not evaluated. 

4.1.1. Scale of Initial Segmentation 

Different SVD thresholds were tested as initial segmentation scales for all three study areas. Since 

the initial segmentation results were similar, R1 is used as an example for analysis. In Figure 6a, a 

threshold of 10 was used, and the image was partitioned into 202,608 segments. Figure 6c shows a 

zoomed-in area of (a). The pixels in the same object have similar values. When the threshold reached 50 

(see Figure 6b,d), each object becomes less homogenous and the number of objects dramatically 

decreases to 22,043. 

Generally, smaller scales produce segments with higher homogeneity but results in too many 

partitions (over-segmentation), which may increase the computing time in subsequent steps. In 

contrast, larger scales generate fewer segments but lead to under-segmentation of particular objects, 

which cannot be fixed by the subsequent region-merging process. Consequently, a reasonable 

threshold must be chosen to strike a balance between segmentation quality and processing speed. Our 

experiments used SVD thresholds for the scale of initial segmentation between 20 and 30, which 

determined on trials and error using the test images. For the initial segmentation, a small scale is 

preferred because over-segmentation is allowed in this stage.  
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Figure 6. Initial segments of R1. (a) Threshold of 10 with 202,608 objects. (b) Threshold 

of 50 with 22,043 objects. Images (c,d) are zoomed-in area of (a,b), respectively. 

4.1.2. The Constraining Threshold for Object Size in CSVD: T  

Different T values of 20, 100 and 50,000 were tested in R1, all other parameters remaining the same 

with initial scale set to 20 and ε to 0. The results are shown in Figure 7a–c, respectively. All three tests 

partitioned the image into 1400 segments. The influence of T can be seen in two aspects. 

First, large objects tend to merge with their neighbor objects when T is smaller. In Figure 7a, a very 

small T (20) caused the large objects within the upper-left rectangle to become under-segmented; when 

T was increased to 100 (Figure 7b), segmentation improved. Different types of farmland with different 

spectral values were separated, and over-segmentation did not occur. When T was further increased to 

50,000 (Figure 7c), this area became over-segmented. Similar outcomes can be observed in the other 

two rectangles in Figure 7. As T increased, the areas in the two rectangles became increasingly more 
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fragmented. For large objects, a small T can keep them integrated, but too small a T may cause 

particular large objects to be under-segmented. It is worth mentioning that when T was set as 50,000, 

CSVD was equivalent to SVD, because the largest object in Figure 7c has a size of 11,071 pixels.  

Second, a smaller T, on the other hand, can also better preserve small objects. Figure 7d is a graph 

showing statistics for the number of objects with sizes smaller than 1000 pixels in Figure 7a–c. In 

Figure 7d, when T was set to the very small value of 20, approximately 900 objects had sizes smaller 

than 100 pixels. Among these 900 objects, approximately 700 were smaller than 50 pixels, most of 

which were noise or minor objects that can be ignored. When T was increased to 100 and 50,000, the 

number of objects smaller than 100 pixels drastically decreased to approximately 600 and 300, 

including 300 and 100 objects smaller than 50 pixels, respectively. Therefore, a small T helps maintain 

small objects; however, a T that is too small will produce too many minor objects and noise. 

 

 

Figure 7. The influence of T in constrained spectral variance difference (CSVD). Images 

(a–c) are the segmentation results of R1. All three tests feature an initial scale of 20, an ε of 

0 and 1400 segments. However, in (a–c), T was set to 20, 100 and 50,000, respectively. Panel 

(d) is a statistical graph of the number of objects with sizes smaller than 1000 pixels in (a–c). 

