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Abstract: With the high resolution of optical data and the lack of weather effects of passive 

microwave data, we developed an algorithm to map daily cloud-free fractional snow cover 

(FSC) based on the Moderate Resolution Imaging Spectroradiometer (MODIS) standard 

daily FSC product, the Advanced Microwave Scanning Radiometer (AMSR2) snow water 

equivalent (SWE) product and digital elevation data. We then used the algorithm to produce 

a daily cloud-free FSC product with a resolution of 500 m for regions in China. In addition, 

we produced a high-resolution FSC map using a Landsat 8 Operational Land Imager (OLI) 

image as a true value to test the accuracy of the cloud-free FSC product developed in this 

study. The analysis results show that the daily cloud-free FSC product developed in this 

study can completely remove clouds and effectively improve the accuracy of snow area 

monitoring. Compared to the true value, the mean absolute error of our product is 0.20, and 

its root mean square error is 0.29. Thus, the synthesized product in this study can improve 

the accuracy of snow area monitoring, and the obtained snow area data can be used as 

reliable input parameters for hydrological and climate models. The land cover type and 

terrain factors are the main factors that limit the accuracy of the daily cloud-free FSC product 

developed in this study. These limitations can be further improved by improving the 

accuracy of the MODIS standard snow product for complicated underlying surfaces. 
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1. Introduction 

Snow cover is an important component of land cover and plays a key role in balancing global energy 

and water resources because of its high albedo and thermal storage properties [1–3]. The spatial 

distribution of snow cover is a significant input factor in hydrological and climate models for mountain 

areas and seasonally snow-covered areas [4,5]. Because China covers a large territory, snow-covered 

areas are widespread in geographic space. Three main seasonally snow-covered areas are northern 

Xinjiang, northeastern Inner Mongolia, and the Tibetan Plateau [6–8]. Thus, precisely obtaining  

snow-covered area information via remote sensing is vitally important in understanding climate 

variations, performing water circulation and water resource investigations, and predicting and preventing 

snow-related disasters in China. 

Because remote sensing is characterized by a number of advantages, including large-scale, fast, 

periodic, multi-scale, multi-spectrum, multi-temporal, and low-cost investigations, remote sensing is 

widely used in snow cover monitoring [9]. Since the launch of television infrared observation satellites 

(TIROS)-1 in 1960, with the capability to monitor snow cover, dozens of satellites have been used to 

monitor snow cover and have played an important role in it. Such snow cover products include Landsat 

and SPOT [10], AVHRR [11], VEGETATION [12], MODIS [13], SMMR, SSM/I [14,15] and  

AMSR-E [16]. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and 

Aqua satellites features moderate spatial resolution, high spectral resolution, and high temporal 

resolution characteristics. The Terra satellite passes the equator at 10:30 am, while the Aqua satellite 

passes the equator at 1:30 pm. The MODIS aboard can acquire two observations in the daytime. Thus, 

MODIS is widely used in snow area monitoring [17–19]. However, optical sensors are easily affected 

by clouds because clouds prevent land information from being received by the optical sensors [20]. In 

addition, clouds and snow have quite similar optical characteristics in the visible and far infrared wave 

bands, making it difficult to distinguish one from another using this spectral range [9,21]. Although, 

many studies have shown that the daily MODIS snow products are characterized by high snow 

classification accuracy under clear sky condition in the Northern hemisphere [22–27]. The cloud 

contamination limited its capability for monitoring the snow-covered area. Therefore, removing the 

clouds and recovering the ground information for the cloud-contaminated images is often necessary in 

snow monitoring and other applications. Cloud pixels can be removed by similar pixel replacement 

guided with a spatio-temporal Markov random fields model [28], multi temporal dictionary learning [29], 

and also can refer to the multi-temporal regression analysis method used for recovering the missing 

pixels for Landsat ETM+ SLC-off imagery [30]. Studies on the cloud-removal algorithms of the current 

MODIS snow products mainly focus on binary snow products [31–38], and the methods include  

multi-day composited algorithms [34,35], algorithms based on snow water equivalent products obtained 

by microwave sensors [36,37], and the Snow line (SNOWL) algorithm, in which cloud pixels are  

re-classified based on characteristics of the snow cover spatial distribution [38]. However, multi-day 

composited algorithms can eliminate most cloud contaminations, but sacrifice the temporal resolution. 
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Furthermore, a direct composite of MODIS and passive microwave snow products can completely 

eliminate the cloud, but reduce the accuracy of snow classification because of the low spatial resolution 

of the passive microwave snow products. SNOWL cloudless algorithm uses the reclassification approach 

whereby cloud pixels can be divided into snow, no-snow (land), and partial snow. However, the partial 

snow has some uncertainties, so it is hard to analyze the snow-covered area effectively [39,40]. 

