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Abstract: This paper presents a method of estimating regional distributions of surface air 

temperature (Ta) and surface vapor pressure (ea), which uses remotely-sensed data and 

meteorological data as its inputs. The method takes into account the effects of both local 

driving force and horizontal advection on Ta and ea. Good correlation coefficients (R2) and 

root mean square error (RMSE) between the measurements of Ta/ea at weather stations and 

Ta/ea estimates were obtained; with R2 of 0.77, 0.82 and 0.80 and RMSE of 0.42K, 0.35K 

and 0.20K for Ta and with R2 of 0.85, 0.88, 0.88 and RMSE of 0.24hpa, 0.35hpa and  

0.16hpa for ea, respectively, for the three-day results. This result is much better than that 
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estimated from the inverse distance weighted method (IDW). The performance of Ta/ea 

estimates at Dongping Lake illustrated that the method proposed in the paper also has good 

accuracy for a heterogeneous surface. The absolute biases of Ta and ea estimates at Dongping 

Lake from the proposed method are less than 0.5Kand 0.7hpa, respectively, while the 

absolute biases of them from the IDW method are more than 2K and 3hpa, respectively. 

Sensitivity analysis suggests that the Ta estimation method presented in the paper is most 

sensitive to surface temperature and that the ea estimation method is most sensitive to 

available energy. 

Keywords: air temperature; vapor pressure; surface energy balance; horizontal advection; 

regional scale 

 

1. Introduction 

Surface air temperature (Ta) and surface air vapor pressure (ea), as measured at standard meteorological 

shelter height (about 2 m), are two primary descriptors of terrestrial environmental conditions [1]. They 

can not only indicate near surface atmospheric condition, but also reflect surface energy balance situations. 

They are the most basic parameters in the land-atmosphere system. Almost all models involving the  

land-atmosphere system, such as the global climate model, hydrological model, land surface model, crop 

growth model, weather forecasting model, etc., need Ta and ea as inputs. Therefore, accurate estimations 

of Ta and ea play important roles in the study of the land-atmosphere system. 

Generally, Ta and ea at the field scale can be easily acquired from standard meteorological stations. 

However, this provides only limited information about spatial patterns over wide areas, because they are 

strongly affected by surface properties, which vary greatly in both time and space [1,2]. As a result, the 

measurements of Ta and ea at meteorological stations are unrepresentative at the regional scale. For 

acquiring spatial distributions of Ta and ea, three kinds of methods were primarily used at present. 

1. Geostatistical method. This method uses geostatistical models to interpolate the measurements of 

Ta and ea obtained from meteorological stations and get the spatial maps of them. The inverse 

distance weighted method (IDW), the kriging interpolation method, the linear method and the 

spline interpolation method are the typical examples of this kind of method. The geostatistical 

method has been widely used by many researchers for many years [3,4]. The advantage of this 

kind of method is that it can be easily used on the basis of the observations of Ta and ea. However, 

because it has not considered the effects of local land surface on near-surface atmosphere through 

longwave radiation, heat and vapor exchange between land surface and atmosphere, the method 

would produce large errors when applied to a large heterogeneous surface [4,5]. Additionally, 

when the density of meteorological stations is sparse in the study area, the precision of the method 

would decrease because of the lack of observation data [1]. Furthermore, the station-based 

interpolation techniques suffer from the arbitrary location of weather stations [6], and different 

interpolation methods can produce different results [7,8]. 



Remote Sens. 2015, 7 6007 

 

2. Vertical lapse method. This method is often used to estimate air temperature in mountainous areas 

where there are large elevation variations. By assuming a specified lapse rate, typically a value, 

such as 6.0 or 6.5 °C/km [9], Ta with adjustments for elevation is estimated according to the 

geolocation of the study area. Obviously, the determination of the value of the lapse rate is the 

key for the method. However, there are significant variations in lapse rates under different 

meteorological conditions and in different seasons. If the lapse rate is poorly determined, large 

errors of Ta estimates will be produced [10]. 

3. Remotely-sensed land surface temperature (LST)-based method. As is well known, there is a close 

relationship between air temperature and land surface temperature [11]. With the developments for 

the ability to get spatial estimates of LST at high temporal and spatial resolution, many methods were 

presented to derive Ta from LST. For example, some studies [12,13] use nighttime satellite LST 

products to estimate daily minimum Ta. Some studies [2,14,15] derive daily maximum Ta from 

satellites through the vegetation index-temperature method (VI-T method), which assumes that the 

surface temperature of a fully-vegetated canopy equals its ambient air temperature. Shamir and 

Georgakakos [16] derived Ta at four times using four instantaneous LST from the Moderate 

Resolution Imaging Spectroradiometer (MODIS). In addition, because the difference between LST 

and maximum Ta is mainly controlled by the surface energy balance [13], some Ta estimation 

methods based on the surface energy balance were developed. For example, Pape et al. [17] 

developed a model for simulating Ta variations in high mountain landscapes at a high temporal 

resolution of one hour; Sun et al. [18] built a quantitative relationship between LST and Ta based on 

the crop water stress index and aerodynamic resistance. Surface energy balance is a complex system 

depending on many environmental factors, such as solar radiation, cloud-cover, wind speed, soil 

moisture and land surface type [19]. Therefore, an under parameterization problem is encountered 

when estimating Ta with this method. Additionally, the surface energy balance non-closure problem 

was widely observed at flux sites [20], which brings additional uncertainty to this method. 

