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Abstract: The paper presents an automatic region detection based method to reconstruct 

street scenes from driving recorder images. The driving recorder in this paper is a dashboard 

camera that collects images while the motor vehicle is moving. An enormous number of 

moving vehicles are included in the collected data because the typical recorders are often 

mounted in the front of moving vehicles and face the forward direction, which can make 

matching points on vehicles and guardrails unreliable. Believing that utilizing these image 

data can reduce street scene reconstruction and updating costs because of their low price, 

wide use, and extensive shooting coverage, we therefore proposed a new method, which is 

called the Mask automatic detecting method, to improve the structure results from the motion 

reconstruction. Note that we define vehicle and guardrail regions as “mask” in this paper 

since the features on them should be masked out to avoid poor matches. After removing the 

feature points in our new method, the camera poses and sparse 3D points that are 

reconstructed with the remaining matches. Our contrast experiments with the typical pipeline 

of structure from motion (SfM) reconstruction methods, such as Photosynth and VisualSFM, 
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demonstrated that the Mask decreased the root-mean-square error (RMSE) of the pairwise 

matching results, which led to more accurate recovering results from the camera-relative 

poses. Removing features from the Mask also increased the accuracy of point clouds by 

nearly 30%–40% and corrected the problems of the typical methods on repeatedly 

reconstructing several buildings when there was only one target building. 

Keywords: street scene reconstruction; driving recorder; structure from motion; outliers; 

sparse 3D point clouds; artificial intelligence; classifier 

 

1. Introduction 

Due to the increasing popularity of using reconstruction technologies, more 3D supports are needed. 

Researchers have proposed many methods to generate 3D models. Building models from aerial images 

is a traditional method to reconstruct a 3D city. For example, Habib proposed a building reconstruction 

method from aerial mapping by utilizing a low-cost digital camera [1]. Digital map, Light Detection and 

Ranging (LIDAR) data, and video aerial image sequences have been used to build models combined [2]. 

These methods can reconstruct the model of large-area cities at a high efficiency; however, the models 

reconstructed from aerial data always have lacked detailed information, which constrains their further 

applications. In order to reconstruct city models with rich details, the terrestrial data based reconstruction 

also has been explored [3–5]; and street scenes have been reconstructed with imagery taken from 

different view angles [3,4]. These images were captured by a moving vehicle that carried a GPS/INS 

navigation system. Mobile LIDAR was used to reconstruct buildings with progressively refined point 

clouds by incrementally updating the data [5]. Even though mobile LIDAR can acquire 3D points 

quickly, it clearly has some limitations. For example, the density of the point clouds can be easily 

affected by the driving speeds, number of scanners, multiple returns, range to target, etc. The advantages 

and disadvantages of mobile LIDAR and its abundant applications in city reconstructions have been 

summarized [6]. The integrated GPS/Inertial Navigation Systems (INS) navigation system and mobile 

LIDAR play an important role in most classical city-scale reconstruction methods. However, in urban 

areas, the accuracy of GPS/GNSS is sometimes limited by the presence of large buildings. Although this 

limitation can be minimized by using Wi-Fi or telephone connections, we cannot neglect the necessity 

of INS in the above methods that has made city-scale reconstruction very expensive. 

The urban area in China has grown rapidly in recent years, which has brought a large number of tasks 

for road surveying. However, the development of 3D street reconstruction is limited by the lack of 

mobile mapping equipment carrying stable GPS/INS systems or mobile LIDAR in China. In order to 

address this issue, it is crucial to be able to reconstruct sparse 3D street scenes without the assistance of 

GPS/INS systems. The Structure from Motion (SfM) technique [7] was recently used to reconstruct 

buildings from unstructured and unordered data sets without GPS/INS information [8,9], and the results 

should be scaled and georeferenced into object space coordinate systems. For example, the photo tourism 

system [10,11] is one of the typical SfM methods which can recover 3D point clouds, camera-relative 

positions, and orientations from either personal photo collections or Internet photos that do not rely on 

a GPS/INS system or any other equipment to provide location, orientation, or geometry. The image data 
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used by the above typical SfM method characteristically have less repetition and obvious objects in the 

foreground, which allows processing by the typical SfM method have no additional steps. 

With the heavier traffic density nowadays, especially more buses, taxis, and private vehicles are equipped 

with driving recorders to avoid traffic accident disputes. A driving recorder is a dashboard-mounted camera, 

which can collect images while a vehicle is operating. Figure 1 shows a typical driving recorder and 

recorded image. 

(a) (b) 

Figure 1. Driving recorder and recorded image. (a) Photo of one type of driving recorder 

obtained from the Internet. (b) Test data recorded by the driving recorder in this paper. 

More and more uses of driving recorders allow them to replace mobile mapping equipment to collect 

images, reconstruct, and update street scene point clouds at a lower cost yet in a shorter update time. 

Images of street views are typically captured by driving recorders mounted in the front of a moving 

vehicle, facing the forward direction along the street. Large quantities of vehicles are captured in the 

video images. However, due to the relative motion among the vehicles and the repeating patterns of 

guardrails, without the assistance of GPS/INS information, the matching pairs of images of vehicles and 

guardrails may be outliers. These outliers often take a dominant position, which cannot be removed by 

the epipolar constraint method effectively, thereby causing the typical SfM process to fail. Hence, this 

paper mainly focuses on detecting vehicles and guardrail regions, and then removing the feature points 

on them to reduce the number and negative effects of the outliers present in the driving recorder data. 

After removal, the remaining points can be used to reconstruct the street scene. 

In order to reduce the cost of reconstructing point clouds, the SfM method is proposed in this paper 

to reconstruct the street scene based on driving recorder images without GPS/INS information. However, 

we reconstruct the results only in the relative coordinate system, rather than georeferencing it to the 

absolute coordinates. This paper focuses on removing the feature points on the vehicle and guardrail 

regions, which can improve the performance of the recovered camera-tracks and the accuracy of the 

reconstructed sparse 3D points. Vehicle and guardrail region automatic detection methods are proposed 

in Sections 2.1, 2.2, 2.3, and 2.4. The features removing and reconstruction method is described in 

Section 2.5; and the improved reconstruction effects are shown in Section 3 from the following three 

aspects: Section 3.2 addresses the precision of pairwise orientation; Section 3.3 shows the camera poses 

recovering results, and the sparse 3D point clouds reconstructing results are introduced in Section 3.4. 
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The results and implications of this research are discussed in Section 4; and the limitations of the 

proposed method and future research directions are described in Section 5.  

