
 

Remote Sens. 2015, 7, 9473-9491; doi:10.3390/rs70709473 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Improving the Computational Performance of Ontology-Based 
Classification Using Graph Databases 

Thomas J. Lampoltshammer 1,2,* and Stefanie Wiegand 3 

1 School of Information Technology and Systems Management, Salzburg University of  

Applied Sciences, Urstein Süd 1, Puch, Salzburg 5412, Austria 
2 Department of Geoinformatics (Z_GIS), University of Salzburg, Schillerstrasse 30,  

Salzburg 5020, Austria 
3 IT Innovation Centre, University of Southampton, Gamma House, Enterprise Road,  

Southampton SO16 7NS, UK; E-Mail: sw@it-innovation.soton.ac.uk 

* Author to whom correspondence should be addressed;  

E-Mail: Thomas.Lampoltshammer@fh-salzburg.ac.at;  

Tel.: +43-50-2211 (ext. 1311); Fax: +43-50-2211 (ext. 1349). 

Academic Editors: Ioannis Gitas and Prasad S. Thenkabail 

Received: 31 March 2015 / Accepted: 17 July 2015 / Published: 22 July 2015 

 

Abstract: The increasing availability of very high-resolution remote sensing imagery  

(i.e., from satellites, airborne laser scanning, or aerial photography) represents both a 

blessing and a curse for researchers. The manual classification of these images, or other 

similar geo-sensor data, is time-consuming and leads to subjective and non-deterministic 

results. Due to this fact, (semi-) automated classification approaches are in high demand in 

affected research areas. Ontologies provide a proper way of automated classification for 

various kinds of sensor data, including remotely sensed data. However, the processing of 

data entities—so-called individuals—is one of the most cost-intensive computational 

operations within ontology reasoning. Therefore, an approach based on graph databases is 

proposed to overcome the issue of a high time consumption regarding the classification task. 

The introduced approach shifts the classification task from the classical Protégé environment 

and its common reasoners to the proposed graph-based approaches. For the validation, the 

authors tested the approach on a simulation scenario based on a real-world example. The 

results demonstrate a quite promising improvement of classification speed—up to 80,000 

times faster than the Protégé-based approach. 
  

OPEN ACCESS



Remote Sens. 2015, 7 9474 

 

 

Keywords: ontology; graph database; Neo4j; remote sensing; classification 

 

1. Introduction 

The increasing availability of very high-resolution remote sensing imagery (i.e., from satellites, 

airborne laser scanning, or aerial photography) represents both a blessing and a curse for researchers. 

The manual classification of these images, or other similar geo-sensor data, is time-consuming and leads 

to subjective and non-deterministic results. Due to this fact, (semi-) automated classification approaches 

are in high demand in affected research areas. 

Ontologies provide a proper way of automated classification for various kinds of sensor data, 

including remotely sensed data. The formalized expert knowledge within the ontology ensures that every 

classification task is performed in such a way that a human expert would act, based on his or her 

knowledge, and repeated classification runs will produce the exact same classification results in terms 

of classification outcomes and the associated accuracy. However, the power of reasoning provided by 

description logics [1] employed by reasoners also introduces issues in terms of processing time. Several 

studies have focused on this issue, analyzing the performance of available reasoners [2–4].  

The impact of the related performance issues can vary depending on the size and structure of the 

ontology, how sensor data are modeled and attached to it, as well as the structure and complexity of the 

queries submitted to the reasoner. Therefore, benchmark results have to be carefully analyzed and 

compared to the situation at hand [5]. Nevertheless, reasoning with objects of the domain of  

interest—so-called individuals—is one of the most costly processes within ontologies [5,6]. 

Keeping the aforementioned factors in mind, it can be concluded that an ontology-based setup for the 

classification of remote sensing data has to be tailored to the core aspects, namely the consistency of the 

modeled expert knowledge, while maintaining valid classification results within a reasonable amount of 

processing time. If this is reduced to a two-step process, the reasoner can be kept during the knowledge 

formalization process in the first step to ensure the consistency of the ontology but replace the classic 

reasoner-based approach with an alternative approach in the subsequent classification step. 

This classification step can be compared to a very strict version of pattern matching/recognition, 

identifying objects of the domain that match specific (ranges of) data values. One technology providing such 

capabilities can be found in the form of graph databases. Within these databases, the schema and all entries 

are modeled as nodes and edges, which makes it possible to apply graph-based operations to the stored data 

and metadata [7]. These operations hold the potential of performing high-speed classifications, while 

retaining the same accuracy as the pure ontology/reasoner-based approach. 

Therefore, this study aims at the following objectives: (i) to apply graph databases to the classification 

process of remote sensing data; (ii) to improve classification performance in terms of time consumption 

in relation to status quo methods; and (iii) to demonstrate new ways of how to query ontology-based 

models within graph databases. 

The remainder of this paper is organized as follows: after an introduction to the overall topic of this study, 

Section 2 focuses on related work in the respective research areas touched upon by this paper. Subsequently, 

Section 3 presents the architectural design and associated implementation of the proposed approach.  



Remote Sens. 2015, 7 9475 

 

 

Section 4 then evaluates the approach based on the example of a classification task regarding remote sensing 

data and discusses the results. Section 5 closes the paper with the conclusions and future work. 

2. Related Work 

This section of the paper is dedicated to the necessary background in terms of related work.  

The first sub-section focuses on ontologies and their application in remote sensing, while the second 

sub-section discusses graph databases and their applications. 