During the binary snow mapping, this algorithm assumes that all pixels are pure and that a pixel 

corresponds to one object type. The land types are divided into snow areas and snow free areas; this 

extremely simplified treatment is one of the primary causes of the low accuracy associated with the 

monitoring of snow-covered areas. Because a number of climate and hydrological models require 

increasingly precise snow-covered area input parameters [41], the traditional binary snow cover mapping 

cannot satisfy the current demand. Sub-pixel snow mapping can overcome the low-accuracy limitations 

in monitoring regional snow-covered areas, and represent the gradual changes in snow cover in each 

pixel more accurately than the binary snow cover map [42]. A few researchers have recently studied the 

algorithm of the MODIS fractional snow cover (FSC) product using the linear spectrum decomposition 

method and have proposed a new sub-pixel snow classification algorithm based on mixed pixel 

decomposition [42,43]. Although these algorithms can improve the accuracy of snow cover mapping to 

a certain degree, the process involves the identification of image purity and the calculation of component 

ratios in each pixel using the least square method in the algorithms, which results in a large number of 

calculations and therefore cannot be applied to the mapping of in situ snow cover area ratios. In the 

versions of the MODIS snow cover products released by the NASA National Snow and Ice Data Center 

(NSIDC) that are newer than V005, FSC maps are included in the MODIS daily snow cover maps, in 

addition to the snow-covered binary maps. The FSC product was built based on the statistical model 

developed by Salomonson (2004) [44]. However, similar to the algorithm of the MODIS binary snow 

cover product, the model algorithm was developed in snow-covered areas in Alaska, Canada and Russia 

and therefore represents different types of snow cover, including glaciers, flat snow cover and taiga 

forest snow cover. Snow covers large areas to great depths in these countries. In contrast, in China, snow 

depth is quite shallow and spatially dispersed, which is quite different from the snow cover in the model’s 

regions. Thus, the model requires further tests to verify whether this model can be applied to snow cover 

studies in China. Furthermore, this product is strongly affected by clouds and therefore cannot effectively 

predict regional and global snow-covered areas. Tang et al. [45] proposed a cloud-removal method based 

on the cubic spline function interpolation method for the Tibetan Plateau area. This method, however, 

needs to fit a function curve and cannot be applied to complicated and variable weather conditions. Thus, 

this method can only be applied to snow cover monitoring at certain regional scales. 

Based on the MODIS binary snow-removal algorithm, Terra\MODIS and Aqua\MODIS daily FSC 

products, the AMSR2 snow water equivalent product (based on passive microwave data), terrain data, 

and the combined advantages of different cloud-removal algorithms, we aim to develop an automatic 

daily cloud-free FSC mapping algorithm, produce a daily cloud-free FSC product for regions in China, 

and test the accuracy of the developed product by comparing it to the FSC map produced by  

Landsat 8 data. 
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2. Data 

2.1. MODIS FSC Product 

MODIS daily snow products MOD10A1 and MYD10A1 of V005 include 20 tiles used for regions of 

China during November 2013 to February 2014. The data are from the NSIDC and have a spatial 

resolution of 500 m. The original data were in HDF format, the projection is sin-map projection, and the 

version used in this study is V005. These MODIS products include snow-covered area (SCA), snow 

albedo (SA), FSC and quality assessment (QA). The coding values of FSC are as follows: 0–100 are 

fractional snow cover; 22 night; 225 land; 237 mainland water body; 239 sea; and 250 cloud, and 200, 

201, 254, and 255 represent missing data or meaningless data [9]. The format and coordinates of the 

original HDF-EOS MODIS data were converted and the images were merged using the MODIS 

Reprojection Tool (MRT) software [46]. The image files were converted to the GeoTIFF format, the 

projection was converted to the ellipsoid WGS84 geographic coordinates, and the nearest neighbor 

method was adopted for re-sampling. The MODIS FSC data for regions in China were obtained by 

cropping images in ArcGIS 10.1. 

2.2. AMSR2 Snow Water Equivalent (SWE) Product 

The Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the GCOM-W1 satellite, 

launched by the Japan Aerospace Exploration Agency (JAXA) on 18 May 2012, is greatly improved 

relative to the AMSR-E version. Its spatial resolution was increased (10 km) and a new frequency  

(7.3 GHz) was added, resulting in seven frequencies from 6.9–89 GHz. Two dataset from ascending 

(13:00 PM) and descending (1:30 AM) orbit were included each day. Three levels exist in the AMSR2 

product, and snow water equivalent is the second layer of the second level of the snow-depth product. 

The snow water equivalent (SWE) numerical coding values are as follows: positive values are snow 

water equivalents and −32761 to −32768 are data errors. The AMSR2 SWE data that temporally coincide 

with the MODIS FSC data are used in this study. The AMSR2 SWE data feature the GeoTIFF format, 

a 10 km spatial resolution and ellipsoid WGS84 geographic coordinates. The data were obtained from 

the GCOM-W1 data service website. The AMSR2 SWE data of descending orbit for the regions in China 

were selected by cropping the AMSR2 SWE images in ArcGIS 10.1 software. 

2.3. Landsat 8 OLI Data 

The Operational Land Imager (OLI) aboard the Landsat 8 satellite, launched successfully by NASA 

on 11 February 2013, has nine wave bands. The spatial resolution of eight of the wave bands is 30 m, 

and the panchromatic band is 15 m (Table 1). The data were downloaded from the US Geological Survey 

(USGS) and Geospatial Data Cloud for free. We chose seven Landsat 8 OLI images in different regions 

on the same day to represent different snow cover type regions in China. For instance, the forest regions 

(L1, L2 and L3), cropland region (L4, L5 and L6), and alpine grassland regions (L7, L8 and L9) are 

"true values" to test the accuracy of the cloud-free FSC product developed in this study. The parameters 

of the data are listed in Table 2. 
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Table 1. Spectral bands of the Landsat 8 OLI. 