2. Methodology 

The paper proposed guardrail and vehicle region detection methods, and then masked feature points 

on guardrail and vehicle regions to improve the reconstruction result. We propose to “mask” out the 

vehicle and guardrail regions before reconstruction because guardrails have repeating patterns and 

vehicles move between frames, which subsequently always produce outliers on the image of the 

guardrail and vehicle regions. In this paper, the images of the vehicle and guardrail regions are 

collectively called the Mask. The pipeline of 3D reconstruction that utilizes driving recorder data is 

illustrated in Figure 2. We can first detect the SIFT [12] feature points and the Mask in each image, and 

then we remove the features on the Mask and match the remaining feature points between the pairs of 

images. Based on the epipolar constraint [7], we will remove the outliers to further refine the results and 

finally conduct an incremental SfM procedure [7] to recover the camera parameters and  

sparse points. 

 

Figure 2. The pipeline of 3D reconstruction from driving recorder data. The grey frames 

show the typical SfM process. The two orange frames are the main improvement steps 

proposed in this paper. 

It is challenging to detect the Mask with object detection methods due to the following difficulties: 

1. Both the cameras and the objects are in motion, which changes the relative pose of the objects. 

Moreover, the appearance of vehicles varies significantly (e.g., color, size, and difference 

between back/front appearances). 

2. The environment of the scene (e.g., illumination and background) often changes, and events such 

as occlusions are common.  

3. Guardrails are strip distributions on images, which make the detection of whole regions difficult. 
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Haar-like features [13,14] based on Adaboost classifiers [15] were used to address the above 

challenges. With the help of classifiers, the front/back surfaces of vehicle and some parts of guardrails 

are automatic detected within a few seconds. The classifiers also could robust against the changing of 

light condition and environment. 

In order to diminish the adverse impact of outliers on reconstruction, the Mask requires detection as 

entirely as possible. Therefore, based on the typical vehicle front/back surface detection method in 

Section 2.1, the design of the vehicle side surfaces detection method and the blocked-vehicle detection 

method are described in Sections 2.2 and Section 2.4, respectively. The blocked-vehicle is a vehicle 

moving in the opposite direction partially overlapped by the guardrail. The guardrail region detection 

method is introduced in Section 2.3, which is based on the Haar-like classifiers and the position of the 

vanishing point. Finally, the Mask and the reconstruction process are introduced in Section 2.5. 

2.1. Vehicle Front/Back Surfaces Detection  

As the system of vehicle back surface detection [16] by Haar-like feature-based Adaboost classifier 

is described in details, we only summarize its main steps here. Classifiers based on Haar-like features 

can detect objects with a similar appearance. There is a big difference between the front and back 

surfaces of vehicles and buses; therefore, four types of classifiers were trained to detect the front and 

back surfaces of vehicles and buses, respectively.  

The classifier was trained with sample data. After the initial training, the trained classifier was used 

to independently detect vehicles. There are two types of samples, positive and negative. A positive 

sample is a rectangular region cut from an image that contains the target object, and a negative sample 

is a rectangular region without the target object. Figure 3 shows the relation of the four classifier types 

and their trained samples. Each classifier is trained with 1000–2000 positive samples and at least 8000 

negative samples. All the samples were manually compiled; and we separated the images containing 

vehicles as positive samples and the remaining images were used as negative samples. Although diverse 

samples can produce better classifier performance, a small amount of duplications are acceptable. 

Therefore, the positive samples of the same vehicle cut from different images are effective samples, and 

the samples from the same images with a slightly adjusted position are allowable as well. Two samples 

can even be totally duplicated, which will have a minimal adverse effect on the performance of the 

classifier when the number of samples is large enough. After inputting the samples into the  

OpenCV 2.4.9 [17] training procedure, the classifier can be trained with the default parameters 

automatically. A cascade classifier is composed of many weak classifiers. Each classifier is trained by 

adding features until the overall samples are correctly classified. This process can be iterated up to 

construct a cascade of classification rules that can achieve the desired classification ratios [16]. Adaboost 

classifier is more likely to overfit on small and noisy training data. Too many iterative training processes 

may cause the overfitting problem, too. Therefore, we need to control the maximum number of iteration 

in the training processes. In OpenCV training procedure, there are some constraints designed to avoid 

the overfitting problem. For example, the numStages parameter limits the stage number of classifier, and 

the maxWeakCount parameter helps to limit the count of trees. These parameters could prevent 

classifiers from the overfitting. Besides these parameter-constraints, we can also use more training data 

to minimize the possibility of overfitting. 



Remote Sens. 2015, 7 9096 

 

 

 

Figure 3. Example of samples and classifiers.  

A strong cascade classifier consists of a series of weak classifiers in the order of sparse to strict.  

A sparse classifier has few constraints and low classification accuracy but a high computational speed; 

while a strict classifier has many constraints and high classification accuracy but a low computational 

speed. When an image area is input into a strong cascade classifier, it is first detected by the initial sparse 

classifier. Only a positive result from the previous classifier triggers the evaluation of the next classifier. 

Negative results (e.g., background regions of the image) therefore are quickly discarded so the classifier 

can spend more computational time on more promising object-like regions [13]. Most image areas 

without the target object can be easily identified and eliminated at the very beginning of the process with 

minimal effort. Therefore, a cascade classifier is able to enhance computational efficiency [18]. 

2.2. Vehicle Side-Surface Detection 

The side-surfaces of vehicles cannot be detected by feature-based classifiers since a vehicle’s 

appearance changes with the angle of view. Poor matching points on these regions inevitably have 

adverse effects on the reconstruction, especially the side-surfaces of large vehicles that are close to the 

survey vehicle.  

The side-surface region can be determined if the interior orientation parameters, the rough size of the 

vehicles, and the position of the front/back surfaces of vehicles on the images are known. However, most 

driving recorders do not contain accurate calibration parameters so we deduced the equations described 

in this section to compute the rough position of the vehicle side-surface region based on the position of 

the front/back-surfaces and the vanishing point in the image, the approximate height H of the recorder, 

the rough value of focal length f, and the pitch angle of recorder θ. The vanishing point used in this 

section was located using the [19,20] method and the position of the vehicle front/back-surface was 

detected with the method described in Section 2.1. The vanishing point is considered a point in the 

picture plane that is the intersection of a set of parallel lines in space on the picture plane. Although the 

vehicle side-surface detection method proposed in this section can only locate the approximate position 

of the vehicle side-surface, it is adequate for masking out the features on vehicles to improve the 



Remote Sens. 2015, 7 9097 

 

 

reconstruction results. The length of MᇱᇱNᇱᇱ is the key step in the vehicle side-surface detection method. 