As for the estimation of ea at the regional scale, the geostatistical method is also widely used, like the 

estimation of Ta. The conventional interpolation methods include IDW, spline and kriging, Thiessen 

polygons and least-squares polynomial regression. Establishing an empirical function between a vapor 

pressure-deficient (VPD) and remotely-sensed parameter is also a common method of estimating ea. For 

example, Granger [21] modelled VPD as a function of saturated vapor pressure (es) and the long-term 

average of Ta. Hashimoto et al. [22] estimated the spatial distribution of VPD with a simple linear 

relationship between it and LST retrieved from MODIS. With the availability of satellite total 

precipitable water (TPW) products, some studies have used TPW to estimate ea by establishing the 

regression functions between TPW and ea or air-specific humidity, such as the approaches presented by 

Sobrino et al. [23] and Recondo et al. [24]. However, the relationship between TPW and ea is empirical, 

which can only apply to the specific area by the limitation of the training dataset. 

As stated above, most approaches for estimating Ta and ea at present are based on statistical or 

empirical methods. In physics, two forces control Ta and ea. One is the turbulent flow exchange, 

including vertical turbulent diffusion/exchange and horizontal advection. The other is the radiation 

effect, which mainly indicates the heating effect of surface longwave radiation on near-surface 

atmosphere. Vertical turbulent diffusion/exchange and the radiation effect are primarily determined by 
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the local meteorological conditions and surface properties. However, horizontal advection is mainly 

related to the environmental and meteorological conditions at the regional scale. On a windy day, 

horizontal advection may play a greater role with respect to air temperature and vapor pressure; while 

in calm weather, local environmental conditions may dominate Ta and ea by the influence of the radiation 

effect and vertical turbulent diffusion/exchange. 

The objective of this paper is to develop a method that takes into account the effects of both local driving 

forces and horizontal advection on the near-surface atmosphere, for estimating regional distributions of Ta 

and ea. For a clear description, the method for air temperature is called advection-energy balance for air 

temperature (ADEBAT), and the method for vapor pressure is called advection-energy balance for air 

water vapor pressure (ADEBAV) in the paper. Section 2 describes the derivations of the ADEBAT method 

and the ADEBAV method. The study area and the data are introduced in Section 3. Section 4 provides the 

results of the Ta and ea estimates. The conclusions are given in Section 5. 

2. Methodology 

2.1. The Derivation of the ADEBAT Method 

At the field scale, two local physical processes result in Ta: (1) the heating effect of land surface 

longwave radiation on near-surface air; in the daytime, LST is usually higher than Ta, because of the 

strong surface absorption of solar radiation; in this condition, Ta increases by absorbing surface 

longwave radiation; (2) the effect of vertical turbulent flow, meaning the vertical heat exchange between 

surface and near-surface atmosphere. The two processes illustrate the reason why there is a very close 

relationship between LST and Ta. In the paper, the two processes are called the local driving force of Ta. 

Neglecting systematic sampling errors, systematic instrument bias, low and high frequency loss of 

turbulent fluxes and energy sinks, horizontal advection of heat and water vapor is regarded as the primary 

reason for the non-closure of the surface energy balance [20,25,26]. When the effects of the factors 

mentioned above on the surface energy balance closure are neglected and in a situation in which there 

is no horizontal advection, the surface energy budget is balanced, namely surface energy balance closure. 

In this case, Ta is dominated by local driving force and can be derived as Equation (4) according to the 

surface energy balance equation (Equation (1)), the heat diffusion equation (Equation (2)) and the 

definition of the Bowen ratio (Equation (3)). 

ܴ௡ ൌ ܪ ൅ ܧܮ ൅ (1) ܩ

H ൌ
݌ܥߩ
௔ݎ

ሺ ଴ܶ െ ௔ܶሻ (2)

β ൌ
ܪ
ܧܮ

 (3)

௔ܶ ൌ ଴ܶ െ ൤
ሺܴ௡ߚ െ ሻܩ
ሺߚ ൅ 1ሻ

௔ݎ
݌ܥߩ

൨
 

(4)

where Rn is the net radiation. H and LE are sensible heat flux and latent heat flux, respectively. G is soil 

heat flux. ra is aerodynamic resistance. ρCp is the volumetric heat capacity of air. T0 is aerodynamic 

temperature and is usually replaced by LST in applications [27,28]. β is the Bowen ratio. 
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On the contrary, under the condition that there is obvious horizontal advection, like in windy weather, 

horizontal movement of the air mass would have a great influence on Ta. In this case, similar Ta would 

be observed at a regional scale, and the local driving force becomes less dominant. In practice, the 

surface energy balance is not closed in most cases [20], which means both the local driving force and 

horizontal advection have influences on Ta. 