Band No. Band Bandwidth (μm) Spatial Resolution (m) Radiometric Resolution (bit) 

1 Coastal aerosol 0.433–0.453 30 12 

2 Blue 0.450–0.515 30 12 

3 Green 0.525–0.600 30 12 

4 Red 0.630–0.680 30 12 

5 Near Infrared 0.845–0.885 30 12 

6 SWIR 1 1.560–1.660 30 12 

7 SWIR 2 2.100–2.300 30 12 

8 Panchromatic 0.500–0.680 15 12 

9 Cirrus 1.360–1.390 30 12 

Table 2. Information on the Landsat 8 OLI data from January 16, 2014. 

Number Date Main Land Cover Types Strip Number Line Number Cloud (%) 

L1 16 January 2014 Shrublands and Forest 122 23 3.18 

L2 16 January 2014 Shrublands and Forest 122 24 6.10 

L3 16 January 2014 Shrublands and Forest 122 26 8.55 

L4 26 December 2014 Cropland 119 27 3.07 

L5 5 February 2014 Cropland 118 28 9.10 

L6 16 January 2014 Cropland 122 40 4.81 

L7 16 January 2014 Grasslands 138 33 4.48 

L8 16 January 2014 Grasslands 138 34 6.62 

L9 16 January 2014 Grasslands 138 36 5.04 

2.4. IGBP Land Cover Type Product 

The Internal Geosphere-Biosphere Program (IGBP) land cover type data are one of the classification 

products that use different strategies to extract land cover characteristics from MODIS/MCD12Q1 

(V005) with a resolution of 500 m [47]. The IGBP divides land cover into 17 types, including 11 natural 

vegetation types, three land use and land mosaic types and three vegetation-free land types [48]. We  

re-classified the land cover types defined by IGBP into six types—water, shrublands and forest, 

grasslands, croplands, urban areas, and snow and ice—to analyze the effects of different land cover types 

on the accuracy of snow classification (Figure 1). 

2.5. SRTM Digital Elevation Model (DEM) 

The SRTM DEM (V004) data are from the National Map Seamless Data Distribution Systems 

(http://seamless.usgs.gov/) and were measured by NASA and the National Imagery and Mapping 

Agency (NIMA) of the US Department of Defense. The present DEM data for regions of China have a 

90 m resolution. Previous studies showed that the data accuracy in the vertical direction is less than 16 

m [49]. We re-sampled the original DEM data by using the nearest neighbor interpolation method and 

obtained a digital elevation model with a 500 m spatial resolution. 
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Figure 1. Spatial distribution of land cover types in China. 

3. Methodology 

3.1. OLI Snow Mapping 

By adopting the SNOWMAP algorithm [50], we calibrated the radiometer, corrected atmosphere 

based on ENVI/flaash model and calculated NDSI using the third and sixth bands in OLI images. The 

set threshold value is 0.4. The calculation equation is as follows: 

NDSI = (Band 3 − Band 6)/(Band 3 + Band 6) (1)

Next, we set Band 5 to >0.11 to remove the water body interference, thereby producing a binary snow 

classification map with a 30 m resolution. The cloud pixels were interpreted and masked by artificial 

visual interpretation. Then, by using the Pixel Aggregate tool, we performed elevation calculations and 

obtained an FSC image with a 500 m resolution [44]. Take the OLI image of the test area L9 as an 

example (Figure 2), the produced binary and FSC snow maps show a very well agreement with the snow 

distribution in true color composite image. Which indicate that the OLI FSC snow map can be as the 

ground truth to validate the MODIS snow products due to its higher spatial resolution [23,43,44]. 
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Figure 2. True color composite image (a), binary snow map (b) and fractional snow map (c) 

of OLI on 16 January 2014 in Tibetan Plateau. 

3.2. Cloud Removal Algorithm 

3.2.1. Daily Composite 

Because clouds are mobile, the quantities of cloud in the daily snow products MOD10A1 and 

MYD10A1 differ. Thus, we combined the MODIS/Terra and MODIS/Aqua daily FSC products given 

by MOD10A1 and MYD10A1. The combination rule is shown in Table 3. 

Table 3. Rules for compositing MOD10A1 and MYD10A1. 

MOD10A1 

Code Values 

MYD10A1 Code Values 

0–100 225 237 239 250 200\201\254\255 * 

0–100 (Snow) (MOD + MYD) × 0.5 MOD MOD MOD MOD MOD 

225 (Land) MYD 225 225 225 225 225 

237 (Inland water) MYD 237 237 237 237 237 

239 (Ocean) MYD 239 239 239 239 239 

250 (Cloud) MYD 225 237 239 250 250 

200\201\254\255 * MYD 225 237 239 250 200\201\254\255 

* The values 200, 201, 254 and 255 represent missing data, no decision, detector saturated and fill, respectively. 