The process of computing the length of MᇱᇱNᇱᇱ is described below: 

 
(a) 

(b) (c) 

Figure 4. Photographic model of driving recorder. (a) Integrated photographic model of 

driving recorder. (b) Side view of model. (c) Partial enlargement of side view model. The 

oblique image plane is the driving recorder image plane. Point O is the projective center, and O′′ is the principal point on the driving recorder image plane. The focal length f is OO′′. Point O′ is the principal point on the virtual vertical image plane. Line OE is perpendicular to the 

ground. Point E is the intersection point of the ground and line OE. The plane  M′O′OOEF can be drawn perpendicular to both the image plane and the ground.  OM′ is 

perpendicular to M′J′ , and OM is perpendicular to MJ. Line LN is perpendicular to OE. MP 

is a vertical line for the ground, and P is the intersection point of line MP and line ON. Line M′′T is perpendicular to O′O . The angle between the oblique plane and the vertical plane is θ. Angles MON and  O′′ON′′  are α and β, respectively. 
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In Figure 4a, we suppose that the real length, height, and width of the vehicle are Lେ, Hେ and Wେ , 

respectively. The width of the target on image ܭ′′J′′ is W୔. H is the height of projective center O to 

ground OE. Therefore, it can be seen that the length of target MN is Lେ, the length of LE is Hେ and OL 

is H − Hେ. Figure 4a shows that triangle MᇱᇱTO is similar to OLM and triangle ܭ′′J′′ O is similar to KJO. 

We therefore can deduce the following equations from the triangle similarity theorem: ܭ′′J′′ܬܭ = ܯܱ′′ܯܱ = ܮܱܶ′′ܯ  (1)

So the length of M′′T can be described with Equation (2): MᇱᇱT = ᇱᇱܬᇱᇱܭ ∙ ܬܭܮܱ = ௉ܹ ∙ (H − ஼)஼ܹܪ  (2)

It can be seen from △W OM′ in Figure 4c that, angle W O′M′ is θ, and the length of WM′′ is equal to O′T  

in rectangle WM′′ TO′. Then, Equation (3) can be established with the length of M′′T in Equation (2): WM′′ = ܶ′′ܯ ∙ θ݊ܽݐ = ௉ܹ ∙ (H − (஼ܪ ∙ ஼ܹߠ݊ܽݐ  (3)

In Figure 4c, the length of M′′T is equal to W O′ in rectangle WM′′ TO′, so the length of M′O′ is equal 

to MᇱᇱT add M′W. Then, Equation (4) can be established based on △ M′ WM′′∽△ M′ O′O: ܹܯ′′ܱ′ܱ = ′ܱ′ܯܹ′ܯ = ᇱᇱܶܯܹ′ܯ + (4) ܹ′ܯ

Equation (5) is transformed from Equation (4), and the length of M′W  is expressed below: M′W = ′′ܯܹ ∙ ᇱܱܱܶ′′ܯ − ′′ܯܹ = ௉ܹଶ ∙ (H − ஼)ଶܪ ∙ ஼ܹଶߠ݊݅ݏ ∙ ݂ − ௉ܹ ∙ ஼ܹ ∙ (H − (஼ܪ ∙ (5) ߠ݊݅ݏ

Equation (6) is established from rectangle WM′′ TO′ in Figure 4c. OᇱMᇱ = OᇱW + MᇱW = MᇱᇱT + MᇱW= ௉ܹ ∙ (H − ஼)஼ܹܪ + ௉ܹଶ ∙ (H − ஼)ଶܪ ∙ ஼ܹଶߠ݊݅ݏ ∙ ݂ − ௉ܹ ∙ ஼ܹ ∙ (H − (஼ܪ ∙  ߠ݊݅ݏ
(6)

In Figure 4a, since OM′′ is the height of triangle OK′′J′′, we can infer that: 

∵△K’J’O∽△K’’J’’O, △OM’’T∽△OM’O’ (7)

∴
௄ᇱ௃ᇱ୏ᇱᇱ୎ᇱᇱ = ைெᇱைெᇱᇱ = ைᇱெᇱெᇱᇱ் (8)

We know that, ܬ′′ܭ′′  is W୔ , therefore with the calculations of MᇱᇱT  (Equation (2)) and OᇱMᇱ 
(Equation (6)), the length of K′J′ can be established from the transformation of Equation (8):  K′J′ = ᇱᇱܬᇱᇱܭ ∙ ܶ′′ܯ′ܯ′ܱ = ௉ܹ + ௉ܹଶ ∙ (H − (஼ܪ ∙ ஼ܹߠ݊݅ݏ ∙ ݂ − ௉ܹ ∙ (H − (஼ܪ ∙ (9) ߠ݊݅ݏ

KJ and K′J′ are parallel; therefore, we can infer that triangle K′ M′O and triangle KMO are similar 

triangles from Figure 4a.  OM′ is the height of triangle K′ M′O and OM is the height of triangle KMO. 

Meanwhile,  OO′ and LN are parallel lines so triangle M′OO′ is similar to triangle OML. Therefore, 

based on the triangle similarity theorem, Equation (10) can be established: 
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ܬܭ′ܬ′ܭ = ܯܱ′ܯܱ = ܯܮ′ܱܱ  (10)

The length of OO′  is f/cosθ and KJ is Wେ  so LM can be calculated based on Equations (9)  

and (10): LM = ୓୓ᇱ∙୏୎௄ᇱ௃ᇱ = 
ௐ಴∙௙ିௐು∙(ୌିு಴)∙௦௜௡ఏௐು∙௖௢௦ఏ  (11)

In Figure 4b, Equation (12) can be established since triangle PMN is similar to OLM: ܮܱܲܯ = ܰܮܰܯ = ܯܮܰܯ + (12) ܰܯ

OL and MN are H −  Hେ  and Lେ , respectively. Then, MP can be described with Equations (11)  

and (12) MP = ை௅∙ெே௅ெାெே = 
௅಴∙ௐು∙(ୌିு಴)∙௖௢௦஘ௐ಴∙௙ିௐು∙(ୌିு಴)∙௦௜௡஘ା௅಴∙ௐು∙௖௢௦஘ (13)

In order to compute the length of M’’N’’, we suppose that: 

∠MᇱONᇱ = ∠MON = α,∠NᇱᇱOOᇱᇱ = β,∠MᇱO′M′′ = ∠O′OO′′ = θ (14)

Based on cosine theorem, Equation (15) can be established: cosα = ܱܲଶ + ଶܯܱ − ଶ2ܲܯ ∙ ܱܲ ∙ ܯܱ  (15)