To better assess the effect of T, quantitative assessment was performed on different segmentation 

results generated by different T values, including 20, 100, 200, 400, 800, 5000 and 50,000, and other 

parameters were kept the same with those in Figure 7. Figure 8a shows the reference data of R1, which 
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include 22 small objects (100–999 pixels), 13 medium size objects (1000–4999 pixels) and 6 large objects 

(more than 5000 pixels). Figure 8b–d displays the plots of over-, under- and well-segmentation rate, 

respectively. In Figure 8b, all the over-segmentation rates of small, medium and large objects increase 

with T. That is because a larger T value makes the f(CN1,CN2) between large objects and their neighbor 

greater, and thus results in higher priority for small objects to be merged, especially those smaller than 

100 pixels. When T was further increased over 800, the rate of over-segmentation for small objects showed 

a slight decrease, because some of the originally over-segmented small objects became well-segmented or 

under-segmented. In Figure 8c, when T was set to 20, all objects in the 3 size groups were seriously 

under-segmented because a large number of minor objects were generated with such a small T (Figure 7d). 

Since the total number of objects was kept to 1400, the numbers of small, medium, objects resulted 

were less than they should be due to the number of objects were used up by minor objects. When T was 

increased to 100 and 200, the number of minor objects sharply decreased (Figure 7d). As a result, the 

rates of under-segmentation decreased for all object types. However, when T was increased to be larger 

than 200, some of the small objects were merged to their neighbors and became under-segmented. 

Figure 8d shows the well-segmentation rates of small, medium, large objects and, additionally their sums. 

These rates reached their peaks when T was set to 100 or 200. 

 

Figure 8. (a) The reference objects of R1, including 22 small objects (100–999 pixels),  

13 medium size objects (1000–4999 pixels) and 6 large objects (more than 5000 pixels);  

(b–d) display the rates of over-segmented, under-segmented and well-segmented  

objects, respectively. 
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4.1.3. The Edge Penalty Control Variable ε 

An experiment was also performed with different ε values to evaluate the effects of the EP on 

segmentation. In this test, the initial scale and T were set to 20 and 300, respectively, and the number 

of segments was forced to 360. Figure 9a–c show the results when ε was set to 0, 0.1 and 0.5, respectively. 

When ε was set to 0, i.e., no EP was included in the merging process (Figure 9a), the CSVD was able 

to generate an acceptable result, particularly for objects with obvious spectral value differences. 

Therefore, CSVD alone had the ability to produce good segmentation results. However, inaccurate 

boundaries appeared between some objects that didn’t have perceptible spectral difference along their 

common boundary. When ε was set to 0.1 (Figure 9b), particular object pairs without clearly defined 

boundaries merged. This merging is especially obvious in the northern vegetated area. In contrast, 

many buildings with high edge strength in the settlement area remained partitioned. Figure 9d–f show 

the zoomed-in areas of Figure 9a–c. In the white rectangles (Figure 9d,e), the boundary accuracy is 

significantly improved through the use of the EP. Within the black rectangle of Figure 9f, the edge 

strength between the farmland and its neighboring vegetated area was not very high. When the edge 

penalty was given the higher weight of 0.5, the farmland was merged with its neighboring object, 

although the average spectral difference between the two objects was evident. Therefore, a ε value that is 

too large may introduce undesired under-segmentation. 

 

Figure 9. The influence of edge penalty. Images (a–c) are segmentation results of R3. All 

three tests feature an initial scale of 20, a T of 300 and 360 segments. Only ε varies and was 

set to 0, 0.1 and 0.5 in (a–c), respectively. (d–f) are zoomed-in areas of (a–c), respectively. 

4.1.4. The Scale Parameter for MC 

In this test, different MC thresholds that represented segmentation scale parameters were tested  

on R2, and the results are shown in Figure 10. The MC scale parameter was set to 30, 130 and 200 in 
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Figure 10a–c respectively. The other parameters (initial scale, ε, and T) remained the same, and were 

set to 20, 0.1 and 300 respectively. To illustrate more detail in the results, Figure 10d–f show zoomed-in 

areas of Figure 10a–c. The MC scale parameter of 10 partitioned the image into 1213 fragments 

(Figure 10a,d). The objects with minor spectral differences were separated (note the farmland in  

Figure 10d). When the MC was increased to 130 (Figure 10b,e), the objects with similar spectral 

values were merged. When the MC reached 200 (Figure 10c,f), more objects were merged, and only 

those with a significant spectral difference from their neighbors were preserved. 