2.1. Remote Sensing and Ontologies 

Object-based Image Analysis has positioned itself as a proper methodology to analyze objects derived 

from remotely-sensed imagery [8]. The basic idea is to fuse image areas to homogeneous objects 

representing meaningful real-world entities by means of segmentation algorithms. However, matching 

these generated objects to modeled classes remains a difficult and challenging task [9].  

To (semi-) automate this classification process, while enabling an iterative development cycle and also 

to provide the possibility to model fuzzy concepts, ontologies provide one potential solution.  

Via ontologies, it becomes possible to fuse quantitative sensor information with qualitative and 

formalized expert knowledge for classification purposes. This can be achieved by ontologies,  

which, from an artificial intelligence perspective, serve as a mediator between shared domain 

concepts/perspectives of experts and a machine-readable formalization [10,11]. Regarding the level of 

detail of the formalization and expressiveness, ontologies position themselves on a higher level than, for 

example, a glossary, as they also comprise additional information such as the hierarchical structure and 

axioms describing the relationships between classes [12]. To express domain knowledge in such a 

machine-readable notation, the Web Ontology Language Version 2 (OWL2) has become established as 

the widely used standard [13]. OWL is based on a concept called description logic [14]. One major 

aspect within this concept is the associated knowledge expression by two components, the so-called  

T-Box and A-Box [15]. The T-Box is responsible for holding quantified knowledge and assertions about 

concepts and their hierarchy for example. The A-Box holds assertions about objects of the domain, for 

example, if a certain object is an instance of a class described within the ontology. Within real-world 

applications, A-Boxes with a large number of objects are difficult to handle [6]. 

The successful application of ontologies has already been demonstrated in a variety of remote sensing 

applications [16–20]. Yet the performance issues regarding the necessary time for processing and 

classification of real-world data in the form of individuals (domain objects) remain a challenge. 

2.2. Graph Databases and Applications 

In comparison to relational databases, graph databases do not contain data tables and attached data 

schemata. Instead, data are represented in the form of nodes, which hold all associated data attributes 

and values for each single entity. As there is no schema, each entity can comprise different data 

attributes. In order to express relationships between entities, the nodes are connected via edges. Each 

node can have 0 to n different relationships, which, in return, can have their own attributes and values. 



Remote Sens. 2015, 7 9476 

 

 

An example of such a graph can be seen in Figure 1. From the authors’ point of view, graph databases 

feature three distinct advantages over their relational counterparts. 

 

Figure 1. Simple graph network of three nodes with their values and relationships. 

Firstly, as networks are common in a human environment, e.g., street networks, social networks, or 

real-life social ties, it is easier to develop the data model in a UML-like style, which can then directly be 

transferred into the database. 

The structure of the model can still be seen, as it is not obscured by hundreds of thousands of  

Excel-like data rows. The second advantage directly connects to the first benefit in terms of the structure 

of the data model. Ontologies can already be visualized and structured as a tree, which is in fact a graph 

model itself. Therefore, transferring this tree graph into the database is as straightforward as any other 

graph model. In addition, no join operations have to be performed over several tables. This means that 

no redundant data are recorded nor are complex queries required to retrieve strongly connected datasets. 

Last but not least, well-established graph algorithms can be applied to query the data model. This 

provides the possibility of issuing queries regarding data values but also regarding the structure of the 

graph itself. One example of such an algorithm is the calculation of the shortest path between two nodes 

via Dijkstra’s algorithm or the A* algorithm [21]. 

One way to describe such graph relations within the domain of the semantic web is the Resource 

Description Framework (RDF) [22]. Entries within this data model consist of triples in the form of 

subject-predicate-object. In order to query this data model, the querying language SPARQL [23] was 

introduced. SPARQL can be described as a graph matching language consisting of three major parts:  

(i) the pattern-matching-related part that includes features of interests; (ii) the solution modifiers, 

representing common modifiers towards the before-created pattern such as ORDER or DISTINCT;  

(iii) and the output, e.g., yes/no answers to queries [24]. 

Several graph databases have become established throughout the market and community, including 

Neo4j [25], GraphDB [26], Sesame [27], OrientDB [28], or AlegroGraph [29]. Their applications are 

manifold: models of biochemical pathways [30], graph data management for biology [31], the analysis of 

social networks [32], recommendation engines [33], or aggregation and networking platforms for big open 

legal data [34]. For an in-depth review of the graph database research field, please refer to [7]. 
  



Remote Sens. 2015, 7 9477 

 

 

2.3. Advantages of Graph-Based Approaches for Classification Tasks 

The task of classification via pattern recognition can be divided into three main categories [35]:  

(i) unsupervised; (ii) semi-supervised; and (iii) supervised. Within the area of unsupervised learning,  

it is the aim to reveal hidden patterns within large sets of data. These data are not labeled and therefore 

the algorithm cannot distinguish between erroneous or positive results. Semi-supervised approaches 

make use of both, labeled and un-labeled data, to improve classification results, while supervised 

methods build heavily on labeled data. The issue with labeled data is that it comes with high costs 

regarding the preparation of high quality gold-standard data. Supervised approaches make heavy use of 

labeled data to infer a function that fits the kind of data, which, in return, can then be used to classify 

data of within the same area and application context. 

From the authors’ point of view, the semi-supervised approach with graphs has strong advantages 

within the area of remote sensing and the classification of sensor data in general. The labeled data nodes 

can be gained by examining the ontology including all the expert knowledge required within the domain 

of application. The unlabeled, to-be-classified sensor data can then be combined with the ontology data 

and, therefore, the classification becomes possible. This approach enables the usage of graph-based data 

stores and therefore no additional classification environment has to be introduced. Furthermore, the 

speed of graph/RDF-based solutions in terms of response time for data and classification queries is 

suitable for real-time applications, which is an important asset within the area of the semantic web.  