In Figure 4b, OG is equal to LM, and OL has the same length as GM in rectangle OGML. The length 

of OL is H − Hେ. Based on the Pythagoras theorem, Equations (16) and (17) were deduced from △OGP 

and △OLM. ܱܲଶ = ଶܩܱ + ଶܲܩ = ଶܯܮ + ܮܱ) − ଶ(ܲܯ = ଶܯܮ + (H − Hେ − ଶܯܱଶ (16)(ܲܯ = ଶܮܱ + ଶܯܮ = (H − Hେ)ଶ + ଶ (17)ܯܮ

Taking Equations (16) and (17) into Equation (15), angle α can be described as follow: α = arccos ( ଶܯܮ + (H − ஼)ଶܪ − (H − (஼ܪ ∙ ଶܯܮඥܲܯ + (H − ஼ܪ − ଶ(ܲܯ ∙ ඥ(H − ஼)ଶܪ + ଶ) (18)ܯܮ

In Figure 4b,c, ∠MᇱOOᇱ = ∠OML = α + β + θ so in triangle OML:  tan(α + β + θ) = (19) ܯܮܮܱ

Equation (20) is the transformation of Equation (19), with OL= H−Hେ: β = arctan ൬H − ܯܮ஼ܪ ൰ − α − θ (20)

Since OO′′ is perpendicular to OᇱM′, the following equations can be established based on thesine 

theorem in Figure 4c. tan(α + β) = ′′ܱܱ′′ܯ′′ܱ , tanβ = ܱ′′ܰ′′ܱܱ′′  (21)
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Based on Equation (21), since OO′′ is f, the following equation can be transformed: MᇱᇱNᇱᇱ = OᇱᇱMᇱᇱ − OᇱᇱNᇱᇱ = f ∙ ሾtan(α + β) − tanβሿ (22)

Finally, the length of MᇱᇱNᇱᇱ  can be calculated by taking Equations (11), (13), (18), and (20)  

into (22).  

We have supposed that Lେ is the length of the vehicle. In Figure 5, MᇱᇱNᇱᇱ on line l is the projection 

length of Lେ, which can be computed by the Equation (22). With the known positions of the vehicle 

front/back-surfaces, the vanishing point on the image, the length of MᇱᇱNᇱᇱ, and the rough regions of the 

vehicle side-surfaces can be located with the following step. 

(a) (b) (c) 

Figure 5. (a) and (b) depictions of the box marking drawing method. (c) Example of box 

marking in an image. The principal point Oᇱᇱ is the center point of the image, and the black 

rectangle KJAB is the vehicle back surface in the image plane, which are detected by the 

classifier described in Section 2.1. Point V is the vanishing point in the image. Line l is the 

perpendicular bisector of the image passing through principal point Oᇱᇱ. Line KMᇱᇱ is parallel 

to the x axis of the image and Mᇱᇱ is the intersection point on l. Line NᇱᇱQ intersects lines 

VK and VJ at points Q and C, respectively. NᇱᇱQ is parallel with MᇱᇱK. Line QD intersects 

line VA at point D, and line DE intersects line VB at point E. Line QC and DE are parallel 

to the x axis and QD is parallel to the y axis of the image. 

With the computed length of MᇱᇱNᇱᇱ , the position of point Nᇱᇱ  is known, then point C, D, and E can 

be located with the rules described in Figure 5. Thereafter, the black bolded-line region QCJBAD on 

Figure 5b can be determined. Based on the shape of the black bolded-line region, we defined it as the 

“box marking”. The region surrounded by the box marking will contain the front, back, and side-surfaces 

of the vehicle generally. Therefore, according to the description below, the box markings of vehicle  

side-surfaces can be fixed by MᇱᇱNᇱᇱ. 
Detecting vehicle side-surfaces by the box marking method has the advantage of having a fast speed 

and reliable results, but it relies on parameters H, f, and θ. These parameters can only be estimated 

crudely on driving recorders. Therefore, the above method can only locate the approximate position of 

the vehicle side surface. However, it is adequate for the method to reach the goal of eliminating features 

on the Mask.  
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2.3. Guardrail Detection 

The guardrail is an isolation strip mounted on the center line of the road to separate vehicles running 

in opposite directions. It also can avoid pedestrian arbitrarily crossing the road. The photos of guardrail 

are shown in Figures 6d and 7c. There are two reasons for detecting and removing the guardrail regions. 

The main reason is that, due to the repeating patterns of guardrails, they always contribute to poor matches. 

Furthermore, the views of vehicles moving on the other side of the guardrail are always blocked by the 

guardrails. This shielding makes vehicles undetectable by the vehicle classifiers. Therefore, in order to 

detect the blocked-vehicle regions, it was necessary to locate the guardrail regions. The blocked-vehicle 

regions detection method, which is described in Section 2.4, is based on the guardrail detection method 

described below. 

The guardrail regions are detected based on a specially-designed guardrail-classifier. Except for 

changes in the training parameters, the guardrail-classifier training process is similar to the vehicle 

training method, which is described in Section 2.1. In order to detect an entire region of guardrails, a 

special guardrail-classifier was trained based on OpenCV Object Detection Lib [17] with a nearly 0% 

missing object rate. The price of a low missing rate, however, inevitably is an increase in the false 

detection rate, which means that the classifier could detect thousands of results that included not only 

the guardrails but also some background. In the training process, two parameters, the Stages-Number 

and the desired Min-Hit-Rate of each stage, were decreased. One parameter, the MinNeighbor [17]  

(a parameter specifying how many neighbors each candidate rectangle should have to retain it), was set 

to 0 during the detecting process. 

The special-designed guardrail classifier detection results are shown in Figure 6a as blue rectangles, and 

many of them are not guardrails. This is a side effect of guaranteeing a low missing object rate, but uses of 

the statistical analysis method can ensure that these false detections cannot influence the confirmation of the 

actual guardrail regions in further steps. The vanishing point was fixed by the [19,20] method, wherein a 

vanishing point is considered a point in the picture plane that is the intersection of a set of parallel lines 

in space on the picture plane. The lines are drawn from the vanishing point to each centre line of the 

rectangular regions at an interval of 2°. This drawing approach is shown in Figure 6b, and the drawing 

results are shown in Figure 6c with red lines. Since the heights of the guardrails were fixed and the 

models in the driving recorder were changed within a certain range, the intersection angles between the 

guardrail top and bottom edges on the image often changed from 10° to 15° as a general rule. An 

example of the intersection angles is shown in Figure 6d.  