For a constant air column in a closed system, its temperature is mainly determined by the available 

energy (Rn−G), meteorological conditions and surface properties. When there is air from outside coming 

into the closed system, the air temperature would be changed through air mixing. When the air 

temperature outside is higher than that in the closed system, Ta in the closed system would increase. 

Conversely, it would decrease. This kind of effect of exotic air on Ta is like the effect of the horizontal 

advection. Assuming that the inner and the exotic effects on Ta agree with the linear mixture theory and 

using Vawl and Vajd to express the air volume coming into the closed system from outside and the original 

air volume in the closed system, respectively, Equations (5) and (6) were established. 

௔ܶ௭௦ ൌ ݂ ௔ܶ௪௟ ൅ ሺ1 െ ݂ሻ ௔ܶ௝ௗ 
(5)

f ൌ
௏ೌೢ೗
௏ೌ ೥ೞ

 ሺ1 െ fሻ ൌ
௏ೌೕ೏
௏ೌ ೥ೞ

 (6)

where Vazs is the total air volume and equals the sum of Vawl and Vajd. Tazs is the final air temperature. 

In practice, it is the real air temperature observed at the meteorological station. Tawl is the air temperature 

affected by horizontal advection. Tajd is the original air temperature in the closed system, which is the 

air temperature under the condition of surface energy balance closure and is controlled by the local 

driving force. f is the volume percentage, ranging from 0 to 1, which represents the weight of the effects 

of horizontal advection on Tazs. From Equation (5), it can be seen that f = 0 means there is no horizontal 

advection (surface energy balance closure), and Tazs is totally controlled by the local driving force; while  

f = 1 means that there is no local driving force and that Tazs is totally controlled by horizontal advection. 

In most cases, f is between 0 and 1. 

Estimating Tazs is the purpose of this paper. Obviously, three parameters of f, Tawl and Tajd must be 

calculated first to estimate Tazs. 

2.1.1. The Calculation of Tajd 

The surface energy balance equation describes the relationship between surface energy components 

well under the condition of surface energy balance closure. On the basis of this, Ta under the condition 

of surface energy balance closure can be derived as Equation (4). Therefore, Tajd can be calculated from 

Equation (4) in which Ta is Tajd. 

For calculating Tajd, ra in the condition of no horizontal advection needs to be determined. In the study, 

a value of ra of 65 s/m, which is determined by a lab experiment, was used to compute Tajd. In the 

experiment, radiometric soil surface temperature (Ts), ea and evapotranspiration for bare soil with saturated 

soil water content were measured in a no-wind condition. Then, ra was retrieved in terms of Equation (7). 

LE ൌ
௣ܥߩ

௔ݎሺߛ ൅ ௦ሻݎ
ሺ݁௦ െ ݁௔ሻ (7)

where es is surface saturated vapor pressure, which is calculated by Equation (8). rs is surface resistance 
and equals zero for soil with saturated soil water content; γis the psychrometer constant. 
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eୱ ൌ 6.108 ൈ expሺ
17.27T଴
T଴ ൅ 237.3

ሻ (8)

where T0 is aerodynamic temperature. In the study, T0 is replaced by Ts [29,30]. 

An empirical method presented by Zhang et al. [31] was used to estimate β. 

β ൌ A
ሺ ௠ܲ௔௫ െ ௠ܲ௜௡ሻ െ ሺ ௜ܲ െ ௠ܲ௜௡ሻ

ሺ ௜ܲ െ ௠ܲ௜௡ሻ
 (9)

where A is an empirical coefficient and equals 0.66 according to the literature. P is a simplified thermal 

inertia defined as: 

P ൌ
ܴ݊തതതതሺሺݐଶ െ ଵሻሻ଴.ହݐ

ሺ ଴ܶଶ െ ଴ܶଵሻ
 (10)

T02 is the surface temperature at satellite overpass time. T01 is the daily minimum surface temperature 

usually occurring at the time before sunrise. t2 and t1 are the times when T02 and T01 occur. ܴ݊തതതത is the 

average net radiation from t1 to t2. Pmax and Pmin are the maximum and the minimum thermal inertia, 

respectively, for a given fractional vegetation cover (fv), which are determined by the trapezoid space 

formed by the scatter plot of remotely-sensed vegetation index (VI) versus LST. 

Rn and G were estimated by Equations (11) and (12). 

ܴ௡ ൌ ܵ଴ሺ1 െ ሻߙ ൅ ܴ௟ௗ െ ߝߪ ଴ܶ
ସ (11)

G ൌ 0.3ሺ1 െ 0.9 ௩݂ሻܴ௡ (12)

where σ is the Stefan–Boltzmann constant. α is surface albedo. ε is surface emissivity. Rld is downward 

longwave radiation. 