In addition, the high level of expressiveness with graph-based languages opens new opportunities for 

user interactions. 

3. Data and Methods 

This section of the paper focuses on the kind of remote sensing data to be classified, the ontology the 

classification is based on, as well as a detailed description about the evaluation workflow, including the 

accuracy assessment and the necessary technology stack. 

3.1. Remote Sensing Data and the Associated Ontology 

For the purpose of this paper, the authors adopted the real-world example of Belgiu et al. [18].  

They used Airborne Laser Scanning data (ALS) as the remote sensing data source. From these data, they 

extracted the footprints of buildings, which were then the objects to be classified into different building 

categories. These footprints feature common attributes such as the area a footprint occupies, the 

rectangular fit, the shape index, or density. Due to the use of ALS data, additional object attributes such 

as the slope of the buildings’ roof as well as the buildings’ height could be calculated as well, using a 

normalized Digital Surface Model (nDSM). 

In total, about 800 delineated objects were classified. This number is too low for the purpose of this 

paper, as the authors want to demonstrate the impact of larger sets of domain objects on the 

computational performance regarding the time consumption for the classification process. Thus, the 

authors created a simulation environment to generate samples based on the delineated objects and their 

features as described by Belgiu et al. [18]. The environment creates sets of the following sample sizes: 



Remote Sens. 2015, 7 9478 

 

 

100, 250, 500, 1000, 2500, 5000, and 10,000 samples. Table 1 shows the distribution of object categories 

within the sample sets. 

Table 1. Distribution of class objects within each sample size. 

Sample Sizes Residential Buildings Industrial Buildings Other Buildings 

100 25 25 50 

250 50 50 150 

500 125 125 250 

1000 250 250 500 

2500 500 500 1500 

5000 1250 1250 2500 

10,000 2500 2500 5000 

Each of these samples consists of three different object categories: ResidentialBuilding, 

IndustrialBuilding, and OtherBuilding. The sample generator creates objects with random values, yet 

they are within the specific range for each object category. 

At the same time, the generator tags each object to note its object category. By doing so, these tags 

can later be used for accuracy assessment as the tag can then be compared with the actual classification 

result for each object. For the knowledge base on which the classification process is based on, the authors 

adopt the ontology used by Belgiu et al. [18] in order to be consistent with the used data.  

The employed ontology can be seen in Figure 2. 

The authors of this paper adopted the two classes Residential Buildings and Industrial Buildings for 

their classification process. The qualitative knowledge within this ontology is modeled via an Equivalent 

Classes expression in OWL. For example, an object will be classified as a member of the Pitched Roof 

class, if it features an attribute slope with a value of equal or larger than 25.0. An example of such an 

Equivalent Classes expression can be seen in Listing 1. 

Listing 1. EquivalentClasses expression for class PitchedRoof. 

<EquivalentClasses> 
   <Class IRI="#PitchedRoof"/> 
   <DataSomeValuesFrom> 
    <DataProperty IRI="#slope"/> 
     <DatatypeRestriction> 
      <Datatype abbreviatedIRI="xsd:double"/> 
       <FacetRestriction facet="&xsd;minInclusive"> 
       <Literal datatypeIRI="&xsd;double">25.0</Literal> 
       </FacetRestriction> 
     </DatatypeRestriction> 
   </DataSomeValuesFrom> 
  </EquivalentClasses> 

The authors are aware of the impact of the chosen thresholds for the transferability of the modeled 

knowledge to other study areas. However, as the focus of this paper is not on transferability of ontologies, 

nor the increase of classification accuracy for building detection, reasonable values have been selected. 



Remote Sens. 2015, 7 9479 

 

 

 

Figure 2. Structure of applied ontology for the classification process. 

3.2. Neo4j-Based Classification Workflow 

This section describes the details of the Neo4j-based workflow as it can be seen in Figure 3.  

The workflow starts at an already segmented image in the form of a shape file within a GIS environment 

such as Quantum GIS [36]. For the sake of completeness, the authors want to state that they are fully 

aware of the impact of the overall segmentation process, its issues, and challenges [9,37]. 

However, as the segmentation process itself is not the focus of this paper, the authors assume a 

satisfying segmentation result to begin with. In the next step, the OWLET plugin for Protégé [4] is 

employed. This plugin allows the import of the segments with all their attributes and values as 

individuals (domain objects) into the ontology. This enriched ontology can then be imported via the 

Neo4j importer module of the architecture. The importer in its current state supports basic OWL 

components such as classes, sub-classes, object properties, data properties, restrictions, and individuals. 

What the importer does is to parse the XML structure of the OWL file, and extract all required 

information to created nodes and relationships within the graph database. The open source Neo4j graph 

database was used, as it is one of the most widely employed graph solutions and the authors of this paper 



Remote Sens. 2015, 7 9480 

 

 

can already build on previous experiences with this database. Users can then issue queries from a  

web-based client to the inference engine. Figure 4 presents the user interface of the platform. The user 

has two possibilities to issue queries for a concept to the inference engine. The first is to select a node 

of interest out of the graph visualization (1). When hovering over a specific node, all attached attributes 

and values for this node are shown. After clicking on the node of interest, the details list (2) then displays 

all restrictions of this class, which need to be satisfied in order to classify a domain object accordingly. 

 

Figure 3. Workflow of the proposed Neo4j-base approach. 

 

Figure 4. Web-based frontend to issue queries to the system. 