Based on the red lines drawn results, we made a triangle region which included an angle of 15° and 

a fixed vertex (the vanishing point). The threshold of 15° was the maximum potential intersection angle 

between the top and bottom edges of the guardrail. Then, we shifted the triangle region between 0° and 360° like Figure 7a. During the shift, the number of red lines included in every triangle region 

was counted. Then, we considered the triangle region that had the largest line numbers as the guardrail 

region. Figure 7b shows the position of the triangle region that had the largest line numbers, and Figure 7c 

shows the final detection results of the guardrail. 
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(a) (b) 

 
(c) 

 
(d) 

Figure 6. Guardrails detection process. (a) Detection results of a specially-designed 

guardrail-classifier which could detect thousands of results, including not only correct 

guardrails but many wrong detection regions as well. (b) Example of how to draw the red 

lines from the vanishing point to the detection regions. (c) Results of red lines drawn from 

the vanishing point to each centre line of the rectangle regions at an interval of 2°. An 

example of a rectangle region’s centre line is shown in the bottom left corner of the (c); and 

(d) is an example of an intersection angle between the top and bottom edges of  

the guardrail. 
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(a) (b) 

 
(c) 

Figure 7. Guardrail location method. (a) Example of four triangle regions which included 

the angle of 15° and the fixed vertex (the vanishing point). (b) Triangle region that had the 

largest line numbers. (c) Final detection results of guardrail location method. 

2.4. Blocked Vehicle Regions Detection 

Sometimes, the vehicles that are moving in opposite direction can be blocked by guardrails, which 

results in the vehicle image overlapping with the guardrail partially. These occlusions make the vehicles 

undetectable by the front surface classifiers that were trained as described in Section 2.1. In this case, in 

order to detect blocked-vehicle regions, we increased the threshold of the intersection angle to broaden 

the guardrail region in order for the blocked vehicles to be included. In Figure 8, the blue box markings 

show the vehicle detection results based on the methods described in Sections 2.1 and 2.2. Two vehicles 

are missing from the detection, which are indicated by the yellow arrows. The red triangle region is the 

broadened guardrail region with a 20° intersection angle. The missing detections are included by the 

broadened guardrail regions, which are shown in Figure 8. 

 

Figure 8. Blocked vehicles detection method (guardrail region broadening method). Two 

vehicles running in opposite directions are missed detection by the vehicle classifier, which 

are indicated by the yellow arrows. These missed detection vehicle regions are included in 

the broadened guardrail regions, which are shown as the red region. 
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2.5. Mask and Structure from Motion 

In the SIFT matching algorithm, detecting the feature points on the images is the first step, and the 

correspondences are then matched between the features. The coordinates of the features were compared 

with the location of the Mask regions in the image, and then the features located in the Mask were 

removed from the feature point sets. An example of our removing results is shown in Figure 9. The Mask 

was obtained by merging the regions detected in Sections 2.1, 2.2, 2.3 and 2.4. After removing the SIFT 

feature points on the Mask, the remaining features were matched. Then, the QDEGSAC [21] algorithm 

was used to robustly estimate a fundamental matrix for each pair and the outliers were eliminated with 

a threshold of two pixels by the epipolar constraint [7,22]. The QDEGSAC algorithm is a robust model 

with a selection procedure that accounts for different types of camera motion and scene degeneracies. 

QDEGSAC is as robust as RANSAC [23] (the most common technique to deal with outliers in matches), 

even for (quasi-)degenerate data [21].  

(a) (b) 

Figure 9. SIFT feature points removing results. (a) Original SIFT feature points set on 

image. (b) Mask results, which show the masked out features on the vehicle and  

guardrail regions.  

In a typical SfM reconstruction method, pairwise images are matched with the SIFT algorithm 

without any added process. Then, the inlier matches are determined by the epipolar constraint algorithm 

(similar to the QDEGSAC algorithm), and a sparse point cloud is reconstructed with the inliers by the 

SfM algorithm. However, in our method, during the pairwise matching process, the SIFT feature points 

on the vehicle and guardrail regions are masked out before matching. The remaining features are then 

matched by the SIFT algorithm. After the outliers were eliminated by the epipolar constraint algorithm, 

the SfM reconstruction process proceeds with the remaining matches. 

Both in the typical method and our proposed method, the QDEGSAC algorithm was used  

as an epipolar constraint algorithm to select the inliers, and the SfM process was conducted in 

VisualSFM [24,25]. Visual SFM is a GUI application of the incremental SfM system. It runs very fast 

by exploiting multi-core acceleration. The features mask out process in our method is the only difference 

from the typical method. 
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3. Experiment 

3.1. Test Data and Platform 

A driving recorder is a camera mounted on the dashboard of a vehicle that can record images when 

the vehicle is moving. The SfM reconstruction method can accept various image sizes from different 

types of recorders. We used 311 images taken by five recorders on roundabout as testing data to 

demonstrate the improved results with our method. We chose images taken on roundabout at large 

intervals to increase the complexity of the testing data. The Storm Media Player was used to extract 

images from videos. We manually extracted images with the intervals which are described in Table 1. 

The characteristics of the testing data are described below: 

1. The testing images were taken by five recorders mounted on four vehicles, and the largest time 

interval between the two image sequences was nearly three years. 

2. A total of 125 images were extracted from videos recorded by driving recorders 1, 2, and 3.  

3. 186 images were recorded by recorders 4 and 5, which were mounted on the same vehicle with 

identical exposure intervals.  

4. Roundabout was crowded during the recording time so the survey vehicles changed their lanes 

and speeds when necessary to move with the traffic. 

5. The rest details of recorders and images are shown in Table 1. 

Table 1. The characteristics of recorders and images. 

Recorder 
NO 

Sensor Type Focus Style Image Size 
Image Extraction 

Intervals 
Recording 

Date 

1, 2, 3 Video Zoom Lens 1920 × 1080 About 1 s 12/23/2014 
4, 5 Camera Fixed Focus 800 × 600 0.5 s 1/23/2012 

We separated 311 images into sequences 1, 2, 3, 4, and 5 according to the recorder that recorded 

them. The results are shown in Table 2. 

Table 2. The composition of three sets. 

Set 
Number 

Recorder 
Number 

Image 
Number 

Attribute 

1 4, 5 186 
Stereo images taken by two cameras mounted on the 
same vehicle with identical exposure intervals. 

2 1, 2, 3, 4 218 
The longest time interval between the two image 
sequences was nearly three years, and the images 
were two different sizes. 