2.1.2. The Calculation of f and Tawl 

In the study, meteorological measurements of air temperature, wind speed and wind direction at 

weather stations were used to calculate fi and Tiawl. i represents the pixel at which air temperature is to 

be estimated. The procedures of estimating them at pixel i are: 

1. Selecting two weather stations nearest to pixel i. The two stations must have similar wind speed 

and wind direction. Here, similar wind speed and wind direction is assumed to have similar 

horizontal advection. The pixels at which the two weather stations are located are represented as 

Pixel 1 and Pixel 2. Under the assumption that horizontal advection is the same over a regional 

area, the horizontal advection at pixel i is the same as that at Pixel 1 and Pixel 2. As a result, T1awl 

= T2awl = Tiawl, f1 = f2 = fi. 

2. Calculating the Tajd map with Equation (4) based on ra and the remotely-sensed data of Rn,  

G and LST; 

3. At Pixel 1 and Pixel 2, the following two equations can be established based on Equation (5): 

T1azs = f1T1awl + (1−f1)T1ajd (13)

T2azs = f2T2awl + (1−f2)T2ajd (14)



Remote Sens. 2015, 7 6011 

 

T1azs and T2azs are the observed air temperatures at Pixel 1 and Pixel 2. T1ajd and T2ajd are the air 

temperatures affected by the local driving force at Pixel 1 and Pixel 2, which is obtained from Step (2). 

Because T1awl = T2awl = Tiawl, f1 = f2 = fi, f and Tawl at pixel i can be estimated from Equations (13) 

and (14). 

௜݂ ൌ 1 െ ଵܶ௔௭௦ െ ଶܶ௔௭௦

ଵܶ௔௝ௗ െ ଶܶ௔௝ௗ
 (15)

௜ܶ௔௪௟ ൌ
ሺ ଵܶ௔௭௦ ൅ ଶܶ௔௭௦ሻ െ ሺ1 െ ௜݂ሻሺ ଵܶ௔௝ௗ ൅ ଶܶ௔௝ௗሻ

௜݂
 (16)

Integration of Equations (15) and (16) into Equation (5) and combining Tajd results from  

Step (2); Tazs at pixel i is calculated. 

2.2. The Derivation of the ADEBAV Method 

The idea of the method of estimating air vapor pressure is similar to that of air temperature. The local 

driving force and horizontal advection are also the primary factors influencing near-surface vapor 

pressure. When there is no horizontal advection, ea under the condition of surface energy closure can be 

estimated from Equation (17), which is deduced from Equations (1), (3) and (7). 

݁௔ ൌ ݁௦ െ ൤
ሺܴ௡ െ ௔ݎሺߛሻܩ ൅ ௦ሻݎ

ߚሺ݌ܥߩ ൅ 1ሻ
൨ (17)

The parameters have the same meanings with the above descriptions. 

Under the condition that there are both effects of the local driving force and horizontal advection, ea 

can be expressed as Equation (19) in terms of the linear mixture theory. 

݁௔௭௦ ൌ ݂݁௔௪௟ ൅ ሺ1 െ ݂ሻ݁௔௝ௗ (18)

where eazs is the real vapor pressure and eawl, eajd are the vapor pressures affected by horizontal advection 

and the local driving force, respectively. 

Equation (17) gives the estimation of vapor pressure under the condition of surface energy balance 

closure, so eajd can be calculated from it in which ea is eajd. The methods of calculating Rn, G, β and ra 

are the same as that used in calculating Tajd; see Section 2.1.1. The VI-T trapezoid method was used to 

acquire rs [32], which is formed by the scatter plot of VI versus T under a full range of vegetation cover 

and soil moisture availability and has been widely used to infer soil moisture and to quantify land surface 

evaporation [33–36]. In the trapezoid method, the dry edge is the uppermost line of the VI-T space, the 

pixels on which are taken as surfaces with the largest water stress (soil water content reaches wilting 

point), and thereby, rs is largest on the dry edge. The wet edge is the lowest line of the VI-T space, the 

pixels that represent surfaces without water stress, and thereby, rs is smallest on the wet edge. An isopleth 

line within the trapezoid space has the same soil surface moisture availability. According to this, rs for 

every pixel was interpolated in terms of the LST difference between the pixel and the dry edge and the 

LST difference between the pixel and the wet edge; see Equation (18). 

௦ݎ ൌ
ܶ െ ௠ܶ௜௡

௠ܶ௔௫ െ ௠ܶ௜௡
ሺݎ௦_௠௔௫ െ ௦_௠௜௡ሻ (19)ݎ

where Tmax and Tmin are the corresponding maximum and minimum surface temperatures at the dry and 

wet edges, respectively, for a given fv. rs_max and rs_min are the maximum and minimum surface resistance, 
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respectively. rs_min equals zero when the soil water content is saturated. For sandy loam, which is the 

dominant soil type in the North China Plain (the study area in the paper), the wilting point at a depth of 

0–20 cm is about 0.07 v/v, and the saturated water content at a depth of 0–20 cm is about 0.3 v/v [37,38]. 