If the detailed description satisfies the user’s needs, a click on the “classify” button starts the inference 

engine. The results of all classified domain objects are then displayed in the results list (3) and can be 

exported into a CSV file. 

OWLETGIS Ontology

Protégé

GeoJSON

OWL

Backbone
Neo4j Importer

Client

Inference Engine



Remote Sens. 2015, 7 9481 

 

 

The frontend communicates via a REST service [38,39] with the inference engine (see Figure 5).  

The engine is hosted on a Tomcat server within a servlet container. A unique instance is created for each 

request and, therefore, the solution offers multi-user capabilities right away. 

 

Figure 5. Communication between frontend and backend. 

In the first step, queries formulated within the Cypher language [40] are issued to the database system. 

Cypher is a declarative query language for Neo4j and tries to mimic ASCII art [41] in order to ease the 

transfer process from the “drawn” model to the actual query. The applied queries can be seen in  

Listings 2 and 3. 

Listing 2. Cypher query to retrieve all restrictions for one class for the classification process. 

MATCH (startTable { name:'#ResidentialArea'}),(endTable:Equivalent_Class_Data_Values), 

paths = (startTable)-[*..15]->(endTable) 

return filter(x IN nodes(paths) WHERE x:Equivalent_Class_Data_Values) 

Listing 3. Cypher query to retrieve all distinct individuals that are suitable for classification. 

MATCH (startTable { name:'#ResidentialArea' }),(endTable:Individual), 

paths = (startTable)-[*..15]->(endTable) 

return DISTINCT filter(x IN nodes(paths) WHERE x:Individual) 

The first query (Listing 2) is responsible for gathering all restrictions that apply for the desired class 

to be used for the classification process. In this sample case, all restrictions for the class 

#ResidentialArea are detected. The authors then calculate all possible paths from the starting point 

#ResidentialArea towards the end point Equivalent_Class_Data_Values.  

Equivalent_Class_Data_Values is a node label used within the graph model. Within Neo4j, it is 

possible to tag every node with a label, which could then be used to build a search index or to filter for 

specific nodes. 

The expression [*..15] denotes that up to 15 hops are allowed between the start and endpoint. This 

value was chosen for practical reasons and can be adapted if required. Modifications to this threshold, 

together with the algorithm regarding the search (e.g., depth-first or breadth-first [42]), can heavily 

REST

JSON

JDBC

Tomcat
Servlet

DB
Client

CApache
Web Server



Remote Sens. 2015, 7 9482 

 

 

impact the completeness of the results as well as the query speed, and should therefore be chosen 

carefully. After all paths have been calculated, all nodes from the computed paths labeled as 

Equivalent_Class_Data_Values are filtered, and therefore contain the desired restrictions as their 

attributes and values (see Figure 6). 

 

Figure 6. Visualized example of extracted restrictions for a classification concept. 

The second query (Listing 3) is responsible for collecting all individuals that are suitable for the 

classification process. To reduce the amount of individuals to the required minimum subset, the structure of 

the graph itself is used. During the import of the ontology, individuals were already connected to properties 

that are used to describe classes, if the individuals comprise the very same properties (see Figure 7). 

 

Figure 7. Relationship between individuals and class properties. 

By doing so, the authors are now able to retrieve only those individuals, which share properties that 

are used within the restrictions (DatatypeRestriction) as well. In consequence, no individuals have to be 



Remote Sens. 2015, 7 9483 

 

 

found and checked that would have already been negatively classified, as they would not feature the 

restrictions’ properties. 

As there is the possibility for individuals to be found several times, due to multiple paths leading to 

them, the results are then filtered in order to only collect DISTINCT individuals. 

After both queries are completed, the restrictions are given to the inference engine. The engine is a 

Java-based program that checks for each individual if all requirements from the class are fulfilled.  

As the current version of the OWLET plugin only supports double values, the inference engine was also 

programmed to handle double values as a starting point. The engine is not only capable of threshold 

identification but also checks whether values are within a certain value range. The complete process is 

summarized in Listing 4. After the classification process is completed, the results are transferred as 

JSON data back to the frontend to be displayed. 

Listing 4. Procedure of the new classification process. 

Procedure CLASSIFICATION� 

Input: Individuals, Restrictions� 

begin PROPERTY_CHECK� 

1: while (Individuals)� 

2: while (Individual_Properties) 

3: if (Individual_Property MATCHES Restriction) then SET Classified 

4: else SET Not_Classified and break� 

5: end if� 

6: end while� 

7: end while 

end PROPERTY_CHECK�� 

Output: Classified Individuals 

3.3. RDF/SPARQL-Based Approach 

In this section of the paper, the authors present the RDF/SPARQL-based solution and the associated 

workflow. The general overview of this approach can be seen in Figure 8. 

The input for the reasoning approach consists of two parts: (i) the data model, which is an ontology 

document containing the class hierarchy and the SPIN rules; and (ii) the data itself, consisting of OWL 

individuals. The datasets in this case import the data model via an owl:imports statement which helps to 

keep the data and data model separate and allows the data model to be enhanced easily. This is important 

as, in this use-case, new rules to further enhance the data might be added later on. 

The input for the reasoning approach consists of two parts: (i) the data model, which is an ontology 

document containing the class hierarchy and the SPIN rules; and (ii) the data itself, consisting of OWL 

individuals. The datasets in this case import the data model via an owl: imports statement which helps 

to keep the data and data model separate and allows the data model to be enhanced easily. This is 

important as, in this use-case, new rules to further enhance the data might be added later on. 