3 1, 2, 3, 4, 5 311 

Three monocular and two stereo image sequences. 
The longest time interval between the two image 
sequences was nearly three years, and the images 
were two different sizes. 
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We conducted all the following experiments on a PC with an Intel Core i7-3770 3.4 GHz CPU 

(8cores), 4 GB RAM, and an AMD Radeon HD 7000 series GPU. The detection algorithm was 

implemented in a Visual C++ platform with the OpenCV 2.4.9 libraries. Training each vehicle classifier 

took nearly 75 h, and eight hours was required for training the guardrail classifier. Although training the 

classifier was a time-consuming process, the trained classifier could be used to detect vehicles at a fast 

speed after one-off training. The detection speed was affected by the number of targets. When running 

on the described PC, the average detecting time was 0.15 s for each classifier on a 1600 × 1200  

pixel-sized image. In the following section, we compare the performance between the typical SfM 

reconstruction method and our method from three aspects: the precision of pairwise orientation, the 

recovered camera tracks, and the reconstructed point clouds, which are described in Sections 3.2, 3.3 

and 3.4, respectively. 

3.2. Precision of Pairwise Orientation 

In the SfM system, the accuracy of the reconstructed point clouds is determined by the quality of the 

correspondences. Hence, in this section, we evaluate and compare the matching results of the typical 

method and our method by the root-mean-square error (RMSE). 

Based on the epipolar constraint, correspondences p୧ , p୧ᇱ should be located on the corresponding 

epipolar line l୧, l୧ᇱ respectively (The epipolar line can be computed with the algorithm proposed by D. 

Nister [26]). However p୧ᇱ  may deviate from epipolar line l୧ᇱ  due to orientation errors. Thereafter, the 

RMSE is able to evaluate the accuracy of the pairwise orientation with following equation. 

RMSE = ඨdଵଶ + dଶଶ + ⋯ d୬ଶn  (23)

d୧ in Equation (23) is the distance between point p୧ᇱ and the epipolar line l୧ᇱ . n is the number of 

matches. The pixel size of CCD was 0.0044 mm; therefore millimeter was used as the unit of RMSE. 

The difference between the typical method and our method is that our method masked out the feature 

points on vehicles and guardrails before proceeding with matching. Then, in both the typical method and 

our method, the correspondences with d୧ greater than the threshold (two pixels) were eliminated by the 

QDEGSAC algorithm [21] before inputting into Equation (23).  

In order to demonstrate the improvement and robustness of our method, 666 image pairs of diverse 

street scenes were chosen randomly using the above image set. The RMSE of the pairwise orientation 

results by the typical method and our method are shown in Figure 10. 

In Figure 10, the RMSEs in our method were less than in the typical method in general. The abnormity 

in the image pairs (the RMSEs in our method were larger than the typical method) for which we offer 

the following analysis. We found that the abnormal pairs were usually shot at long-range distances (more 

than 200 m) with little overlap, leading ultimately to a decrease in the number of accurate matches.  

A large proportion of the outliers led to an orientation failure, which produced abnormal RMSE results. 

In general, however, it can be concluded from Figure 10 that the Mask effectively improved the  

matching accuracy. 
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Figure 10. RMSEs of each image. The X-axis represents the serial number of the image 

pairs and the Y-axis represents the RMSEs, which are shown as millimeters. The blue and 

red lines show the RMSEs of the typical method and our method, respectively. The 

correspondences in our method were matched after removing the SIFT features on the Mask, 

and then the outliers were eliminated by the epipolar constraint (QDEGSAC) method. In the 

typical method, the correspondences were filtered only by the epipolar constraint 

(QDEGSAC) method. 

3.3. Camera Poses Recovering Results 

Figure 11 is an explanation of the reconstructed camera-pose-triangle in the following figures. The 

colored triangles represent the position of the recovered image/camera. Figures 12–14 shows the camera 

pose reconstruction results of three sets. The details and compositions of each set were described in 

Table 2. The difference between the typical method and our method is that the feature points on the 

Mask are removed before matching in our method. Since motor vehicles can only run in a smooth track, 

we were able to distinguish an unordered track as false reconstruction results easily.  

 
(a) (b) 

Figure 11. Explanation of the reconstructed camera-pose-triangle and driving tracks. (a) 

Colored triangle represents the position of the recovered image and the camera projective 

center. The size of the triangle is followed by the size of the image data. (b) Red line 

represents the recovered vehicle driving tracks that carried recorder 1. The colored triangles 

are the reconstructed results that represent the position of the images taken by recorder 1.  
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(a) 

(b) 

(c) 

Figure 12. The recovered image positions of Set 1. These images were taken by recorders 4 

and 5, which had the same exposure interval and were mounted on one vehicle. (a) and (b) 

are the recovered results from the same data with different methods. (a) depicts the 

reconstruction by the typical SfM method. The recovered images in the red rectangle of (a) 

are unordered obviously. (b) depicts the reconstruction by our method (features on vehicles 

and guardrails were masked out before matching and reconstruction). (c) is not a 

georeferenced result. We manually scaled the results of (b) and put it on the Google  

satellite map to help readers visualize the rough locations of the image sequences  

on roundabout.  
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(a) 

(b) 

(c) 

Figure 13. The recovered image positions of Set 2. These images were taken by recorders 1, 

2, 3, and 4 mounted on their respective vehicles. (a) Reconstruction by the typical SfM 

method. The recovered disordered images in the red rectangles of (a) were recorded by 

recorder 4. (b) is not a georeferenced result. We manually scaled the results of (a) and put it 

on the Google satellite map. Based on the enlargement in (a) and the visualized rough 

location in (b), it can be seen that they were reconstructed in the wrong place. (c) 

Reconstruction by our method (features on vehicles and guardrails were masked out before 

matching and reconstruction). The recovered triangles of recorder 4 are smaller than the 

others because the sizes of the images taken by recorder 4 were smaller than those of the 

other recorders, which is reflected in (c) by the different reconstructed sizes of the triangles. 

(a) and (c) are the recovered results from the same data using different methods. 
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(a) 

(b) 

(c) 

Figure 14. The recovered image positions of Set 3. These images were taken by recorders 

1–5. (a) and (b) are the recovered results from the same data with different methods; (a) was 

reconstructed by the typical SfM method and (b) was reconstructed by our method (features 

on vehicles and guardrails were masked out before matching and reconstruction). The 

images in red rectangles in (a) were recovered in chaos. (c) is not a georeferenced result. We 

manually scaled the recovery results of our method and put it on the Google satellite map to 

help readers visualize the rough locations of the image sequences on roundabout. 
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The contrast experiment results show that the recovery performance of our method was better than 

the typical SfM method in each set. In contrast, the typical method was unable to recover an entire track 

of cameras in each set while the camera poses were recovered smoothly with our method. 

We can infer from the above results that the typical method sometimes returns unreliable recovery 

results, especially for multi-sensors’ data.  