According to the studies of Camillo [39] and Sun [40], rs_max for sandy loam was set as 140 s/m in the 

study when soil water content reached the wilting point. 

The procedures of the calculation of f and eawl for pixel i are the same as that in calculating Tawl; see 

Section 2.1.2. Air temperature is replaced by vapor pressure. The formulas of f and eawl for pixel i are: 

௜݂ ൌ 1 െ
݁ଵ௔௭௦ െ ݁ଶ௔௭௦
݁ଵ௔௝ௗ െ ݁ଶ௔௝ௗ

 (20)

݁௜௔௪௟ ൌ
ሺ݁ଵ௔௭௦ ൅ ݁ଶ௔௭௦ሻ െ ሺ1 െ ௜݂ሻሺ݁ଵ௔௝ௗ ൅ ݁ଶ௔௝ௗሻ

௜݂
 (21)

where the subscripts of 1 and 2 represent the two selected weather stations determined by Step (1). 

Integrating Equations (20) and (21) into Equation (19) and combining the calculated eajd, eazs for pixel i 

is estimated.  

It should be noted that Ta and ea estimated with this method are the air temperature and the water 

vapor pressure instantaneously at the satellite overpass time, because remotely-sensed data of Rn, G and 

LST are the important inputs of the method, which can only represent the values at the satellite 

overpass time. 

3. The Study Area and the Dataset 

The study area is located in the North China Plain and ranges from 35.0°N to 38.3°N in latitude, from 

116.0°E to 118.5°E in longitude. The land use in the area is dominated by the rotating cropping of winter 

wheat and summer maize. Millet, soybean and cotton are also scatter planted in summer. According to 

the traditional tillage practice, winter wheat is sown in early October, harvested in early or mid-June 

next year, and summer maize is planted in early to mid-June and harvested at the end of September. The 

soil types are mostly sandy loam. Annual precipitation is about 600 mm, more than 50% of which falls 

during the summer monsoon between July and September. The groundwater table varies from 1.5 m to 

3.5 m with an average of 2.5 m. 

In the study, field measurements at 40 standard meteorological stations were used, shown in Figure 1. 

The measurements include air temperature, vapor pressure, wind speed, wind direction and solar 

radiation at about a 2-m height above the surface at 2:00, 8:00, 14:00, 20:00. Ta, ea and solar radiation at 

the satellite overpass time are obtained by a linear interpolation. The measurements from about 

20 stations were used to calculate f and Tawl/eawl. The measurements at the other stations were used to 

validate the estimates of Ta and ea. The triangle symbol in Figure 1 is Dongping Lake. The circle on the 

upper right corner is a water area close to Bohai Gulf. 

Considering that the effect of the local driving force on near-surface atmosphere is only obvious 

within a small area, Landsat TM data with a high spatial resolution of 120 m in the infrared wave band 

were used in the study to estimate regional Ta and ea. The overpass time of Landsat TM in the study area 

is at about 10:40 local time. The single-window method presented by Qin et al. [41] was used to retrieve 

LST in the daytime. Surface albedo was retrieved by Liang’s method [42]. 
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Figure 1. Study area and the distribution of the weather stations. 

To acquire the daily minimum surface temperature, the Chinese geostationary Fengyun 

Meteorological satellite (FY-2C) data were used. FY-2C, developed by Shanghai Academy of Space 

Flight Technology and China Academy of Space Technology and operated by China Meteorological 

Administration (CMA), was launched on 19 October 2004 and has been fully operational since 2006. It 

is located above the Equator at longitude 105°E and about 35,800 km above the ground, and it can 

acquire one full disc image covering the Earth surface from 60°N to 60°S in latitude and from 45°E to 

165°E in longitude per hour and 30 min per acquisition for flood seasons (usually from 1 June to 31 

August). The imaging radiometer consists of one visible channel and four infrared channels. A surface 

temperature inversion method corresponding to FY-2C [43] was used to retrieve FY-2C LST at the time 

before sunrise. A bilinear interpolation method was used to downscale the FY-2C LST from 5 km to  

120 m to match the spatial resolution of Landsat TM. Table 1 lists the variables and the sources used in 

the study. 

Table 1. Variables and the sources used in the study. FY-2C, Fengyun Meteorological 

satellite. 

Variables Sources Resolution 

LST in the daytime Landsat TM 120 m 

LST at the time before sunrise FY-2C downscaled from 5 km to 120 m 

Net radiation Landsat TM 120 m 

Soil heat flux Landsat TM 120 m 

Solar radiation, wind speed, air temperature, water vapor pressure Meteorological stations  

In the study, three clear-sky days on 8 April, 30 August and 17 October in 2009 were selected to 

perform the calculations. The sunrise times for the 3 days are at 6:49, 5:42 and 6:23 local time, 
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respectively, so FY-2C data with the acquisition time closest to the sunrise for the 3 days were used to 

obtain the daily minimum surface temperatures. 