3.2.2. Adjacent Temporal Composite 

Because snow cover can remain for relatively long durations on land, we merged the combined data 

above with the data before and after that day. If a pixel is cloudy and has snow cover on the days before 

and after, the mean FSC is calculated for the day before and the day after to replace the cloudy pixel on 

the specified day. If the pixel is bare land on the days before and after, the cloudy pixel is replaced with 

land; otherwise, the cloudy pixel remains the same. 

3.2.3. Snow Line Algorithm (SNOWL) 

The SNOWL process re-classifies labeled cloud pixels by using elevation data and the characteristics 

of the snow cover spatial distribution, which can only divide most part of the cloud pixels into snow and 

snow-free categories [38]. To reduce error, we first re-divided the regions in China into 34 sub-regions 

based on digital elevation model, then calculate the mean elevations of all the snow pixels and land 

pixels to get the information of snow line of different sub-regions, and then relabeled cloud pixels in 
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different sub-regions based on the SNOWL algorithm. The distinguishing rules are as follows: (a) If a 

cloud pixel elevation is less than or equal to the mean land elevation in the corresponding region, this 

pixel is defined as land with a value of 0. (b) If a cloud pixel elevation is greater than or equal to the 

mean snow elevation in the corresponding region, this pixel is defined as snow with a value of 300. (c) 

If a cloud pixel elevation is between the mean land elevation and the mean snow elevation in the 

corresponding region, the value of the pixel remains the same. 

3.2.4. Composite with AMSR2 SWE 

To eliminate the strip gaps in the AMSR2 SWE product, we used the day before and after composite 

method to fill in missing data with maximum values and then used the nearest neighbor interpolation 

method to re-sample the composite gap-free product at a 500 m resolution, in agreement with the spatial 

resolution of the MODIS snow product. Then, we analyzed the re-sampled data from the SWE product 

in Section 3.2.3 using local grid calculations. If the SWE value is 0, the corresponding cloud pixel is 

classified as land with a value of 0; if the SWE value is higher than 0, the corresponding cloud pixel is 

classified as snow with a value of 300. 

3.2.5. Iterative Operation 

On the basis of the gradual composite in the previous four steps, cloud pixels are almost completely 

removed. However, in Sections 3.2.3 and 3.2.4, whether the FSC is unknown of those pure snow pixels 

(value = 300) which need to be converted to FSCs by iterative calculations. The iterative calculations 

replace the composite pure snow pixels on the specified day with the corresponding FSCs on the day 

before and after. If a pixel is marked as 300, the FSC is calculated for the day before and the day after 

to replace the pixel on the specified day, the mean FSC will instead of the pure snow pixel, and is 

repeated until the pure snow pixels are completely converted to FSCs. Finally, a daily cloud-free FSC 

product is formed with a 500 m resolution. The whole composite procedure is shown in Figure 3. 

3.3. Validation 

We use the high-resolution FSC map generated by the Landsat 8 OLI image as a true value to test the 

accuracy of the cloud-free FSC product developed in this study. We performed statistical calculations 

of the true value, the mean absolute error (MAE), root mean square error (RMSE), determination 

coefficient (R2), and mean FSC between the two products, and we analyzed the accuracy of the 

composite FSC product. The equations to calculate MAE, RMSE and R2 are as follows: 
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in which FMODIS is the FSC value in the composite cloud-free FSC map and FOLI is the FSC value in the 

OLI image. 

MOD10A1 MYD10A1 

Cloud

Iterative operaton

SNOWL

AMSR2 daily SWE

Adjacent temporal composite

Daily composite DEM zonal
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Figure 3. Flow chart for the daily cloud-free MODIS FSC product (The label from a–g 

response to the same stages a–g in Figure 4). 

4. Results 

4.1. Effect of Cloud Removal 

An example on 16 January 2014 is shown in Figure 4. The MODIS FSC standard product, MOD10A1 

and MYD10A1 are largely contaminated by cloud. For reference, the MOD10A1 cloud amount is 

50.35%, and the MYD10A1 cloud amount is 47.61%. After merging the data from the morning and 

afternoon, the daily composite product cloud amount is 39.97%. Following the SNOWL data process, 

the cloud amount decreases to 3.05%, and 9.84% is re-classified as pure snow (300). Then, after 

combination with AMSR2 data, the clouds are completely removed and pure snow (300) reaches 11.38% 

(Figure 5). Figure 4 shows that the cloud-removal algorithm in this study can effectively remove cloud 

contamination to obtain a daily cloud-free FSC product. Figure 5 shows the statistical results of the 

MODIS cloud amounts in the morning and afternoon, and the degree of cloudiness decreased in different 

composite steps during November 2013 to February 2014. During the composite process of the daily 

cloud-free FSC product, cloud contamination is gradually removed, and the snow-covered area in the 

map also gradually increases. 
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Figure 4. Cloud cover map on 16 January 2014. (a) MOD10A1; (b) MYD10A1; (c) composite 

morning and afternoon map; (d) day-before-and-after composite map; (e) SNOWL with 

cloud removed; (f) composite map with AMSR2; (g) daily cloud-free FSC product. 
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Figure 5. Plots of mean snow and cloud amount ratios during the different composite stages 

during November 2013 to February 2014. (a) MOD10A1; (b) MYD10A1; (c) morning and 

afternoon composite map; (d) day-before-and-after composite map; (e) SNOWL with cloud 

removed; (f) composite map with AMSR2; (g) daily cloud-free FSC product. 