 

Figure 10. The influence of different MC values. All three tests set initial scale to 20, T to 

300, and ε to 0.1. Only MC varied and was set to 30, 130 and 200 in (a–c), respectively. 

Images (d–f) are zoomed-in areas of (a–c), respectively.  

Like Section 4.1.2, a group of segmentation results were generated by different MC values ranged 

from 10 to 800, and other parameters remained the same with those in Figure 10. Figure 11a shows  

the reference data of R2, which include 13 small objects (100–399 pixels), 7 medium size objects  

(400–1999 pixels) and 4 large objects (more than 2000 pixels). Figure 11b–d display the plots of over-, 

under- and well-segmentation rate, respectively. With the increasing of MC value, more and more 

objects were merged. Therefore, their over-segmentation rates decreased (Figure 11b) while their 

under-segmentation rates increased (Figure 11c). Figure 11d shows the well-segmentation rates of small, 

medium, large objects and their sums. It can be seen that all the 3 groups of objects were best-segmented 

(highest well-segmentation rate) when the same MC value of 130 is used. 
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Figure 11. Quantitative assessment results by different MC values in R2. (a) is the 

reference objects of R2, including 13 small objects (100–399 pixels), 7 medium size 

objects (400–1999 pixels) and 4 large objects (more than 2000 pixels); (b–d) display the 

rates of over-segmented, under-segmented and well-segmented, respectively. 

4.2. Comparison with eCognition Software Segmentation 

eCognition is one of the most widely used commercial OBIA software in remote sensing. The  

multi-resolution segmentation algorithm in eCognition employs the local mutual best-fitting strategy and 

uses spectral and shape heterogeneity differences as merging criteria. For spectral heterogeneity, the 

eCognition segmentation applied a SVD-based criterion [22]. For shape heterogeneity, the eCognition 

segmentation used compactness and smoothness. In the proposed algorithm, shape heterogeneity could 

also be incorporated into the merging criterion to make objects compact and smooth. However, this 

could also jeopardize boundary accuracy [28] and fragment some elongated objects. Since this research 

focuses primarily on the improvement of spectral heterogeneity differences, the shape weight parameters 

for eCognition and our algorithm were both set to 0 for our comparison tests. 

Figure 12 shows the results of the two algorithms applied to R3. Figure 12a,b are the results of 

eCognition segmentation with the MC scale parameter set to 200 and 700, respectively. Figure 12d–h 

are two zoomed-in areas of Figure 12a,b. In Figure 12a, the upper-left reservoir (black area) was  

over-segmented but the pools in the rectangle of (d) were correctly segmented. When the scale 

parameter was increased to 700, the pools became under-segmented, and the reservoir remained  

over-segmented (see Figure 12b,e). Therefore, it is impossible to simultaneously segment both the 

reservoir and the pools correctly using a single scale parameter in eCognition. However, this was not a 

problem for our algorithm. Figure 12c shows our segmentation results with ε, T and the MC scale 
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parameter set to 0.1, 100 and 55, respectively. Figure 12f,i are the zoomed-in areas of Figure 12c. The 

proposed method is able to correctly segment both medium and large size objects, while also 

preserving the small objects. The eCognition segmentation also generated incorrect merges when the 

scale parameter was raised to 700. In Figure 12h, a small portion of the water body was incorrectly 

merged with the bank by eCognition, whereas the proposed algorithm correctly segments the entire water 

body (Figure 12i). Consequently, the incorporation of EP improved the accuracy of boundary delineation. 

 

 

 

Figure 12. Comparison of the proposed algorithm and eCognition segmentation applied  

to R3. Images (a,b) are the results of the eCognition segmentation with scale parameters 

set to 200 and 700, respectively. Image (c) is the result of the proposed segmentation with 

ε, T and MC set to 0.1, 100 and 55, respectively. Images (d–f) show a zoomed-in area of  

(a–c). Images (g–i) show another zoomed-in area of (a–c). Their corresponding areas are 

showed in the white rectangles in (a–c). 
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For quantitative comparison, the same assessment method used in Section 4.1 was employed. 

