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Abstract: Taking photographs with a commercially available digital camera is an efficient and 

objective method for determining the green fractional vegetation cover (FVC) for field 

validation of satellite products. However, classifying leaves under shadows in processing 

digital images remains challenging and results in classification errors. To address this problem, 

an automatic shadow-resistant algorithm in the Commission Internationale  

d’Eclairage L*a*b* color space (SHAR-LABFVC) based on a documented FVC estimation 

algorithm (LABFVC) is proposed in this paper. The hue saturation intensity (HSI) is 

introduced in SHAR-LABFVC to enhance the brightness of shaded parts of the image. The 

lognormal distribution is used to fit the frequency of vegetation greenness and to classify 

vegetation and the background. Real and synthesized images are used for evaluation, and the 

results are in good agreement with the visual interpretation, particularly when the FVC is high 

and the shadows are deep, indicating that SHAR-LABFVC is shadow resistant. Without 

specific improvements to reduce the shadow effect, the underestimation of FVC can be up to 

0.2 in the flourishing period of vegetation at a scale of 10 m. Therefore, the proposed algorithm 

is expected to improve the validation accuracy of remote sensing products. 

Keywords: fractional vegetation cover (FVC); product validation; shadow resistant; field 

measurements; digital images 
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1. Introduction 

Fractional vegetation cover (FVC) is widely used to describe vegetation quality and ecosystem 

changes and is a controlling factor in transpiration, photosynthesis and other terrestrial processes [1–3]. 

Estimating FVC in field measurements is critical because it provides a baseline for improving remote 

sensing algorithms and validating products.  

Visual estimation, sampling [4], photography [5] and other techniques are commonly used in field 

measurements. Among these, photography with digital cameras is one of the most important methods. 

Analyzing digital images to calculate FVC is efficient and accurate in most circumstances [3,5–11]. The 

parts of an image that contain vegetation can be determined based on their physical, shape and color 

characteristics and other features [6–8,12]. In general, these methods can be grouped into two classes: (1) 

cluster analysis based on training samples, e.g., supervised and unsupervised classifications [13,14] and 

object-based image analysis methodology (OBIA) [15,16]; and (2) threshold-based methods according 

to the vegetation index, such as the color index of vegetation extraction (CIVE) [17], the excess green 

index (ExG) [18,19], excess green minus excess red (ExG−ExR) [20], and many other  

indices [11,21]. When these two types of methods are used for image classification, different color 

spaces are usually introduced and analyzed, for example red green blue (RGB) and hue saturation 

intensity (HSI) color spaces [12], for the mean-shift-based color segmentation method and the 

Commission Internationale d’Eclairage L*a*b* (LAB) color space for the documented FVC estimation 

algorithm named LABFVC [22] and LAB2 [23].  

However, shadows should be addressed when FVC is extracted from a digital image. Shadows 

projected by vegetation increase the contrast in an image, alter the color in shaded areas and affect the 

image analysis. Shadows occur not only on the soil, but also inside the vegetation canopy [15].  

Although a series of methods have been proposed, the shadow problem has not been perfectly 

solved. Visual interpretation using the supervised classification tool via commercial image processing 

software can perfectly distinguish vegetation in shadows through human to computer interaction. 

However, this method requires many manual steps and is less automatic and efficient [13,14,16]. 

Manual steps can cause bias and inconsistency between observers [24]. Methods based on physical 

characteristics [15,16] and feature space analysis [12] have been proposed to solve the shadow 

problem, but are time consuming and unsuitable for real-time applications. Using artificial shelters to 

change the illumination conditions and to reduce the contrast between sunlit and shaded areas can 

avoid the shadow effect in small areas [21,25]. However, shading a large area is difficult. Extremely 

dark shadows compared with sunlit leaves complicate the classification of shaded leaves using 

threshold-based methods and certain methods based on physical characteristics [15,23,26]. Extremely 

dark shadows are most likely to occur when photos of dense vegetation are taken on a sunny day. 