The resulting RDF files (data with imported data model) are then loaded into Apache Jena [43], which 

provides an API for manipulating RDF models. An alternative to this would be to load the data into a 



Remote Sens. 2015, 7 9484 

 

 

triple store and execute the SPARQL directly via native API or HTTP endpoint. The SPIN rules from 

the data model are then loaded and the SPARQL CONSTRUCT query contained in their spin: body is 

executed directly on the data. This creates new information, which is saved back into the ontology. This 

information can then be evaluated with regard to classification outcomes. 

 

Figure 8. Workflow of the proposed RDF/SPARQL-based approach. 

4. Benchmarking of Classification Performance 

4.1. Classification Results for Protégé-Based Reasoners vs. the Neo4j-Based Approach 

In the first step, the authors compare the classification performance regarding computational time 

between reasoners for the Protégé environment. However, not all available reasoners were suitable for 

the test environment. The Racer reasoner [44] was not available via an academic, non-commercial 

license during the creation of this paper. The Snorocket reasoner [45] and the ELK reasoner [46] are not 

supporting A-Box reasoning and are therefore not suitable as well. The TrOWL reasoner [47] was very 

fast in terms of classification speed (about 2 s for 10,000 individuals). However, the authors could not 

query the results in Protégé to see which individuals have been classified into which category. Therefore, 

this reasoner was skipped as well. The Pellet reasoner [48], although supporting A-Box reasoning, did 

not react anymore, even with a small sample (100 individuals) of the applied ontology. 

The remaining reasoners for the benchmark were: the FaCT++ reasoner [49] and the Hermit  

reasoner [50]. The authors repeated the classification process ten times for each sample size and 

calculated the average value in terms of the required time. Figure 9 shows the results for the classification 

time for each sample set. 

The benchmark results show that the Neo4j-based approach outperforms the two tested  

Protégé-based reasoners by far, when it comes to a large number of individuals. While between  

250 and 500 individuals, all three candidates are close to each other; on higher numbers of individuals, 

the Neo4j-base approach is about 1,000 times faster than the FaCT++ reasoner. The Hermit reasoner 

became unresponsive on sample set sizes larger than 500. The reasoning process was therefore canceled 

after several hours.  

Data$structure
+$SPIN$rules

Data$(owl/rdf/6 l)

imports

Jena:
Reasoning$(SPARQL/SPIN)

load$to$memory

Data$(rdf/6 l)

add$inferred$data
(classificaEons)

imports



Remote Sens. 2015, 7 9485 

 

 

All reasoners and the Neo4j-base approach achieved 100% accuracy, meaning that all classified 

individuals where correct (precision) and all relevant individuals within the sample set were classified 

(recall). This was checked by comparing the IDs of each distinct classified individual as well as with 

their pre-classification tags assigned by the simulation environment. 

 

Figure 9. Classification time for each reasoner tested in Protégé vs. Neo4j. 

4.2. Classification Results for the Neo4j-Based Approach vs. the RDF/SPARQL-Based Approach 

In the next step, the authors repeated the process with Neo4j-based solution and the  

RDF/SPARQL-based solution. The results can be seen in Figure 10 While the Neo4j-based approach 

was already promising, the RDF/SPARQL-based approach minimizes the computational time required 

for classification even more. When comparing the results regarding 10,000 individuals, it can be seen 

that the RDF/SPARQL-based approach is approximately 75 times faster than the Neo4j-based approach. 

As it was with the Protégé-based reasoners and the Neo4j-based approach, the RDF/SPARQL-based 

approach achieved 100% accuracy. 

 

Figure 10. Classification time for Neo4j vs. RDF/SPARQL. 

5. Discussion 

The results from this study clearly demonstrate the high potential of graph-based solutions for the 

classification of remote sensing data in terms of reducing computation time. Remarkably, there is even a 

huge performance gap between graph solutions themselves.  

1 

10 

100 

1000 

10000 

100000 

100 250 500 1000 2500 5000 10000 

Ti
m
e
 in

 s
 (l
o
g1
0
) 

Number of classified objects 

Neo4j 

FaCT++ 

Hermit 

0.01 

0.1 

1 

10 

100 

100 250 500 1000 2500 5000 10000 

Ti
m
e
 in

 s
 (l
o
g1
0
) 

Number of classified objects 

Neo4j 

RDF/SPARQL 



Remote Sens. 2015, 7 9486 

 

 

While the Neo4j-based solution is still fast and requires only about 15 s for the classification of 10,000 

domain objects, the RDF/SPARQL-based solution outperforms its graph sibling by far, requiring only 

about 0.2 s for the same amount of objects. The main advantage of this method (as with the Neo4j 

method) is that there is no need to execute a fully equipped OWL reasoner. There are a few selected 

inferences that are desired and so making use of SPARQL/SPIN as an expressive way of defining rules 

helps to eliminate the reasoning overhead that is commonly faced when using OWL reasoners. Other 

than for the Neo4j, there is no need to modify the data before importing it as Jena supports a variety of 

formats like OWL, RDF or TTL. 

Comparing the performance-time results becomes difficult, as related work towards similar reasoning 

with databases and individuals exist but are fairly old and do not state execution times, e.g., [14,51].  

A more recent example is given by Horrocks et al. [6]. The classification of 10,000 individuals within 

their environment instanceStore (iS) took about 33,000 s. However, this comparison has to be regarded 

with caution, as the ontology employed was much bigger than the sample ontology, which certainly had 

an impact on the results. 

As the development of the approach is only at the beginning, the authors would like to point out some 

limitations and challenges that should not be neglected, even if they are not all directly connected to the 

presented architecture. 