4.2. Accuracy Test of the Daily Cloud-Free FSC Product 

Since clouds are always changing in both position and extent, one place (or a group of pixels) which 

is covered by cloud in the sometime is likely to be clear in the other time, and vice versa. We evaluated 

the accuracy of the composite daily cloud-free FSC map based on the FSC image obtained from the 

chosen cloud free Landsat 8 OLI. Only part of representative area as detail to show the effect of cloud 

removal algorithm, the results are shown in Figure 6. The figure shows that the MOD10A1 and 

MYD10A1 images of the exhibition region are strongly affected by clouds on 16 January 2014. 

Especially in the MYD10A1 image, the snow-covered area is almost completely blocked by clouds. 

Based on the cloud-removal algorithm in this study, the resulting cloud-free FSC map agrees well with 

the snow map given by Landsat 8 OLI, which demonstrates that the daily cloud-free FSC mapping 

algorithm developed in this study is quite reliable. Figure 7 shows that both the MOD10A1 and 

MYD10A1 were influenced by cloud seriously. Clearly, the majority of the Chinese mainland was 

covered by 50% cloudiness during November 2013 to February 2014. After cloud removal, the produced 

daily cloud free FSC products improved the snow-covered area, obviously. 
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Figure 6. Fractional snow cover map for 16 January 2014. (a) MOD10A1; (b) MYD10A1; 

(c) final composite snow map; (d) OLI snow map. 

 

Figure 7. The curves of snow and cloud cover area retrieved from MOD10A1, MYD10A1 

and produced daily cloud free FSC products during November 2013 to February 2014  

in China. 
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Further accuracy analysis results are shown in Table 4. Table 4 compares our daily cloud-free FSC 

product with the OLI FSC product under various land cover type conditions. The MAE and the RMSE 

between the two are the lowest under the grassland covered condition are 0.04 and 0.13, respectively, 

with the highest determination coefficient of 0.91. This is better than the results of Tang’s algorithm 

conducted in Tibetan Plateau [45]. The accuracy under the shrublands and forest condition is not good, 

and the two are not well correlated. The snow identification accuracy is always worse in shrublands and 

forest area due to the influence of vegetation when using optical remote sensing [9,23,33]. The mean 

absolute error and the RMSE of the cropland area are the highest, but the two are well correlated, with 

the determination coefficient of 0.82. The overall mean absolute error and the RMSE are 0.20 and 0.29, 

respectively. Also, the determination coefficient is 0.70. Figure 8 compares the FSC values given by 

MOD10A1, MYD10A1, the daily cloud-free FSC product and the OLI FSC product in different test 

regions. The results show that the daily cloud-free FSC product improved the accuracy of snow-cover 

area monitoring compared with MOD10A1 and MYD10A1. In the grassland region, the obtained FSC 

values generally agree with OLI snow map (the two values only differ by 0.45%), whereas in other regions, 

the two results are quite different (the cropland region features the maximum difference of 12.31%). 

Table 4. Error analysis of the produced daily cloud-free FSC products compared with OLI image. 

Land Cover Types MAE RMSE R2 

Shrublands and Forest 0.21 0.28 0.40 

Grasslands 0.04 0.13 0.91 

Croplands 0.32 0.46 0.82 

Urban areas 0.22 0.32 0.65 

Overall 0.20 0.29 0.70 

 

Figure 8. The mean FSCs of the MOD10A1, MYD10A1 and OLI image and the daily  

cloud-free FSC mapping for different land cover types in the text area during November 

2013 to February 2014. 
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4.3. Error Analysis 

Figures 9–11 show the effects of elevation, aspect, slope, and land roughness on the accuracy of the 

produced daily cloud-free FSC product compared with Landsat 8 OLI snow map in shrublands and forest 

(L1, L2 and L3), the cropland (L4, L5 and L6) and alpine grassland test regions (L7, L8 and L9), 

respectively. The surface roughness was calculated by using the standard deviation of the elevation 

values in a 3 × 3 pixels window [51]. Figure 9 shows that with increasing slope, land roughness and 

elevation in the Northeast China forest region, the RMSE increases; in contrast, the effect of aspect is 

not significant. Figure 10 shows that in the South China cropland region, the RMSE increases with 

increasing slope and land roughness but decreases with increasing elevation. In contrast, the effects of 

aspect exhibit no pattern. Figure 11 shows that in the alpine grassland region on the Tibetan Plateau, the 

RMSE increases with increasing slope, land roughness and elevation, and the effect of aspect is  

not significant. 

 

Figure 9. RMSE as a function of aspect, slope, roughness and elevation in shrublands and forest. 
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Figure 10. RMSE as a function of aspect, slope, roughness and elevation in croplands. 

 

Figure 11. RMSE as a function of aspect, slope, roughness and elevation in alpine grasslands. 
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5. Discussions 

The general method for removing clouds in current optical remote sensing snow products is to 

combine multi-day data. Using this process, clouds can be more effectively removed by increasing the 

composite period while scarifying temporal resolution [31–33]. In addition, clouds can be completely 

removed by directly incorporating microwave snow water equivalent data. However, due to the low 

resolution of microwave data, this process results in a lower accuracy of the composite snow products. 