In this study, we propose a modified LABFVC algorithm that is shadow resistant and can classify 

green vegetation with reasonable accuracy. The whole method is realized in Matrix Laboratory 

(MATLAB; the MathWorks, USA) and can extract FVC automatically and efficiently. The accuracy of 

our method was evaluated using real and synthesized images. 
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2. Study Area and Data Processing 

2.1. Study Area and Field Measurements  

All data used in this article were obtained from the Heihe Watershed Allied Telemetry Experimental 

Research (HiWATER) field campaign conducted in the Heihe River basin, China [27]. Field 

measurements of FVC were taken in corn fields, orchards and fields planted with vegetables, such as 

peppers and red beans, from 24 May 2012 to 14 September 2012, every five days on average [28,29].  

The land surface is relatively homogeneous in this area, and a patch of field was usually larger than  

15 m × 15 m. This size matches the spatial scales of moderate-resolution satellites, e.g., the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [30]. A plot of 10 m × 10 m 

representing the scale of ASTER pixels was designed at every sampling position. Digital photographs were 

taken along two diagonals of the plot (taken once for the overlapping section at the cross point of the two 

diagonals). Twenty-two sampling plots were distributed throughout the area, of which 15 were located in 

corn fields. Nine photographs of each plot were taken. Approximately 4100 images were obtained during 

HiWATER 2012. Figure 1 shows the pattern in which photographs were taken in each plot. 

 

Figure 1. Schematic of a plot showing how the photographs were taken. The nine small 

squares in the middle of the figure represent the photography positions in a plot. The large 

square around these squares represents the area of the sample plot. 

2.2. Data Description  

2.2.1. Synthesized Images 

The synthesized image was composed of different mosaics of digital images obtained in the 

HiWATER experiment, 2012 [29]. The reference FVC of the synthesized image can be exactly 

calculated as the ratio of the number of pixels of all vegetation mosaics to the total number of pixels in 

this image. Each of the square vegetation mosaics had 224 × 132 pixels. The entire synthesized image, 

with both vegetation and soil, had 2629 × 1765 pixels. The mosaics were derived from various images 

of leaves and soil, including those with deep shadows. Four different types of vegetation mosaics, 

namely bright-green vegetation, jade-green vegetation, bottle-green vegetation and shaded vegetation, 

were used to compose the vegetation part in the image (Table 1). Another four types of soil mosaics, 

namely, light-brown soil, brown soil, dark-grey soil and shaded soil, were selected to form the square 

image. The vegetation mosaics were regularly embedded in the synthesized image.  
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The shadow-resistant LABFVC (SHAR-LABFVC) algorithm proposed in this study, the LABFVC 

algorithm and visual interpretation were then implemented to process this image to evaluate the 

accuracy of these methods. 

Table 1. Different mosaics composing the simulated picture. 

Vegetation Representation Soil Representation 

 
Bright-green vegetation 

 
Light-brown soil 

 
Jade-green vegetation 

 
Brown soil 

 
Bottle-green vegetation 

 
Dark-grey soil 

 
Shaded vegetation 

 
Shaded soil 

2.2.2. Real Images  

Fifteen real images of different crop types, including corn, peppers, cabbage, celery and beans, in 

different growing periods in 2012 were selected from HiWATER for comparison. All images were 

classified by visual interpretation, the LABFVC algorithm and SHAR-LABFVC. Visual interpretation 

was performed using Environment for Visualizing Images (ENVI; Exelis, Inc., Boulder, CO, USA) to 

obtain a reference FVC of the real images. First, we attempted to choose as many samples as possible 

and performed a supervised classification method using the maximum likelihood classifier. The image 

was divided into sunlit vegetation, shaded vegetation, sunlit soil and shaded soil. Then, the four classes 

were combined into two classes, namely vegetation and background, and an interactive tool was used 

to examine and correct the region of each class in the image. Finally, the proportion of vegetation was 

computed as the reference FVC of the image. 

3. Methodology  

SHAR-LABFVC was developed from and improves upon the work of Liu et al. [22], which is 

hereafter referred to as LABFVC. In the proposed algorithm, the hue saturation intensity (HSI) color 

space is introduced to decrease the difference between sunlit and shaded leaves. Subsequently, the 

image is transformed into the LAB color space, where the green red (a*) component is used to 

distinguish vegetation and background; negative a* values theoretically indicate green, and positive a* 

values indicate red. The distributions of green vegetation and background are respectively modeled 

with lognormal and Gaussian distribution functions on the a* component. The threshold is then 

calculated to classify the vegetation and background. 