Because the quantitative evaluation of R1, R2 and R3 are similar, we only show the results of R1 here. 

The reference objects are the same with those used in Section 4.1.2. Figure 13a,c,e display the plots of 

over-, under- and well-segmentation rate of the eCognition segmentation results using different scales. 

For comparison, the corresponding plots of the segmentation results generated by the proposed 

algorithm with different MC scales were showed in Figure 13b,d,f. Other parameters (initial scale, ε, and 

T) remained the same, and were set to 20, 0.1 and 100 respectively. Since both eCognition segmentation 

and the proposed algorithm are region-merging methods, their over-segmentation rates decrease with 

the increase of scale parameter (Figure 13a,b). However, their difference is also obvious. In eCognition 

segmentation, the over-segmentation rate of larger objects is always greater than that of smaller objects 

(Figure 13a). Similar phenomenon can also be found for the under-segmentation rate (Figure 13c,d). 

This is because the f(n1,n2) in SVD of smaller objects is smaller, which gives smaller objects higher 

priority to be merged, while larger objects are prone to be over-segmented. Figure 13e shows the  

well-segmentation rates of eCognition segmentation. It can be seen that the well-segmentation rate of small 

objects get its highest value when the scale parameter is small, i.e., 50. Whereas, the well-segmentation 

rates of the medium and large objects need a higher scale parameter to reach their peaks. Therefore, it 

is impossible for eCognition segmentation to partition small-, medium- and large-sized objects well 

simultaneously by using one scale parameter. However, the proposed algorithm can strike good balance 

among varied-size objects by one scale parameter (around 60). When the MC scale parameter of the 

proposed algorithm was set to 60, the well-segmentation rate of each group objects is also much higher 

than the highest = well-segmentation rate of eCognition segmentation. For example, the well-segmentation 

rate of medium objects by scale 60 using the proposed algorithm (Figure 13f) is about 0.62, which is 

higher than that in eCognition segmentation by any scale (highest rate is 0.46).  

The most significant difference between our method and other algorithms is that we used CSVD 

instead of SVD for MC. The CSVD reduces the influence of object size in the merging process 

compared with the SVD. In SVD-based algorithms, the MC of large objects pairs with similar spectral 

values can be enormous, because the corresponding f(n1,n2) can be very large. In CSVD, the influence 

of f(n1,n2) is constrained. The MC of large objects pairs with similar spectral values can be limited to a 

small value, thus merging can still be conducted on these objects pairs. Therefore, the proposed 

algorithm can prevent large objects from being over-segmented. Likewise, the MC of small objects 

pairs with distinct spectral differences can also be large enough to prevent them from being merged. 

Additionally, the introduction of an EP, if properly weighted, also improves the accuracy of object 

boundaries, although an over-weighted edge penalty may jeopardized the merging process.  

In our experiments, the parameter of minimum object size for minor objects elimination was set to 

small values (20–50). It was observed that these values of the parameter barely had any influence on 

the final results. A minimum object size parameter that is too large should be avoided because they 

may jeopardize the segmentation accuracy. 

Compared to SVD based method such as eCognition segmentation, the proposed algorithm only 

involves two extra steps (the calculation of CN and EP), which didn’t increase much computational 

complexity. For example, in a speed test using R2, the proposed method took 6.63 second to partition 

R2 into 4800 segments, which cost only 0.99 second more than that of the pure SVD based method.  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 13. Quantitative assessment results by different MC values in R2. Plots on the  

left side of the figure display the over-, under- and well-segmentation rate of eCognition 

segmentation using different scale parameters. The corresponding plots of the proposed 

method are displayed on the right part. (a) Rate of over-segmented objects by eCognition 

segmentation; (b) Rate of over-segmented objects by the proposed method; (c) Rate of 

under-segmented objects by eCognition segmentation; (d) Rate of under-segmented objects 

by the proposed method; (e) Rate of well-segmented objects by eCognition segmentation; 

(f) Rate of well-segmented objects by the proposed method.  