In situations with large quantities of clouds, errors are much higher [36,37]. Thus, we developed this set 

of cloud-removal algorithms primarily based on remote sensing data to combine the advantages of 

different cloud-removal algorithms, which include microwave snow water equivalent data when it is 

necessary to remove a large quantity of clouds. Our results show that the MODIS standard daily FSC 

product is strongly affected by clouds. During November 2013 to February 2014, the averaged morning 

and afternoon cloud amount in the MODIS snow product was approximately 50% for the studied regions 

in China, and this product therefore cannot effectively calculate snow-covered areas. By removing 

clouds using the cloud-removal method developed in this study, the cloud amount was sequentially 

decreased, and after the data were combined with the AMSR2 snow water equivalent data, cloud pixels 

were completely removed. Finally, a daily cloud-free FSC product for regions in China was obtained. 

The FSC product obtained by the OLI sensor carried by the Landsat 8 satellite was used to test our 

daily cloud-free FSC product. The test results show that in addition to the complete removal of clouds, 

our product also effectively improves the accuracy of snow area monitoring. Compared to the OLI snow 

cover map, the mean error of our daily cloud-free FSC product is 0.19, and the corresponding RMSE is 

0.27. However, different land use types affect the accuracy of our product. The accuracy is highest in 

the alpine grassland region and lowest in the forest region due to the effects of vegetation [18,49]. Due 

to the heat island effect, snow melts relatively fast in urban regions. Additionally, the temporal difference 

between MODIS and Landsat 8 results in large errors. The cropland test region studied here is mainly 

located in South China with low snow quantities and high temperatures. Therefore, snow melts quickly 

in this region, which leads to large errors. 

In addition, terrain factors can also affect the accuracy of our daily cloud-free FSC product. We 

compared the results of the produced daily cloud-free FSC product for different slopes, aspects, land 

roughnesses and elevations by calculating the RMSE between the daily cloud-free FSC products and the 

OLI snow map. The results show that with increasing slope, roughness and elevation, the RMSE also 

increases; in contrast, the effect of aspect on the error is not significant. Hao et al. (2008) found that in 

alpine areas such as Tibetan Plateau, the accuracy of snow classification is worse with the gradual 

increase of altitude, mainly due to the serious snow fragmentation and terrain shadow. To improve the 

accuracy of MODIS snow identification in the alpine areas, the moderate resolution of optical remote 

sensing images must be first corrected for topography [52]. However, because landcover is used in 

different ways in different regions, the associated effects are also variable, indicating that the accuracy 

of snow information extraction is primarily affected by terrain factors. The different effects of land 

surface parameters in different regions on the composite product are mainly caused by different 

properties of snow in space and the terrain and climate conditions. There are three stable snow-covered 

regions in China: northern Xinjiang, northeastern Inner Mongolia and the Tibetan Plateau snow-covered 

area [4]. In contrast, snow occurs infrequently in South China and often in association with rain, which 
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makes the snow melt quickly. Therefore, the capture of snowfall information and snow monitoring using 

remote sensing data are difficult in this region. Additionally, snow monitoring in the forest region is also 

a large problem. Although the snow monitoring accuracy can be improved by correcting the vegetation 

index, the overall result is still not satisfying [9]. 

6. Conclusions 

MODIS data are widely used in ecological, atmospheric and hydrological sensing areas because of 

their high spatial and temporal resolution. Because optical sensors are strongly affected by clouds, an 

effective statistical analysis of FSC cannot be realized based on snow cover products from optical 

sensors. Combining these data with passive microwave data, which are unaffected by clouds, is an 

effective way to improve the snow-covered area monitoring accuracy of the MODIS data. Based on the 

MODIS standard daily FSC product released by NASA, we developed a daily cloud-free FSC mapping 

algorithm by combining passive microwave data, the AMSR2 snow water equivalent product and digital 

elevation data to construct a daily cloud-free FSC product for regions in China. We also tested the 

accuracy of our daily cloud-free FSC product based on the higher accuracy snow map obtained from a 

Landsat 8 OLI image. 

To summarize, the accuracy of the daily cloud-free product obtained from this study is improved in 

monitoring snow-covered area than that of the standard MODIS snow product (MOD10A1 and 

MYD10A1) compared with OLI FSC snow map, 20.6% and 10.2%, respectively. Furthermore, our 

product completely removes the interference of clouds. The obtained snow area data can also be used as 

reliable input parameters for certain hydrological and climate models. The composite product from this 

study was developed based on existing products. The validation tests show that the snow area monitoring 

accuracy of the standard MODIS product is not ideal in the forest and warm regions and needs to be 

improved, which is also an effective way to improve the accuracy of our FSC product. 

Acknowledgments 

This study was supported by the China State Key Basic Research Project (2013CBA01802), and 

Chinese National Natural Science Foundation of China (41101337, 31372367, and 31228021), and the 

Program for Changjiang Scholars and Innovative Research Team in University (IRT13019). 