The approach significantly speeds up classification time, which, in return, also affects iteration runs 

to improve the ontology modeling if applied to test data. Still, what it cannot fix is the subjectivity 

introduced by experts. Each individual visualizes his or her environment based on previous experiences, 

cultural influences etc. Therefore, objects and conditions can be perceived and interpreted in different 

ways. From a philosophical point of view, this circumstance is referred to as constructivism [52] and fuels 

a discussion, which has been on-going for decades. Regarding the research work in this paper, the authors 

agree with Kuhn [53] and approach the creational process for ontologies in a more pragmatic way towards 

semantic engineering, rather than towards a philosophical discussion or pure language interpretation. 

It is also important to remember the fact that the classification time is affected by some conditions 

related to the evaluation example and architecture. In this example, the entire architecture stack was 

deployed on a single workstation. If, however, the components were to be distributed to different servers 

across a larger geographical distance, the overall time to deliver the actual classification results may 

increase. In addition, for the sake of simplification, a rather small ontology was employed (see Figure 2). 

If a larger network within the database has to be searched, this will definitely add to the overall time 

required. Still, a larger ontology would have affected the Protégé environment as well. 

Another point concerns the inference engine. Compared to the reasoners available, the engine is a 

fairly small one. Nevertheless, it is capable of performing the desired classification with the same 

accuracy as its “big brother”. 

To ensure consistency within the ontology, also after the import of individuals, the classic reasoner 

can and should still be used. If the consistency is verified, the enriched ontology can then be forwarded 

to the database importer module. 

Finally, the query possibilities in the Neo4j-based approach are limited in that only tasks for the 

classification of a single class at one point in time are covered at the moment. The combination of 

concepts is not yet possible. Additionally, the alternative way of querying the database via the graph 

visualization can be a little bit cluttered when handling large ontologies. 



Remote Sens. 2015, 7 9487 

 

 

6. Conclusions 

In this paper, the authors presented an approach towards a computational improvement of  

ontology-based classification of segmented remote sensing imagery using graph databases. A graph 

database environment was designed and implemented, which enables the classification of huge amounts 

of data entities (individuals) in an extremely short time compared with classic approaches that use 

Protégé at the same level of accuracy. Through a combination of technologies from knowledge 

engineering and modern graph databases, the approach achieves a performance improvement of about 

the factor 80,000. This result clearly demonstrates the high potential of graph databases for classification 

tasks in remote sensing. 

The reduction of the computational time enables the adaption of the presented approach in  

time-critical environments, such as crisis or disaster risk management and beyond. 

Graphs and graph databases have been used within remote sensing before. For example,  

Rossmann et al. [54] have employed graph databases within remote sensing to build a virtual forest 

database to provide a basis for discrete event and quasi continuous simulations. Hullo et al. [55] realized 

an approach that combines remote sensing techniques with a graph database to support professionals in the 

challenging task of exploring complex datasets for preparing maintenance operations in power plants. Maciel 

and Silva [56] employed methods of graph mining to detect deforestation patterns related to deforestation 

objects in remote sensing data. Cai et al. [57] developed an approach including graph databases to enable an 

ecological environment sensitivity evaluation, which incorporates remote sensing data. 

However, the combined approach of ontologies and graph databases for the classification of remote 

sensing data is to the best of the authors’ knowledge unique within the area of remote sensing. 

For future work, the authors see some potential in how to extend and improve the approach and the 

comprised architecture related to the current shortcomings. One aspect comes in the form of the visual query 

navigation via the ontology graph. The authors plan to extend the visualization of the Neo4j-based approach 

with additional options for parameterization or even other navigational concepts. 

Another interesting point is the improvement of the export function. While the export function 

currently delivers a textual file, another option could be the re-build of a shape file so the classification 

results could be merged for visualization within the GIS. In addition, the combination of classified data 

and other open data sources within the database provide interesting possibilities. As there is a spatial 

extension for Neo4j as well, spatial and even temporal queries as the base for the classification or based 

on the results of the classifications could be investigated. Last but not least, the importer and the inference 

engine could potentially be improved. Both are now optimized to cover information from a basic ontology. 

Acknowledgments 

The presented work is framed within the Doctoral College GIScience (DK W 1237N23).  

The research of this work is funded by the Austrian Science Fund (FWF) and the Salzburg University 

of Applied Sciences. The authors would like to thank Christoph Willemsen (ikwattro) as his Simple PHP 

Silex App using NeoClient for Neo4j served as the basis for the developed frontend. Furthermore, the 

authors want to thank the three anonymous reviewers for their valuable feedback, which led to significant 

improvements regarding this paper; especially towards the RDF/SPARQL-related results. 
  



Remote Sens. 2015, 7 9488 

 

 

Author Contributions 

Thomas J. Lampoltshammer proposed and developed the concept, created the research design, 

conducted the coordination of the research activities, developed and programmed the presented graph 

databases solution, performed the benchmarking and result interpretation, and wrote the manuscript. 

Stefanie Wiegand contributed to the development of the research design, co-developed and programmed 

the presented graph databases solution, contributed to the benchmarking and result interpretations as 

well as the manuscript writing. Both authors contributed equally to the revisions of the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Baader, F.; Horrocks, I.; Sattler, U. Description logics as ontology languages for the semantic web. 

In Mechanizing Mathematical Reasoning; Springer: Berlin, Germany, 2005; pp. 228–248. 

2. Bock, J.; Haase, P.; Ji, Q.; Volz, R. Benchmarking OWL Reasoners. Available online: 

http://ai.ia.agh.edu.pl/wiki/_media/pl:dydaktyka:miw:2010:dltls:prezentacja:testowanie_ 

reasonerow.pdf (accessed on 31 March 2015). 