In the proposed method, five parameters must be set manually. While it is also a common challenge 

that most commercial segmentation software such as eCognition, and ENVI are facing, because these 

parameters are often data dependent. However, ideally image segmentation software should provide 

the automatic configuration and optimization of the parameters and this will be significant part of our 

future research. Additionally, because the top-to-bottom and left-to-right fast scan method for initial 

segmentation is relatively simple, a small initial scale is needed to achieve a good accuracy. 

Unfortunately, a small initial scale leads to excessive initial segments, which substantially increases 
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the computational burden. Therefore, a superior initial segmentation method may be explored in 

further research.  

5. Conclusions 

This research proposes a new algorithm for image segmentation. The goal of the proposed method 

was to generate objects of varied size which are close to their real-world counterparts in a single scale 

layer. We introduced constrained spectral variance difference (CSVD) and Edge Penalty (EP) to 

generate Merging Criterion (MC), and adopted a global mutual best-fitting strategy implemented 

through region adjacent graphs (RAG) and nearest neighbor graphs (NNG) to achieve this objective.  

The significant novelty of the proposed algorithm is the devise of CSVD, which largely reduce the 

influence of size. Based on both visual and quantitative evaluations, we demonstrated that the 

proposed algorithm was able to segment the objects properly regardless of their size. When compared 

with results from the commercial eCognition software, the proposed method better preserves the 

entirety of large objects, while also prevents small objects from mingling with other objects. It can 

strike a good balance when partitioning varied-size objects using one MC scale parameter. 

Additionally, in a quantitative comparison, the highest sum of the well-segmentation rate of small-, 

medium- and large-sized objects using the proposed algorithm reached 2.04 which was much higher 

than that of the eCognition segmentation (1.07) using one scale parameter. Besides, the proposed 

method improved the accuracy of boundary delineation. Finally, compared to a pure SVD based 

method, the proposed algorithm incurs less than 20 percent extra computational burden. 

Acknowledgment 

The authors specifically acknowledge the financial support through the National Key Technology  

R&D Program (Grant No. 2012BAH27B01) and the Program of International Science and Technology 

Cooperation (Grant No. 2011DFG72280). The authors would like to thank the anonymous referees for 

their contributing comments. 

Author Contributions 

The idea of this research was conceived by Bo Chen. The experiments were carried out by Bo Chen 

and Hongyue Du. The manuscript was written and revised by Bo Chen, Fang Qiu and Bingfang Wu. 

Conflicts of Interest 

The authors declare no conflict of interest. 

Reference 

1. Cracknell, A.P. Synergy in remote sensing—What’s in a pixel? Int. J. Remote Sens. 1998, 19,  

2025–2047. 

2. Blaschke, T.; Strobl, J. What’s wrong with pixels? Some recent developments interfacing remote 

sensing and GIS. GeoBIT/GIS 2001, 6, 12–17. 



Remote Sens. 2015, 7 6002 

 

3. Burnett, C.; Blaschke, T. A multi-scale segmentation/object relationship modelling methodology 

for landscape analysis. Ecol. Model. 2003, 168, 233–249. 

4. Hay, G.J.; Castilla, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a 

new discipline. In Object Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote 

Sensing Applications, 1st ed.; Blaschke, T., Lang, S., Hay, G., Eds.; Springer: Heidelberg/Berlin, 

Germany; New York, NY, USA, 2008; pp. 93–112. 

5. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote 

Sens. 2010, 63, 2–16. 

6. Haralick, R.M.; Shapiro, L. Survey: Image segmentation techniques. Comput. Vis. Graph. Image 

Process. 1985, 29, 100–132. 