Author Contributions 

Jie Deng, Xiaodong Huang and Tiangang Liang designed research; Jie Deng, Qisheng Feng and 

Xiaofang Ma performed research and analyzed the data; Jie Deng and Xiaodong Huang wrote the paper. 

All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 
  



Remote Sens. 2015, 7 7003 

 

References 

1. Robinson, D.A.; Frei, A. Seasonal variability of Northern Hemisphere snow extent using visible 

satellite data. Prof. Geogr. 2000, 52, 307–315. 

2. Groisman, P.Y.; Karl, T.R.; Knight, R.W.; Stenchikov, G.L. Changes of snow cover, temperature, 

and radiative heat balance over the Northern Hemisphere. J. Clim. 1994, 7, 1633–1656. 

3. Li, X.; Cheng, G.; Jin, H.; Kang, E.; Che, T.; Jin, R.;Wu, L.; Nan, Z.; Wang, J.; Shen, Y. Cryospheric 

change in China. Global Planet. Change 2008, 62, 210–218. 

4. Xu, L.N.; Shi, J.C.; Zhang, H.G.; Wu, S.L. Fractional snow cover estimation in Tibetan Plateau 

using MODIS and ASTER. IEEE Int. Geosci. Remote Sens. Symp. 2005, 3, 1940–1942. 

5. Wang, J.; Li, H.; Hao, X.; Huang, X.; Hou, J.; Che, T.; Dai, L.; Liang, T.; Huang, C.; Li, H.; et al. 

Remote sensing for snow hydrology in China: Challenges and perspectives. J. Appl. Remote Sens. 

2014, doi:10.1117/1.JRS.8.084687. 

6. Wang, C.H.; Wang, Z.L.; Cui, Y. Snow cover of China during the last 40 years: Spatial distribution 

and interannual variation. J. Glaciol. Geocryol. 2009, 31, 301–310. 

7. Dai, L.Y.; Che, T.; Wang, J.; Zhang, P. Snow depth and snow water equivalent estimation from 

AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens. Environ. 

2012, 127, 14–29. 

8. Dai, L.Y.; Che, T. Spatiotemporal variability in snow cover from 1987 to 2011 in northern China. 

J. Appl. Remote Sens. 2014, 8, 084693. 

9. Bai, Y.C.; Feng, X.Z. Introduction to some research work on snow remote sensing. Remote Sens. 

Technol. Appl. 1997, 12, 60–66. 

10. Danker, R.; De Jong, S.M. Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT 

VEGETATION images. Int. J. Remote Sens. 2004, 25, 2933–2949. 

11. Hartman, R.K.; Rost, A.A.; Anderson, D.M. Operational processing of multi-source snow data. In 

Proceedings of the 63rd Annual Western Snow Conference, Reno, NV, USA, April 1995. 

12. Xiao, X.; Zhang, Q.; Boles, S.; Rawlins, M.; Moore III, B. Mapping snow cover in the pan-Arctic 

zone, using multi-year (1998–2001) images from optical VEGETATION sensor. Int. J. Remote 

Sens. 2004, 25, 5731–5744. 

13. Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover 

products. Remote Sens. Environ. 2002, 83, 181–194. 

14. Che, T.; Li, X. Spatial distribution and temporal variation of snow water resources in China during 

1993–2002. J. Glaciol. Geocryol. 2005, 27, 64–67. 

15. Che, T.; Li, X.; Jin, R.; Armstrong, R.L.; Zhang, T.J. Snow depth derived from passive  

microwave-remote sensing data in China. Ann. Glaciol. 2008, 49, 145–154. 

16. Yu, H.; Feng, Q.S.; Zhang, X.T.; Zhang, X.T.; Huang, X.D.; Liang, T.G. An approach for 

monitoring snow depth based on AMSR-E data in the pastoral area of Northern Xinjiang. Acta 

Agrestia Sin. 2009, 18, 210–216. 

17. Liu, J.F.; Chen, R.S. Studying the spatiotemporal variation of snow-covered days over china based 

on combined use of MODIS snow-covered days and in situ observations. Theo. Appl. Climatol. 

2011, 106, 355–363. 



Remote Sens. 2015, 7 7004 

 

18. Hall, D.K.; Foster, J.L.; DiGirolamo, N.E.; Riggs, G.A. Snow cover, snowmelt timing and stream 

power in the Wind River Range, Wyoming. Geomorphology 2012, 137, 87–93. 

19. Rodell, M.; Houser, P.R. Updating a land surface model with MODIS-derived snow cover.  

J. Hydrometeorol. 2004, 5, 1064–1075. 

20. Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riédi, J.C.; Frey, R.A. The 

MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 

2003, 41, 459–473. 

21. Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. 

Earth Syst. Sci. 2009, 13, 1361–1373. 

22. Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Processes 

2007, 21, 1534–1547. 

23. Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande 

river basin for the 2000–2001 snow season. Remote Sens. Environ. 2003, 86, 162–176. 

24. Maurer, E.P.; Rhoads, J.D.; Dubayah, R.O.; Dennis, P.L. Evaluation of the snow covered area data 

product from MODIS. Hydrol. Process. 2003, 17, 59–71. 

25. Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of vegetation, MODIS, and 

GOES+ SSM/I snow-cover products over Canada based on surface snow depth observations. 