3.1. LABFVC Algorithm 

The LABFVC algorithm proposed by Liu et al. [22] is an automatic FVC-extracting algorithm for 

digital images with an accuracy similar to that of the greenness (2G-R-B) method [31]. LABFVC is 

based on the premise that the representations of vegetation and soil in the LAB color spaces 

approximately follow Gaussian distributions. Therefore, green vegetation is classified by solving a 
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Gaussian mixture model in the LAB color space. The threshold separating the vegetation from the 

background is automatically selected and used to calculate the FVC in an image.  

The LABFVC algorithm consists of the following three steps:  

First, the red-green-blue (RGB) digital image is converted to the LAB color space. The LAB color space 

is close to the human perception of color, and its channels are less correlated than those of the RGB color 

space [32]. Methods for transforming between RGB and LAB can be found in the references. The a* 

channel in the LAB color space is recommended for detecting green vegetation.  

Second, assuming that the distributions of the vegetation and background in the a* dimension are 

Gaussian distributions, the following function can be used to fit the distribution of their frequency on 

the a* component: 
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where the dependent variable F is the frequency of the green vegetation and the background on the a* 

component; the independent variable x represents their a* values; μv and μb are the average values of 

the green vegetation and background, respectively; σv and σb are the standard deviations of the green 

vegetation and background, respectively; and wv and wb are the weights of the green vegetation and 

background, respectively.  

Third, the threshold value T is determined based on the assumption that the probabilities of 

misclassifying vegetation and background are equal, which is used to classify the vegetation and 

background. After fitting the distributions of the vegetation and background by Equation (1), the 

average values of the green vegetation (μv) and background (μb), their standard deviations (σv and σb) 

and their weights (wv and wb) are known. Threshold T can be obtained by solving Equation (2): 
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where the complementary error function erfc is incorporated to determine the threshold:  
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where erf is the Gaussian error function.  

The fraction of vegetation cover in an image is calculated after the vegetation is classified using the 

threshold T. For a more detailed description of the LABFVC algorithm, we refer to Liu et al.[22]. 

3.2. Shadow-Resistant LABFVC 

Step 3 in the LABFVC method is identical to a step in SHAR-LABFVC, but Steps 1 and 2 are 

combined with new ideas to resist the shadow effect. In Figure 2, the following additional and 

improved processes are highlighted in yellow in the SHAR-LABFVC flow chart: (1) the use of the 

HSI color space to equalize the intensity histogram; and (2) fitting of the vegetation on the a* 

component of the LAB color space with a lognormal model.  
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Figure 2. Schematic of shadow-resistant SHAR-LABFVC (LAB, the Commission 

Internationale d’Eclairage L*a*b* color space; FVC, fractional vegetation cover). The 

portions highlighted in yellow are the main differences between the LABFVC algorithm 

and SHAR-LABFVC. a* is the green red component in the LAB color space. When a 

pixel’s a* value is smaller than the threshold T, the pixel is classified as green vegetation. 

In the first step of SHAR-LABFVC, the equalization of the intensity histogram aims to brighten the 

shaded leaves and to promote their separation probability. The HSI color space is chosen to enhance 

the intensity of the three components of an image in this color space, which are less correlated with 

each other than in the RGB color space [26]. For an RGB image, the intensity I of each pixel in HSI 

space is given by the following [26]: 

)(
3

1
BGRI   (4) 
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To brighten the shaded leaves, we transform the RGB color space into the HSI space, select its 

intensity component, equalize the intensity histogram, replace the original intensity with the equalized 

one and retransform the image to the RGB color space. 

In the second step (Figure 2), the distributions of the green vegetation and background are modeled 

on the a* component in the LAB color space, as in the LABFVC method. The modification to this step 

is that SHAR-LABFVC uses a lognormal model for the vegetation histogram. Green vegetation has a 

wide distribution on the negative axis of the a* component. The shaded vegetation is nearly black and 

has an a* value of approximately 0. Therefore, the complete color distribution of the vegetation is 

similar to a lognormal distribution. Figure 3 shows a histogram distribution of the a* component of an 

image of a corn field. The distribution of the background is assumed to be Gaussian, as in the 

LABFVC method. 