3.4. Sparse 3D Point Clouds Reconstruction Results 

Sparse 3D point clouds can be reconstructed by the SfM algorithm with VisualSFM and  

Photosynth [27]. Photosynth is a powerful set of tools designed by Microsoft’s Live Labs. It builds on a 

structure-from-motion system for unordered image collections, which is based on the Photo  

Tourism [10,11] research conducted by the University of Washington and Microsoft Research [27]. The 

structure from motion module in Photo Tourism comes from Bundler [10,11], which is one of the most 

developed SfM systems. As a useful tool, Bundler has been widely used in many point clouds 

reconstruction researches. This is the main reason why we chose the Photosynth as the contrast 

experiment tool. Furthermore, the high-level automation and widely using of Photosynth can also explain 

our choice. The reason why we chose VisualSFM is that VisualSFM is a powerful SfM tool; it has a 

flexible interface and stable performance. It is also frequently used in 3D reconstruction researches. 

From the data all combined in Table 2, Set 3 is sufficient enough to cover the results from Set 1 and 2. 

Besides, the data collected by Recorder 1–5 in different image sizes had been lasting for as long as three 

years. Thus, Set 3 is able to contain various data from different cameras, which means that it is more 

representative than using Set 1 and 2 to evaluate the performance of reconstruction methods. Therefore, 

the following experiments were used VisualSFM and Photosynth based on the 311 images in Set 3. 

Figure 15 shows the model of main target buildings we aimed to reconstruct. Figures 16 and 17 show 

the side and vertical views of the results of the three methods, respectively.  

The results in Figures 16 and 17 indicate that even the developed 3D reconstruction tool Photosynth 

is not capable of dealing with driving recorder data directly. However, the camera tracks and sparse point 

clouds were reconstructed successfully using the mask out correspondences as inputs to run SfM. 

 
(a) 

Figure 15. Cont. 
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(b) 

Figure 15. Main targets in the sparse point clouds reconstruction process. The two building 

models in (a) and (b) with red and yellow marks are the main reconstruction targets. (a) and 

(b) are the side and oblique bird’s-eye view of two buildings from Google Earth, respectively.  

 
(a) 

Figure 16. Cont. 
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(b) 

(c) 

Figure 16. Side view of main target reconstruction results with sparse point clouds. Each 

result was reconstructed with the same data of 311 images in Set 3. (a) Sparse point clouds 

reconstructed by Photosynth without any added processing. The building on the left marked 

in red was repetitively reconstructed. (b) Sparse point clouds reconstructed by VisualSFM 

with the typical method. The building on the right could not be reconstructed and should be 

positioned inside the yellow box. (c) Sparse point clouds reconstructed by VisualSFM with 

our method. The details of the differences between the typical method and our method are 

described in Section 2.5 but can be summarized by saying that our method removed the 

features on the Mask and matched the remaining feature points before reconstruction. 
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(a) 

 
(b) 

(c) 

Figure 17. Cont. 
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(d) 

Figure 17. Vertical view of main target reconstruction results with sparse point clouds. Each 

result was reconstructed by same data of 311 images in Set 3. (a) Sparse point clouds 

reconstructed by Photosynth without any added processing. The result is chaos. Expecting 

the repetition we experienced as shown in Figure 16, it can be clearly seen that not only was 

the left building repeatedly reconstructed, but the right building was as well. The repetitive 

reconstructions of the buildings are marked in red for the left building and the right building 

is in yellow. (b) Sparse point clouds reconstructed by VisualSFM with the typical method. 

The right building was missed which should be reconstructed inside the yellow mark. (c) 

Sparse point clouds reconstructed by VisualSFM with our method. The details between the 

typical method and our method are described in Section 2.5, which can be summarized by 

saying that we removed the features on the Mask and matched the remaining feature points 

before reconstruction. (d) shows a more intuitive result. It is not a georeferenced result. We 

manually scaled the sparse point clouds of our method and put it on the Google satellite map, 

which can help readers visualize the high level of overlapping between the point clouds and 

the map, the rough relative positions of the two buildings, and the position of recovered 

images in roundabout.  

Since the images recorded by a driving recorder have no GPS information, there is no other data 

available that can provide the absolute coordinates of the reconstructed point cloud. So in order to 

quantify the sparse point clouds, the plane fitting method is proposed below.  
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(a) (b) 

(c) (d) 

Figure 18. The vertical view of the two planes. (a) shows the sparse point clouds 

reconstructed by VisualSFM with our method. The Plane 1 and 2 are target planes we fitted. 

(b) shows the position of the target wall-planes in Google Map. (c) shows the Plane 1 and 2 

in street view. (d) Example of plane fitted result in vertical view. The red line respects the 

vertical view of the plane fitted by wall points, and the blue lines are examples of the 

distances between the plane and points. 

As we know, the points on the same wall also should lie on the same plane in the point cloud. Based 

on that principle, the distance between the fitted plane and the reconstructed wall point can be used to 

confirm whether the reconstruction performed well. Planes 1 and 2 in Figure 18 are the planes we aimed 

to fit. We manually chose the reconstructed points belonging to the above walls to fit the Plane 1 and 2. 

The fitting method is based on the Equation (24), the Plane Equation. According to the Least Square 

method, the equation of each plane was computed with the coordinates of points. Ax + By + Cz + D = 0 (24)

The x, y and z are coordinates of points; they are in relative coordinate system. In addition, the A, B, 

C and D are plane parameters that should be calculated by the Least Square method. 

Based on the computed plane, the distances between the fitted plane and each wall point were then 

calculated. The maximum distance, minimum distance and RMSE of distance in the typical method and 

our method are shown in Table 3 below. Since there is no GPS information or other data available that 

can provide the geographical reference, the results are compared in the relative coordinates. 
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Table 3. The fitting results between the typical method and the proposed method. The results 

are in relative coordinates system. 

Plane NO. 
Typical Method Proposed Method 

RMSE Maximum Minimum RMSE Maximum Minimum 

1 0.0047 0.0170 4.420 × 10ି଺ 0.0031 0.0142 1.887 × 10ି଺ 
2 0.0171 0.0994 2.133 × 10ିହ 0.0095 0.0705 1.220 × 10ିହ 

Table 3 shows the RMSE decreased by 30–40 percentages in proposed method that indicated that the 

accuracies of reconstructed planes are improved in our method. Based on the above results, it is clearly 

seen that masking out the features from vehicles and guardrails can improve the reconstruction results. We 

also found our method to be robust enough for driving recorder data sets composed of different-sized 

images having nearly three years recovered intervals.  