For evaluating the methods, the IDW method was also used to estimate Ta and ea. The same stations 

used in the methods of ADEBAT and ADEBAV were used to perform the IDW interpolation and the 

validations. The two sets of estimates of Ta/ea obtained from the IDW method, the ADEBAT method 

and the ADEBAV method, respectively, were compared. 

4. Results 

4.1. Air Temperature Retrievals by the ADEBAT Method and Its Validation 

The comparisons between Ta estimated from the ADEBAT method and the IDW method and the 

measurements for the three days are given in Figure 2, respectively. It shows that the correlation 

coefficient (R2) for the ADEBAT method, with R2 of 0.77, 0.82 and 0.80, respectively, for the three 

days, is obviously higher than that for the IDW method, with R2 of 0.3, 0.50 and 0.25. The root mean 

square error (RMSE) for the ADEBAT method, with RMSE of 0.42K, 0.35K and 0.20K, respectively, 

for the three days, is smaller than that for the IDW method, with RMSE of 0.82K, 0.39K and 0.65K. 

Figure 2 also shows that Ta estimates from the ADEBAT method are closer to the 1:1 line than those 

from the IDW method. This illustrates that the accuracy of the Ta estimation based on the ADEBAT 

method is obviously higher than that based on the IDW method. 

 

 

Figure 2. Cont. 
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Figure 2. Comparisons between Ta measurements and Ta estimates from the inverse distance 

weighted (IDW) method (left) and the advection-energy balance for air temperature 

(ADEBAT) method (right) on 8 April, 30 August and 17 October in 2009. 

Compared with the geostatistical interpolation methods, like the IDW method, the ADEBAT method 

takes into account the effects of not only horizontal advection, but also the local driving force on  

near-surface atmosphere, while the IDW method only considers some effects of horizontal advection by 

calculating the distance of the pixel to be interpolated to the weather station. In other words, it does not 

consider any information about the effects of the local driving force on Ta. When there is a relatively 

uniform surface within the study area, which means the effects of the local surface condition on  

near-surface atmosphere are similar over the area, or there is strong horizontal advection when the local 

condition has few effects, like in windy weather, the geostatistical interpolation method may be proper. 

However, when the local surface condition dominates Ta, the geostatistical interpolation method would 

produce large errors. In this case, the ADEBAT method would have a great advantage over the 

IDW method. 

Taking Ta estimates at Dongping Lake as an example, the advantage of the ADEBAT method over 

the geostatistical method was illustrated further. Dongping Lake is located in Doping county of 

Shandong province (see Figure 1), which covers an area of 124.3 km2. The average water depth is 2.5 m. 

This large water body could have a great effect on the near-surface atmosphere over it, so Ta over the 

lake and over the land should have a large difference. Table 2 lists the comparisons between the 

estimated Ta by the IDW method and the ADEBAT method and the Ta measurements at Dongping Lake. 

It can be seen that the absolute bias (AB) between the estimates and the observations for the ADEBAT 

method is much smaller than that for the IDW method. AB for the ADEBAT method is less than 0.5K, 

while AB for the IDW method is more than 2K. Table 2 also gives the Ta measurements at the two 

selected stations (Station 1 and Station 2) used to calculate f and Tawl at Dongping Lake in the ADEBAT 

method. There are large differences in Ta between the two stations, with a grassland underlying surface, 

and Dongping Lake, due to the large difference of land surface type. Because the ADEBAT method 

takes into account the effect of the local driving force on Ta, the estimated Ta at Dongping Lake is still 

very close to the observations. 

Therefore, the ADEBAT method is better than the IDW method, especially for an area with a large 

heterogeneous surface, in which case the effect of the local driving force on near-surface atmosphere 

may have a large difference. 
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Table 2. Comparisons between the estimated air temperatures by the IDW method and the 

ADEBAT method and the Ta measurements at Dongping Lake (K). 

  
Ta at 

Station 1 

Ta at 

Station 2 

Ta Estimates 

From the IDW 

Method 

Ta Estimates From 

the ADEBAT 

Method 

Ta 

Measurements 

Absolute Biases 

for the IDW 

Method 

Absolute Biases for 

the ADEBAT 

Method 

8 April 294.95 294.62 294.76 290.24 290.43 4.33 0.19 

30 

August 
294.87 295.55 295.23 292.45 292.87 2.36 0.42 

17 

October 
293.25 293.65 293.56 289.88 290.23 3.33 0.35 

4.2. Vapor Pressure Retrievals by the ADEBAV Method and Its Validation 

Figure 3 displays the scatter plots of ea estimates and ea measurements for the three days for the IDW 

method and the ADEBAV method, respectively. Compared with the ea estimates based on the IDW 

method, the results estimated by the ADEBAV method are much better. Clearly, the ADEBAV method 

obtained better values of R2 and RMSE. For the ADEBAV method, the values of R2 are 0.85, 0.88 and 

0.88 and the RMSE values are 0.24hpa, 0.35hpa and 0.16hpa, respectively, for the three days; while for 

the IDW method, the R2 values are only 0.22, 0.33 and 0.03 and the RMSE values are 1.45hpa, 0.96hpa 

and 0.45hpa. Figure 3 also shows that the ea estimates from the ADEBAT method are closer to the 1:1 

line than those from the IDW method. 
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Figure 3. Comparisons between ea measurements and ea estimates from the IDW method 