 

Figure 3. Histogram of the a* (green red) component of an image. The green and brown 

curves represent the lognormal distribution of the vegetation and the Gaussian distribution 

of the background, respectively. The small image in the left corner is the original image. 

The following function can be used to fit the distributions of both the green vegetation and the 

background’s frequency on the a* component: 
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where vegetation is fitted by a lognormal function.  
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In the third step, the green FVC is extracted by classifying the a* values of the images at the 

threshold T, determined using Equation (2). This step assumes that the misclassification probabilities 

of the vegetation and background are approximately equal. In Figure 4, sv and sb represent the areas of 

the misclassified vegetation and background, respectively. T is chosen such that sv and sb are equal. 

 

Figure 4. Determining the threshold for image classification. The red curve is based on a 

lognormal distribution and represents the vegetation, and the black curve is based on a 

Gaussian distribution and represents the background. The classification is based on the a* 

(green red) component of the LAB color space. 

4. Results  

4.1. Image Enhancement 

Image enhancement is an important module in SHAR-LABFVC. Figure 5 shows the original, 

intensity-stretched and RGB stretched images, which present the effect of our image enhancement 

module. After the intensity histogram is equalized in the HSI color space, the entire image becomes 

brighter, particularly the shaded leaves in the red boxes (Figure 5b), facilitating the identification of 

shaded components. Equalizing all three components in the RGB color space can also highlight the 

shaded leaves, but changes the color of the image (Figure 5c). Therefore, stretching all of the RGB 

components is not usable when further classification of the vegetation is required. 

Figure 5a was classified by visual interpretation, and the average values of the classes at the axis of 

the a* component are presented in Table 2, which also shows that the average values of the vegetation 

in the original image and the intensity-stretched image are both on the negative axis of the a* 

component. As shown in Table 2, the difference between the vegetation and background in the 

intensity-stretched image is greater than that in the original image. Image enhancement effectively 

enhances the difference between the vegetation and background and can help separate these  

two classes. 
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Figure 5. Image enhancement in different color spaces and the classification result.  

(a) The original image. (b) The intensity-stretched image after transformation to the HSI 

color space and intensity histogram equalization. (c) The RGB stretched image, in which 

the histograms of the three components (R, G, B) have been equalized separately. (d) The 

SHAR-LABFVC classification result. The red boxes marked with the same number in 

images (a), (b), (c) and (d) represent the same area. 

Table 2. Average values of the different classes and their differences in the image’s a* 

component with different image enhancement methods. 

Data Vegetation Background Distance* 

The original picture −17.204 0.708 17.912 

Intensity-stretched picture −30.539 1.418 31.957 

RGB stretched picture −0.576 15.299 15.875 

* The distance represents the difference between the averaged values of two parts. 

4.2. Analysis and Evaluation of the Synthesized Image 

The synthesized image was used to compare SHAR-LABFVC, LABFVC and visual interpretation. 

The classification results are presented in Figure 6. Table 3 presents the FVC estimates. The result for 

SHAR-LABFVC is 0.237, identical to the reference FVC (0.237). The result for the LABFVC 

algorithm is lower, because it cannot distinguish leaves with deep shadows from the background 

(Figure 6c). 
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Figure 6. (a) The synthesized image and classification using (b) visual interpretation,  

(c) LABFVC and (d) SHAR-LABFVC. The white and black regions were classified as 

vegetation and soil, respectively. 

Table 3. Reference FVC and FVC estimates from the synthesized image test. 

Approach FVC 

The Reference FVC * 0.237 

LABFVC 0.209 

SHAR-LABFVC 0.237 

* The reference FVC is equal to the proportion of the area  

of all vegetation mosaics in the synthesized image. 

4.3. Analysis and Evaluation Based on Real Images 

4.3.1. Different Types and Growth Stages of Vegetation 

Fifteen real images from different crop types and different growing periods were selected for the 

evaluation. All images were classified strictly and carefully by visual interpretation via ENVI to obtain 

the reference FVC of the real images. Table 4 presents the classification accuracy of each image. In 

this evaluation, the average overall accuracy of visual interpretation was 99.54%.  