4. Discussion 

This paper focused on sparse point cloud reconstruction with the features removed on the Mask. The 

Mask is the region where features should be eliminated before matching in order to avoid generating 

outliers. The Mask was first detected from the unstructured and uncontrolled driving recorder data 

automatically. Then, the feature points on Mask were eliminated before feature matching. Finally a SfM 

procedure with the remaining correspondences was performed.  

The advantage of using driving recorder data is that a driving recorder can acquire city-scale street 

scenes less expensively. This low-cost data in larger quantities can support reconstructing and updating 

sparse street point clouds in shorter update periods of time. The improved reconstruction results are 

shown in Section 3 from three aspects: the precision of pairwise orientation, the recovered camera tracks, 

and the reconstructed point clouds. In the contrast experiment presented in Section 3.4, the right building 

was missing in the results of the typical SfM process [24,25] (shown in Figures 16b and 17b), which was 

caused by the disordered camera poses’ recovered results shown in Section 3.3, Figure 14a. We found 

that these disordered images generally were crowded with a large number of moving vehicles, which led 

to poor matches. It was also proven that the commercial software Photosynth [27], which is based on the 

Photo Tourism [10,11] technology, was not able to provide good performance with the driving recorder 

data. The reconstructed points indicate obvious chaos, and the buildings were repeatedly reconstructed 

incorrectly. The disordered point clouds were shown in Figures 16a and 17a in Section 3.4. The overall 

quality of the point clouds is reflected in the comparison between the results shown in Figures 16 and 17. 

Furthermore, there were no other data to provide the absolute coordinates of the reconstructed point 

clouds so we qualified the point clouds with the plane fitting results in Table 3 and the overlap between 

the point clouds and Google satellite map in Figure 17d. In Figure 17d, the points are fitted with the map 

generally, which reflects the high level of overlapping between the point clouds and the map. The plane 

fitting results in Table 3 indicate that the reconstruction accuracy of the proposed method is higher than 

the typical method based on the decreased average distance between the fitted plane and the points.  

The features mask method is based on one important factor: the SIFT algorithm can generate a large 

number of features that densely cover the image over the full range of scales and locations [12]. 

Approximately 1000–2000 correspondences can be matched with the SIFT algorithm on one pair of 
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driving recorder data which cover more than 70% of the overlap. Generalized from ample experiments, 

the matching points on the Mask took a 21% proportion of the total matching points. Therefore, although 

the bad points on the Mask were removed, the remaining correspondences were adequate to recover the 

camera poses and point clouds of the street scene.  

Although redundant data theoretically can produce better reconstruction results, a large number of 

data would adversely affect efficiency due to the fact that full pairwise matching takes O(݊ଶ) time for n 

input images, which is why the Mask method is used to improve the reconstruction results instead of 

simply increasing the data sets. Detecting and removing the Mask regions with our methods proposed in 

this paper only takes a few seconds in each image. The Mask results show that it can improve the quality 

of the matches, which may lead to a higher level of efficiency than the redundancy method. 

The proposed reconstruction method is effective when the solution is scaled up. It also relies on the 

scalability of the SfM method. One of the most difficult problems of SfM is that it is time-intensive. 

There have been many relative research efforts aimed at shortening the reconstruction time, such as the 

vocabulary tree [28] and the Building Rome on a cloudless day [8]. The SfM method has been used to 

reconstruct an entire city with Internet photos. The paper aims to shorten the reconstruction time by the 

parallelism and throughput [8]. Our method can be a supplement to these methods, which means that, 

with the help of vocabulary tree and parallel computing, it can reconstruct an entire city with ample 

driving recorder images. Then, this method may replace mobile mapping technologies in some 

applications like updating 3D street data that have been georeferenced or reconstructing city-scale point 

clouds in relative coordinate systems. 

The proposed method can reconstruct street scenes robustly with different-sized images, taken on 

different roads or with different lighting conditions; however, the images taken at night always contribute 

less to the reconstruction process. Obviously, the matches decrease in night images since the difference 

in building textures between day and night images are influenced by the city lighting. Similarly, lower 

quality will lead to fewer correspondences, which may not cause fatal mistakes to reconstruction but will 

increase the time consumed. Therefore if we ignore the efficiency and the data set is big enough, there 

is no strict requirement for the quality of image data. 

The proposed method has one limitation. Since the driving recorder is always mounted to record 

traffic rather than buildings, the taller sections of nearby building cannot be recorded, thereby generating 

sparse reconstructed points for them. In general, three main innovations are presented in this paper: 

1. We proposed a street scene reconstruction method from driving recorder data. This new method 

makes full use of the massive amount of data produced by driving recorders with shorter update time, 

which can reduce the costs of recovering 3D sparse point clouds compared to mobile mapping equipment 

carrying stable GPS/INS systems. In order to improve the recovery accuracy, we analyzed and 

summarized the distribution regularities of the outliers from the SIFT matching results through  

ample experiments. 

2. Our work differs from the typical SfM approaches, in that, we eliminate the feature points on the 

Mask before matching is undertaken. We also proved through experiments that the relative orientation 

results and reconstruction results improved after removing the feature points on the Mask.  
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3. We designed guardrail and vehicle side region detecting methods based on the characteristics of 

the driving recorder data. The detection methods are based on the trained Haar-like-feature cascade 

classifiers, the position of the vanishing point, and some camera parameters. 

5. Conclusions  

This paper proposed a method to reconstruct street scenes with data from driving recorders, which 

are widely used in private and public vehicles. This low-cost method will be beneficial to reducing the 

cost and shortening the update time required for street scene reconstruction. However, using the 

unprocessed driving recorder data was found to contribute to the failure of reconstruction due to the large 

number of inevitable outliers on moving vehicles and guardrails with repeating patterns.  

Based on our analysis from numerous SIFT matching results, we then proposed a method for 

removing the features on vehicle and guardrail regions, which is called the Mask in this paper. In order 

to remove the feature points on the Mask, an automatic detecting method was designed. As shown in 

Section 3, the proposed method improved the results in three areas: the precision of the pairwise 

orientation, the recovery performance of the camera poses, and the reconstruction results of the  

point clouds.  

Our work differs from typical SfM approaches in that we remove the features on the Mask in order 

to improve the accuracy of the street scene reconstruction results from driving recorder data. The 

proposed method can be improved in the following areas, which will be the subjects of future research. 

1. Reconstructing robust side surfaces in the vehicle detection method without camera parameters. 

2. Extracting the most appropriate images from driving recorder videos. 

3. Reducing the number of images in the time-consuming matching step with a reasonable strategy. 

4. Increasing the density of reconstructed point clouds. 

5. Detecting the blocked vehicles with more accuracy in a region. 
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