(left) and the ADEBAT method (right) on 8 April, 30 August and 17 October in 2009 

Table 3 gives the ea estimates by the IDW method and the ADEBAV method and the measurements 

at Dongping Lake. Smaller AB for ea of 0.5, 0.7 and 0.6hpa for the three days for the ADEBAV method 

were obtained. Comparatively, AB for the IDW method is five- to 10-times as much as that for the 

ADEBAV method, reaching 4.87, 3.78 and 5.13hpa for the three days. Lack of consideration for the 

local driving force on ea in the IDW method is the main reason for this. 

Table 3. Comparisons between the estimated vapor pressure by the IDW method and the 

ADEBAT method and the ea measurements at Dongping Lake (hpa). ADEBAV,  

advection-energy balance for air water vapor pressure. 

Date 
ea at 

Station 1 

ea at 

Station 2 

ea Estimates from 

the IDW Method 

ea Estimates from 

the ADEBAT 

Method 

ea 

Measurements 

Absolute 

Biases for the 

IDW Method 

Absolute Biases 

for the ADEBAV 

Method 

8 April 7.8 6.74 7.43 12.8 12.3 4.87 0.5 

30 August 16.8 13.91 15.42 19.9 19.2 3.78 0.7 

17 October 5.8 5.36 5.67 10.2 10.8 5.13 0.6 

4.3. Comparisons of the Spatial Distributions of Ta and ea 

Figures 4 and 5 show the spatial distributions of Ta estimates and ea estimates by the IDW method 

and the ADEBAT/ADEBAV method. It can be seen that the distributions of Ta estimates and ea estimates 

exhibit an obvious circular spatial pattern for the IDW method. It centers on several areas and radiates 

out from these centers with a gradient trend form. This kind of spatial pattern actually does not exist 

in nature. 

Limited by the algorithm of the IDW method, the maximum and the minimum Ta or ea in the study 

area are completely determined by the maximum and the minimum Ta or ea observations at weather 

stations. Because the IDW method totally depends on the number and the spatial distributions of the 

weather stations and the Ta/ea measurements at the weather stations, these unreasonable phenomena  

were produced. 

Comparatively, the results based on the ADEBAT/ADEBAV method provide more details about the 

spatial patterns of Ta and ea. At Dongping Lake, no differences in the estimates of Ta and ea between the 
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lake and the land were obtained for the IDW method. In addition, Ta/ea estimates from the 

ADEBAT/ADEBAV method display large differences between the lake and the land. Ta over the lake is 

obviously lower than that over the land, and ea over the lake is obviously higher than that over the land. 

Lower Ta estimates and higher ea estimates were also obtained over the water area close to Bohai Gulf. 

The performance of Ta and ea estimates at the water surface suggests that the result obtained from the 

ADEBAT/ADEBAV method is more reasonable than that from the IDW method. 
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Figure 4. Spatial distributions of Ta estimates from the IDW method (left) and the ADEBAT 

method (right) on 8 April, 30 August and 17 October in 2009. 
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Figure 5. Spatial distributions of ea estimates from the IDW method (left) and the ADEBAV 

method (right) on 8April, 30 August and 17 October in 2009. 

5. Sensitivity Analysis 

Sensitivity analysis plays a fundamental role in understanding the contributions of variables and 
parameters to model output. In this study, the sensitivity of Ta to the inputs of T0, Rn-G, ra and β for the 

ADEBAT method and the sensitivity of ea to the inputs of T0, Ta (used to calculate es), Rn-G, ra, rs and 

β for the ADEBAV method were analyzed, respectively. Perturbations of T0 and Ta were specified as 
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[−2K, 2K], with a variation step of 1K. Perturbations of Rn−G, β, ra and rs were specified as  

[−20%, 20%], with a variation step of 10%. 

Results (Table 4) show that for the ADEBAT method, ra, Rn−G and β are negatively correlated with 

Ta, but T0 is positively correlated with Ta. Comparing the sensitivity of Ta to the four inputs, Ta is most 

sensitive to T0. A 1K increase of T0 could result in a 0.6K increase in Ta estimates. A similar sensitivity 

of Ta to ra and Rn−G was observed. A 10% increase of ra or Rn−G could result in a 0.35K decrease in Ta 

estimates. The sensitivity of Ta to β is the least. A 10% variation of β only produces about a 0.24K 

variation of Ta. 

For the ADEBAV method (Table 5), ra, rs and Rn−G are all negatively correlated with ea estimates. 

Ta and β are positively correlated with ea estimates. The order of the sensitivities of ea to the five inputs 

from the most to the least is Rn−G, rs, ra, β and Ta, respectively. A 10% increase of Rn−G could result in 

a 0.37-hpa decrease of ea estimates. A 10% increase of ra or rs could produce about a 0.23-hpa decrease 

in ea estimates. A 10% variation of β produces about a 0.2-hpa variation of Ta. A 1K increase of Ta only 

produces a 0.1-hpa increase in ea estimates. 