Table 5 presents the comparison of the results of the methods for 15 randomly-selected real images 

that were carefully interpreted visually. When the vegetation is sparse, the reference FVC is less than 

0.5, and the RMSEs of the two methods are similar. When the vegetation increases, the reference FVC 

is greater than 0.5, and the two methods appear different. Based on the reference FVC determined by 
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visual interpretation, the RMSE of SHAR-LABFVC is 0.025. However, the RMSE of LABFVC is as 

high as 0.1. As the density of the vegetation increases, shadows deepen and influence the performance 

of LABFVC. 

Table 4. Accuracy evaluation of the visual interpretation of the 15 real images. 

Image 
Crop 

Type 

Product Accuracy (%) User Accuracy (%) Overall 

Accuracy (%) 

Kappa 

Coefficient Vegetation Background Vegetation Background 

1 corn 94.10 100.00 100.00 88.60 95.96 0.9093 

2 corn 99.94 99.94 99.99 99.77 99.94 0.9982 

3 corn 98.68 100.00 100.00 99.60 99.70 0.9914 

4 corn 100.00 100.00 100.00 100.00 100.00 1.0000 

5 corn 100.00 99.34 99.91 100.00 99.92 0.9962 

6 bell pepper 100.00 100.00 100.00 100.00 100.00 1.0000 

7 bell pepper 99.42 99.88 100.00 99.81 99.76 0.9936 

8 hot pepper 96.83 100.00 100.00 98.59 99.02 0.9768 

9 hot pepper 100.00 99.81 100.00 100.00 99.93 0.9985 

10 celery 99.91 99.48 99.60 99.88 99.72 0.9943 

11 celery 99.95 99.91 99.96 99.98 99.94 0.9986 

12 cabbage 99.99 100.00 100.00 99.99 100.00 0.9999 

13 cabbage 100.00 100.00 100.00 99.99 100.00 0.9999 

14 sapling 98.79 100.00 100.00 98.84 99.40 0.9880 

15 sapling 99.97 99.57 99.64 99.98 99.79 0.9957 

Table 5. Evaluation of the LABFVC algorithm and SHAR-LABFVC. 

Approach 
RMSE 

FVC < 0.5 FVC > 0.5 

LABFVC 0.022 0.100 

SHAR-LABFVC 0.025 0.025 

Example results of the comparison are displayed in Figures 7 and 8. The two original images shown 

here were captured in July when the plants were in their lush vegetation period. Figure 8a was taken on 

a cloudy day; thus, the differences between the results of visual interpretation, SHAR-LABFVC and 

the LABFVC algorithm are small (Figure 8 and Table 6). Figure 7a was taken on a sunny day; thus, 

the difference between sunlit and shaded leaves tends to be large, and the advantages of SHAR-

LABFVC become important (Figure 7 and Table 6).  

Table 6. FVC estimates of the real images. 

Approach Figure 7 Figure 8 

Visual interpretation 0.909 0.791 

LABFVC 0.667 0.738 

SHAR 0.902 0.799 
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Figure 7. A digital image and its classification results. (a) The original image of corn. (b) 

An enlarged view of the red box in (a). The classification results of (c) visual 

interpretation, (d) the LABFVC algorithm and (e) SHAR-LABFVC. In (c–e), the black and 

white areas are classified as background and vegetation, respectively. The red boxes in 

pictures represent the same area. 

 

Figure 8. The same as Figure 7, except that the original image is of celery. (a) The original 

image of celery. (b) An enlarged view of the red box in (a). The classification results of (c) 

visual interpretation, (d) the LABFVC algorithm and (e) SHAR-LABFVC. In (c–e), the 

black and white areas are classified as background and vegetation, respectively. The red 

boxes in pictures represent the same area. 
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4.3.2. Extreme Situations 

Four extreme situations, including no shadow (Figure 9A), many shallow shadows (Figure 9B), no 

leaf (Figure 9C) and many leaves with deep shadows (Figure 9D), are represented in the corn images 

taken under different illumination conditions and growth periods. These images were carefully 

classified using visual interpretation via ENVI to obtain the reference FVC. The classification results 

are shown in Figure 9 and Table 7. 