7. Pal, R.; Pal, K. A review on image segmentation techniques. Pattern Recognit. 1993, 26, 1277–1294. 

8. Blaschke, T.; Burnett, C.; Pekkarinen, A. New contextual approaches using image segmentation 

for object-based classification. In Remote Sensing Image Analysis: Including the Spatial Domain,  

1st ed.; de Meer, F., de Jong, S., Eds.; Kluver Academic Publishers: Dordrecht, The Netherland, 

2004; Volume 5, pp. 211–236. 

9. Reed, T.R.; Buf, J.M.H.D. A review of recent texture segmentation and feature extraction techniques. 

Comput. Vis. Graph. Image Process. 1993, 57, 359–372. 

10. Schiewe, J. Segmentation of high-resolution remotely sensed data- concepts, applications and 

problems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 380–385. 

11. Dey, V.; Zhang, Y.; Zhong, M. A review on image segmentation techniques with remote sensing 

perspective. In Proceedings of the ISPRS TC VII Symposium—100 Years ISPRS, Vienna, 

Austria, 5–7 July 2010; Wagner W., Székely B., Eds.; ISPRS: Vienna, Austria, 2010.  

12. Gonçalves, H.; Gonçalves, J.A.; Corte-Real, L. HAIRIS: A method for automatic image 

registration through histogram-based image segmentation. IEEE Trans. Image Process. 2011, 20, 

776–789. 

13. Cocquerez, J.P.; Philipp, S. Analyse D’images: Filtrage et Segmentation; Masson: Paris, France, 

1995; p. 457. 

14. Vincent, L.; Soille, P. Watershed in digital spaces: An efficient algorithm based on immersion 

simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. 

15. Debeir, O. Segmentation Supervisée d’Images, Ph.D. Thesis , Faculté des Sciences Appliquées, 

Université Libre de Bruxelles, Brussels, Belgium, 2001. 

16. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 

1986, 6, 679–698. 

17. Carleer, A.P.; Debeir, O.; Wolff, E. Assessment of very high spatial resolution satellite image 

segmentations. Photogramm. Eng. Remote Sens. 2005, 71, 1285–1294. 

18. Jain, A.K. Fundamentals of Digital Image Processing; Prentice-Hall: Upper Saddle River, NJ, 

USA, 1989; pp. 347–356. 

19. Wang, D. A multiscale gradient algorithm for image segmentation using watersheds. Pattern 

Recognit. 1997, 30, 2043–2052. 

20. Horowitz, S.L.; Pavlidis, T. Picture segmentation by a tree traversal algorithm. J. ACM 1976, 23, 

368–388. 



Remote Sens. 2015, 7 6003 

 

21. Adams, R.; Bischof, L. Seeded Region Growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 

16, 641–647. 

22. Baatz, M.; Schäpe, M. Multiresolution segmentation—An optimization approach for high quality 

multi-scale image segmentation. In Angewandte Geographische Informations-Verarbeitung XII, 

Beiträge zum AGIT-Symposium Salzbug, Salzbug, Austria; Strobl, J., Blaschke, T., Griesebner, G., 

Eds.; Herbert Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. 

23. Pavlidis, T.; Liow, Y.T. Integrating region growing and edge detection. IEEE Trans. Pattern  

Anal. Mach. Intell. 1990, 12, 225–233. 

24. Cortez, D.; Nunes, P.; Sequeira, M.M.; Pereira, F. Image segmentation towards new image 

representation methods. Signal Process. 1995, 6, 485–498. 

25. Haris, K.; Efstratiadis, S.N.; Maglaveras, N.; Katsaggelos, A.K. Hybrid image segmentation using 

watersheds and fast region merging. IEEE Trans. Image Process. 1998, 7, 1684–1699. 

26. Castilla, G.; Hay, G.J.; Ruiz, J.R. Size-constrained region merging (SCRM): An automated 

delineation tool for assisted photointerpretation. Photogramm. Eng. Remote Sens. 2008, 74, 409–419. 