In application, the calculation of β has more uncertainty. However, the good thing is that the ADEBAT 

method and the ADEBAV method are not very sensitive to β according to the sensitivity analysis. There 

is still some uncertainty about the determinations of ra and rs, which are difficult to estimate precisely. 

Fortunately, the ADEBAT method and the ADEBAV method are not very sensitive to them. 

Table 4. The sensitivity of Ta estimates from the ADEBAT method to each input variable. 

Variations of T0 are in K, and variations of other variables are a percentage (%). 

Variation (%,K) −20 −10 10 20 

variable −2 −1 1 2 

 Ta (K) 

ra 0.67 0.32 −0.33 −0.68 

Rn−G 0.71 0.35 −0.36 −0.72 

T0 −1.18 −0.59 0.61 1.21 

β 0.50 0.24 −0.23 −0.44 

Table 5. The sensitivity of ea estimates from the ADEBAV method to each input variable. 

Variations of Ta are in K, and variations of other variables are a percentage (%). 

Variation (%,K) −20 −10 10 20 

variable −2 −1 1 2 

 ea (hpa) 

ra 0.43 0.22 −0.21 −0.43 

rs 0.46 0.23 −0.22 −0.47 

Rn−G 0.76 0.38 −0.37 −0.76 

Ta −0.19 −0.10 0.11 0.22 

β −0.37 −0.19 0.20 0.41 

6. Conclusions 

Radiation conditions, local meteorological conditions and land surface properties are the primary 

local factors determining near-surface air temperature and vapor pressure. Horizontal advection is the 



Remote Sens. 2015, 7 6022 

 

exotic factor determining them. In the study, by considering the effects of the local driving force and 

horizontal advection on Ta and ea, methods for estimating Ta and ea on a regional scale were proposed on 

the basis of the linear mixing theory. The energy balance equation was used to deduce the air temperature 

and the air vapor pressure in the condition of no horizontal advection. The measurements of wind speed, 

wind direction, Ta and ea at weather stations were used to determine Ta and ea affected by horizontal 

advection. One important assumption for the method proposed in the paper is that there is a similar 

horizontal advection in the pixel to be interpolated and the searched nearest two weather stations. 

Because horizontal advection usually has a similar effect at a regional scale, this assumption is 

reasonable. For example, similar wind speed can be observed within even several dozen kilometers in 

windy weather 

Twenty weather stations were used in the study to perform the calculations of the 

ADEBAT/ADEBAV method, and another 20 weather stations were used to validate the method. The 

IDW method was also used to estimate the distributions of Ta and ea and was compared with the methods 

presented in the paper. The results show that the accuracy of Ta and ea estimates from the 

ADEBAT/ADEBAV method is much greater than that from the IDW method. R2 between Ta estimates 

from the ADEBAT method and Ta measurements at weather stations are 0.77, 0.82 and 0.80 for the three 

days, while R2 for the IDW method are only 0.3, 0.50 and 0.25. RMSE for the ADEBAT method are 

0.42K, 0.35K and 0.2K, while for the IDW method 0.82K, 0.39K and 0.65K. Similar results were also 

observed for the ADEBAV method and for the IDW method. The ADEBAV method obtained better 

values of R2 and RMSE. The values of R2 are 0.85, 0.88, 0.88, and the RMSE values are 0.24hpa, 0.35hpa 

and 0.16hpa, respectively, for the three days; while for the IDW method, R2 values are only 0.22, 0.33 

and 0.03 and RMSE values 1.45hpa, 0.96hpa and 0.45hpa. 

The advantage of the ADEBAT/ADEBAV method is that it takes into account the effects of not only 

horizontal advection, but also the local driving force on the near-surface atmosphere. While the IDW 

method only considers some effects of horizontal advection by calculating the distance of the pixel to 

be interpolated to the weather stations. The comparisons between the estimates of Ta and ea from the 

ADEBAT/ADEBAV method and from the IDW method at Doping Lake proved this. The absolute biases 

between Ta/ea estimates from the ADEBAT method and Ta/ea measurements at the weather station of 

Doping Lake are 0.19K, 0.42K and 0.35K (0.5hpa, 0.7hpa and 0.6hpa), respectively, for the three days. 

Comparatively, the absolute biases between Ta/ea estimates from the IDW method and Ta/ea 

measurements are 4.33K, 2.36K and 3.33K (4.87hpa, 3.78hpa and 5.13hpa). 

The results of the sensitivity analysis show that the ADEBAT method is sensitive most to surface 

temperature. A 1K increase of surface temperature could result in a 0.6K increase in Ta estimates. The 

ADEBAV method is most sensitive to Rn−G. A 10% increase of Rn−G could result in a 0.37-hpa 

decrease of ea estimates. As is known, the Bowen ration is difficult to estimate at a regional scale. 

However, the two methods are not very sensitive to it. 
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