3. Li, Y.; Yu, Y.; Heflin, J. Evaluating Reasoners under Realistic Semantic Web Conditions.  

In Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012), Manchester, UK, 1 July 2012. 

4. Lampoltshammer, T.J.; Heistracher, T. Ontology evaluation with Protégé using OWLET. 

Infocommun. J. 2014, 6, 12–17. 

5. Weithöner, T.; Liebig, T.; Luther, M.; Böhm, S. What’s wrong with OWL benchmarks.  

In Proceedings of the Second International Workshop on Scalable Semantic Web Knowledge Base 

Systems (SSWS 2006), Athens, GA, USA, 5–6 November 2006; pp. 101–114. 

6. Horrocks, I.; Li, L.; Turi, D.; Bechhofer, S. The instance store: DL reasoning with large numbers of 

individuals. In Proceedings of the 2004 Description Logic Workshop (DL 2004), Whistler, BC, 

Canada, 6–8 June 2004; pp. 31–40. 

7. Angles, R.; Gutierrez, C. Survey of graph database models. ACM Comput. Surv. 2008, 40, 1–39. 

8. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 

2010, 65, 2–16. 

9. Hay, G.J.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the 

multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 339–359. 

10. Gruber, T.R. A translation approach to portable ontology specifications. J. Knowl. Acquis. 1993, 5, 

199–220. 

11. Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J. 

Hum. Comput. Stud. 1995, 43, 907–928. 

12. Daconta, M.C.; Smith, K.T.; Oerst, L.J. The semantic web: A guide to the future of XML, web 

services, and knowledge management. Comput. Rev. 2004, 45, 778–779. 

13. Motik, B.; Grau, B.C.; Horrocks, I.; Wu, Z.; Fokoue, A.; Lutz, C. Owl 2 web ontology language: 

Profiles. W3C Recomm. 2009, 27, 61. 



Remote Sens. 2015, 7 9489 

 

 

14. Schmiedel, A. Semantic Indexing Based on Description Logics. Available online: 

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-1/schmiedel-long.pdf (accessed 

on 31 March 2015). 

15. De Giacomo, G.; Lenzerini, M. TBox and ABox Reasoning in Expressive Description Logics. 

Available online: http://www.aaai.org/Papers/Workshops/1996/WS-96-05/WS96-05-004.pdf 

(accessed on 31 March 2015). 

16. Durand, N.; Derivaux, S.; Forestier, G.; Wemmert, C.; Gançarski, P.; Boussaid, O.; Puissant, A. 

Ontology-based object recognition for remote sensing image interpretation. In Proceedings of the 

19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), Patras, 

Greece, 29–31 October 2007; pp. 472–479. 

17. Belgiu, M.; Lampoltshammer, T.; Hofer, B. An extension of an ontology-based land cover designation 

approach for fuzzy rules. In GI_Forum 2013. Creating the GISociety; Car, A., Jekel, T., Strobl, J., Eds.; 

Austrian Academy of Sciences Press: Vienna, Austria, 2013; pp. 59–70. 

18. Belgiu, M.; Tomljenovic, I.; Lampoltshammer, T.J.; Blaschke, T.; Höfle, B. Ontology-based 

classification of building types detected from airborne laser scanning data. Remote Sens. 2014, 6, 

1347–1366. 

19. Hofmann, P.; Lettmayer, P.; Blaschke, T.; Belgiu, M.; Wegenkittl, S.; Graf, R.;  

Lampoltshammer, T.J.; Andrejchenko, V. ABIA—A conceptional framework for agent based 

image analysis. South East. Eur. J. Earth Obs. Geomat. 2014, 3, 125–130.  

20. Hofmann, P.; Lettmayer, P.; Blaschke, T.; Belgiu, M; Wegenkittl, S.; Graf, R.; Lampoltshammer, T.J.; 

Andrejchenko, V. Towards a framework for agent-based image analysis of remote-sensing data. 

Int. J. Image Data Fusion 2015, 6, 115–137. 

21. Goldberg, A.V.; Harrelson, C. Computing the shortest path: A search meets graph theory.  

In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 

Philadelphia, PA, USA, 23–25 January 2005; pp. 156–165. 

22. Manola, F.; Miller, E.; McBride, B. RDF Primer. Available online: http://www.w3.org/TR/rdf-primer 

(accessed on 31 March 2015). 

23. Prud’Hommeaux, E.; Seaborne, A. SPARQL Query Language for RDF. Available online: 

http://www.w3.org/TR/rdf-sparql-query/ (accessed on 31 March 2015). 

24. Pérez, J.; Arenas, M.; Gutierrez, C. Semantics and complexity of SPARQL. In Proceedings of the 

International Semantic Web Conference, Athens, GA, USA, 5–9 November 2006; pp. 30–43. 

25. Neo4j the World’s Leading Graph Database. Available online: http://neo4j.com/ (accessed on 31 

March 2015). 

26. Ontotext GraphDB—An Enterprise Triplestore with Meaning. Available online: 

http://www.ontotext.com/products/ontotext-graphdb/ (accessed on 31 March 2015). 

27. Sesame Java Framework for Processing and Handling RDF Data. Available online: http://rdf4j.org 

(accessed on 31 March 2015). 

28. Orient Technologies 2nd Generation Distributed Graph Database. Available online: 

http://www.orientechnologies.com/orientdb/ (accessed on 31 March 2015). 

29. Franz Inc. AlegroGraph. Available online: http://franz.com/agraph/allegrograph/ (accessed on 31 

March 2015). 