27. Yu, Q.; Clausi, D.A. IRGS: Image segmentation using edge penalties and region growing.  

IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2126–2139. 

28. Zhang, X.; Xiao, P.; Song, X.; She, J. Boundary-constrained multi-scale segmentation method for 

remote sensing images. ISPRS J. Photogramm. Remote Sens. 2013, 78, 15–25. 

29. Zhang, X.; Xiao, P.; Feng, X. Fast hierarchical segmentation of high-resolution remote sensing 

image with adaptive edge penalty. Photogramm. Eng. Remote Sens. 2014, 80, 71–80. 

30. Robinson, D.J.; Redding, N.J.; Crisp, D.J. Implementation of a fast algorithm for segmenting  

SAR imagery. In Scientific and Technical Report; Defense Science and Technology Organization: 

Canberra, Australia, 2002. 

31. Marpu, P.R.; Neubert, M.; Herold, H.; Niemeyer, I. Enhanced evaluation of image segmentation 

results. J. Spat. Sci. 2010, 55, 55–68. 

32. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multiresolution,  

object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. 

Photogramm. Remote Sens. 2004, 58, 239–258. 

33. Beaulieu, J.M.; Goldberg, M. Hierarchy in picture segmentation: A stepwise optimization 

approach. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 150–163. 

34. Saarinen, K. Color image segmentation by a watershed algorithm and region adjacency graph 

processing. In Proceedings of the IEEE International Conference on Image Processing, Austin, TX, 

USA, 13–16 November 1994; Volume 3, pp. 1021–1025.  

35. Chen, Z.; Zhao, Z.M.; Yan, D.M.; Chen, R.X. Multi-scale segmentation of the high resolution 

remote sensing image. In Proceedings of the 2005 IEEE International Geoscience and Remote 

Sensing Symposium, 2005, (IGARSS’05), Seoul, South Korea, 29 July 2005; Volume 5,  

pp. 3682–3684. 

36. Tan, Y.M.; Huai J.Z.; Tan, Z.S. Edge-guided segmentation method for multiscale and high resolution 

remote sensing image. J. Infrared Millim. Waves 2010, 29, 312–316. 

37. Deng, F.L.; Tang, P.; Liu, Y.; Yang, C.J. Automated hierarchical segmentation of high-resolution 

remote sensing imagery with introduced relaxation factors. J. Remote Sens. 2013, 17, 1492–1499. 



Remote Sens. 2015, 7 6004 

 

38. Ballard, D.; Brown, C. Computer Vision, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 

1982; pp. 159–164. 

39. Wu X. Adaptive split-and-merge segmentation based on piecewise least-square approximation. 

IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 808–815. 

40. Kanungo, T.; Dom, B.; Niblack, W.; Steele, D. A fast algorithm for MDL-based multi-band image 

segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 609–616. 

41. Luo, J.B.; Guo, C.E. Perceptual grouping of segmented regions in color images. Pattern Recognit. 

2003, 36, 2781–2792. 

42. Tupin, F.; Roux, M. Markov random field on region adjacency graph for the fusion of SAR  

and optical data in radar grammetric applications. IEEE Trans. Geosci. Remote Sens. 2005, 43,  

1920–1928. 

43. Xiao, P.; Feng, X.Z.; Wang, P.; Ye, S.; Wu, G.; Wang, K.; Feng, X.L. High Resolution Remote 

Sensing Image Segmentation and Information Extraction, 1st ed.; Science Press: Beijing, China, 

2012; pp. 167–168.  

44. Sarkar, A.; Biswas, M.K.; Sharma, K.M. A simple unsupervised MRF model based image 

segmentation approach. IEEE Trans. Image Process. 2000, 9, 801–812. 

45. Zhang, Y.J. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996, 29, 

1335–1346. 

46. Lucieer, A. Uncertainties in Segmentation and Their Visualization. Ph.D. Thesis, Utrecht University, 

Utrecht, The Netherlands, ITC Dissertation 113, Enschede, 2004.  

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