Hydrol. Processes 2004, 18, 1089–1104. 

26. Wang, X.; Xie, H.; Liang, T.G. Evaluation of MODIS snow cover and cloud mask and its 

application in northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1497–1513. 

27. Huang, X.D.; Liang, T.G.; Zhang, X.T.; Guo, Z. Validation of MODIS snow cover products using 

Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, 

China. Int. J. Remote Sens. 2011, 32, 133–152. 

28. Cheng, Q.; Shen, H.; Zhang, L.; Yuan, Q.; Zeng, C. Cloud removal for remotely sensed images by 

similar pixel replacement guided with a spatio-temporal MRF model. ISPRS J. Photogramm. 

Remote Sens. 2014, 92, 54–68. 

29. Li, X.H.; Shen, H.; Zhang, L.; Yuan, Q.; Yang, G. Recovering quantitative remote sensing products 

contaminated by thick clouds and shadows using multitemporal dictionary learning. IEEE Trans. 

Geosci. Remote Sens. 2014, 52, 7086–7098. 

30. Zeng, C.; Shen, H.F.; Zhang, L.P. Recovering missing pixels for Landsat ETM+ SLC-off imagery 

using multi-temporal regression analysis and a regularization method. Remote Sens. Environ. 2013, 

131, 182–194. 

31. Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on 

combination products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. 

32. Xie, H.; Liang, T.; Wang, X. Development and assessment of combined Terra and Aqua snow cover 

products in Colorado Plateau, USA and northern Xinjiang, China. J. Appl. Remote Sens. 2009, 

doi:10.1117/1.3265996. 

33. Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of 

MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. 

Remote Sens. Environ. 2008, 112, 1514–1526. 

34. Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images-potential for snow cover 

mapping. Water Resour. Res. 2008, doi:10.1029/2004JD005047. 



Remote Sens. 2015, 7 7005 

 

35. Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled 

MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. 

36. Gao, Y.; Xie, H.; Lu, N.; Yao, T.; Liang, T. Toward advanced daily cloud-free snow cover and 

snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. 

Hydrol. 2010, 385, 23–35. 

37. Liang, T.; Zhang, X.; Xie, H.; Wu, C.; Feng, Q.; Huang, X.; Chen, Q. Toward improved daily snow 

cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. 

Environ. 2008, 112, 3750–3761. 

38. Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for 

estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. 

39. Huang, X.D.; Hao, X.H.; Feng, Q.S.; Wang, W.; Liang, T. A new MODIS daily cloud free snow 

cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Reg. 2014, 6, 0116–0123. 

40. Wang, W.; Huang, X.D.; Deng, J.; Xie, H.; Liang, T. Spatio-temporal change of snow cover and its 

response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover 

product. Remote Sens. 2015, 7, 169–194. 

41. Roesch, A.; Wild, M.; Gilgen, H.; Ohmura, A. A new snow cover fraction parameterization for the 

ECHAM4 GCM. Clim. Dyn. 2001, 17, 933–946. 

42. Dobreva, I.D.; Klein, A.G. Fractional snow cover mapping through artificial neural network 

analysis of MODIS surface reflectance. Remote Sens. Environ. 2011, 115, 3355–3366. 

43. Zhang, Y.; Huang, X.; Hao, X.; Wang, J.; Wang, W.; Liang, T. Fractional snow-cover mapping 

using an improved endmember extraction algorithm. J. Appl. Remote Sens. 2014, 

doi:10.1117/1.JRS.8.084691. 

44. Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized 

difference snow index. Remote Sens. Environ. 2004, 89, 351–360. 

45. Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan Plateau 

based on cloud-removed modereate resolution imaging spectroradiometer fractional snow cover 

product from 2001 to 2011. J. Appl. Remote Sens. 2012, doi:10.1117/1.JRS.7.073582. 

46. USGS EROS Data Center. MODIS Reprojection Tool User’s Manual; Release 4.1; 2011.  

Available online: https://lpdaac.usgs.gov/sites/default/files/public/mrt41_usermanual_032811.pdf 

(accessed on 13 February 2015). 

47. Friedl, M.A.; Damien, S.M.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS 

collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote 

Sens. Environ. 2010, 114, 168–182. 

48. He, Y.; Bo, Y. A consistency analysis of MODIS MCD12Q1 and MERIS Globcover land cover 

datasets over China. In Proceedings of 19th International Conference on Geoinformatics, Shanghai, 

China, 24–26 June 2011. 

49. Huang, X.; Xie, H.; Liang, T.; Yi, D. Estimating vertical error of SRTM and map-based DEMs 

using ICESat altimetry data in the eastern Tibetan Plateau. Int. J. Remote Sens. 2011, 32, 5177–5196. 

50. Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. 

Environ. 1989, 28, 9–22. 

51. Carabajal, C.C.; Harding, D.J. ICESat validation of SRTM C-band digital elevation models. 

Geophys. Res. Lett. 2005, doi:10.1029/2005GL023957. 



Remote Sens. 2015, 7 7006 

 

52. Hao, X.H.; Wang, J.; Li, H.Y. Evaluation of the NDSI threshold value in mapping snow cover of 

MODIS. J. Glaciol. Geocryol. 2008, 30, 132–138. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