Remote Sens. 2015, 7 9490 

 

 

30. Deville, Y.; Gilbert, D.; van Helden, J.; Wodak, S.J. An overview of data models for the analysis 

of biochemical pathways. Brief. Bioinform. 2003, 4, 246–259. 

31. Olken, F. Tutorial on graph data management for biology. [Tutorial Hand-out]. Available online: 

https://www.researchgate.net/profile/Frank_Olken2/publication/242497760_Graph_Data_Manage

ment_For_Biology/links/02e7e52a21e337ad52000000.pdf (accessed on 21 July 2015). 

32. Brandes, U.; Erlebach, T. Network Analysis: Methodological Foundations; Springer Science & 

Business Media: Medford, MA, USA, 2005. 

33. Miller, J.J. Graph database applications and concepts with Neo4j. In Proceedings of the Southern 

Association for Information Systems Conference, Atlanta, GA, USA, 23–24 March 2013. 

34. Lampoltshammer, T.J.; Sageder, C.; Heistracher, T. The openlaws platform—An open architecture 

for big open legal data. In Proceedings of the 18th International Legal Informatics Symposium IRIS 

2015, Salzburg, Austria, 26–28 February 2015. 

35. Karamizadeh, S.; Abdullah, S.M; Zamani, M.; Kherikhah, A. Pattern recognition techniques: studies 

on appropriate classifications. In Advanced Computer and Communication Engineering Technology; 

Springer International Publishing: Cham, Switzerland, 2015; Volume 315, pp. 791–799. 

36. QGIS A Free and Open Source Geographic Information System. Available online: 

http://www2.qgis.org/en/site/ (accessed on 31 March 2015). 

37. Weidner, U. Contribution to the assessment of segmentation quality for remote sensing applications. 

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 479–484. 

38. Fielding, R. T. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. 

Thesis, University of California, Irvine, CA, USA, 2000. 

39. Battle, R.; Benson, E. Bridging the semantic Web and Web 2.0 with representational state transfer 

(REST). J. Web Semant. Sci. Serv. Agents World Wide Web 2008, 6, 61–69. 

40. Jordan, G. Practical Neo4j; Apress: New York, NY, USA, 2014. 

41. Xu, X.; Zhang, L.; Wong, T.-T. Structure-based ASCII art. ACM Trans. Graph. 2010, 29,  

doi:10.1145/1833349.1778789. 

42. Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 

27, 97–109. 

43. Foundation, A. Apache Jena. Available online: http://jena.apache.Org (accessed on 20  

March 2014). 

44. Haarslev, V.; Möller, R. Racer: An OWL Reasoning Agent for the Semantic Web. Available online: 

http://www1.racer-systems.com/technology/contributions/2003/HaMo03d.pdf (accessed on 31 

March 2015). 

45. Metke-Jimenez, A.; Lawley, M. Snorocket 2.0: Concrete Domains and Concurrent Classification. 

Available online: http://ceur-ws.org/Vol-1015/paper_3.pdf (accessed on 31 March 2015). 

46. Kazakov, Y.; Krötzsch, M.; Simančík, F. The incredible ELK. J. Autom. Reason. 2014, 53, 1–61. 

47. Pan, J.Z.; Ren, Y.; Jekjantuk, N.; Garcia, J. Reasoning the FMA Ontologies with TrOWL.  

Available online: http://ceur-ws.org/Vol-1015/paper_18.pdf (accessed on 31 March 2015). 

48. Sirin, E.; Parsia, B.; Grau, B.C.; Kalyanpur, A.; Katz, Y. Pellet: A practical owl-dl reasoner. Web 

Semant. Sci. Serv. Agents World Wide Web 2007, 5, 51–53. 



Remote Sens. 2015, 7 9491 

 

 

49. Tsarkov, D.; Horrocks, I. FaCT++ description logic reasoner: system description. In Automated 

Reasoning; Furbach, U., Shankar, N., Eds.; Springer: Berlin/Heidelberg, Germany; 2006;  

Volume 4130, pp. 292–297. 

50. Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; Wang, Z. HermiT: An OWL 2 reasoner.  

J. Autom. Reason. 2014, 53, 245–269. 

51. Borgida, A.; Brachman, R.J. Loading data into description reasoners. ACM SIGMOD Rec. 1993, 

22, 217–226. 

52. Jonassen, D.H. Objectivism versus constructivism: Do we need a new philosophical paradigm? 

Educ. Technol. Res. Dev. 1991, 39, 5–14. 

53. Kuhn, W. Semantic engineering. In Research Trends in Geographic Information Science; Springer: 

Berlin, Germany, 2009; pp. 63–76.  

54. Rossmann, J.; Schluse, R.; Waspe, R.; Moshammer, R. Simulation in the woods: From remote 

sensing based data acquisition and processing to various simulation applications. In Proceedings of 

the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011;  

pp. 984–996. 

55. Hullo, J.F.; Thibault, G.; Boucheny, C. Advances in multi-sensor scanning and visualization of 

complex plants: The utmost case of a reactor building. Int. Arch. Photogramm. Remote Sens. Spat. 

Inf. Sci. 2015, 40, 163–169 

56. Maciel, M.; Silva, M.; Escada, M. Mining frequent substructures from deforestation objects. 

IGARSS 2012, doi:10.1109/IGARSS.2012.6352557. 

57. Cai, Z.; Zhong, S.; Jiang, W.; Lei, M. A schema of ecological environment sensitivity evaluation 

based on GIS. In Proceedings of the 2011 International Conference on Multimedia Technology 

(ICMT),Hangzhou, China, 26–28 July 2011; pp. 6745–6748. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