 

Figure 9. The classification results in four extreme situations. (A1) was taken on a cloudy 

day, when there was no shadow. (B1) was taken on a sunny day, when there were many 

shallow shadows covering both the vegetation and background. (C1) was taken in the Gobi 

desert, where there is seldom green vegetation. (D1) was taken when the corn  

was fully grown and there were limited gaps between the leaves. The images  

in Columns (2–4) are the classification results from visual interpretation, LABFVC and 

SHAR-LABFVC, respectively. 
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Table 7. FVC estimates of each extreme situation. 

Image Situation 
Approach 

Visual Interpretation LABFVC SHAR-LABFVC 

A No shadow 0.579 0.559 0.563 

B Full of shallow shadows 0.683 0.674 0.684 

C No leaf 0.000 0.000 0.003 

D Full of leaves  0.942 0.642 0.922 

4.4. Comparison with Time Series Data 

The results of the LABFVC algorithm and SHAR-LABFVC were compared for the 15 corn plots of 

the 2012 HiWATER experiment. The results of the comparison are shown in Figure 10. The two 

results were quite similar before 26 June, when the corn was young and the leaves did not shade each 

other significantly. As the crop matured, the underestimation of LABFVC became obvious. For 

example, on 13 July, the LABFVC algorithm underestimated the result by more than 0.2. After 

August, when corn was harvested and the leaves had turned yellow, the FVC determined by the 

different methods exhibited fewer differences. 

May 15 May 30 Jun 14 Jun 29 Jul 14 Jul 29 Aug 13 Aug 28

0.0

0.2

0.4

0.6

0.8
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V
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Date

 LABFVC

 SHARA

 

Figure 10. Comparison of the results of the LABFVC algorithm and SHAR-LABFVC 

over the entire growing period of corn. Error bars represent the positive and negative 

standard errors of the mean. 

5. Discussion  

Shadows occur due to obstructions from terrain topography, cloud cover or dense vegetation and 

can cause errors in image classification. In this study, we proposed an automatic shadow-resistant FVC 

extraction method (SHAR-LABFVC) that can classify green vegetation efficiently and achieve stable 

results with reasonable accuracy. 

SHAR-LABFVC was developed based on LABFVC, which was chosen because of its automaticity 

and efficiency [26]. SHAR-LABFVC can automatically determine the threshold to classify green 

vegetation and to compute FVC from digital images. In contrast to the supervised classification [13,14] 

and other image analysis approaches based on physical characteristics [15,16], neither LABFVC nor 

SHAR-LABFVC require manual steps to process images.  
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The time required to extract FVC using LABFVC is less than 12 seconds per image, much faster 

than other automated image classification methods based on physical characteristics (PC-based) [16] 

and approaches for feature space analysis (FSA-based) [12] (Table 8). The time required to extract 

FVC using SHAR-LABFVC is approximately five seconds per image. SHAR-LABFVC is thus 

sufficiently efficient for real-time application. 

Table 8. Average computing time of the different methods. 

Approach 
Time 

(per image) 

Computer 

Processor  

Random-Access 

Memory (RAM) 
Program/Software 

PC-based * 15 min - - 
eCognition 8.7 

(Trimble Navigation Ltd. USA) 

FSA-based * 91.9 s 1.2 GHz 512 MB VC++ 

LABFVC 12.0 s 3.1 GHz 4 GB MATLAB 

SHAR-LABFVC 5.0 s 3.1 GHz 4 GB MATLAB 

* The efficiency for the PC-based and the FSA-based methods was determined based on the work of  

Bauer et al. [16] and Zheng et al. [12].  

Real and synthesized image evaluation results were presented in Sections 4.2 and 4.3. The 

classification accuracy of the real images (Table 4) and the process of image synthesis (Section 2.2.1) 

indicate a high reliability of the reference values.  

The LABFVC algorithm works well when the vegetation is sparse. However, LABFVC is more 

sensitive to the contrast between sunlit parts and shadows, which causes systematic errors in 

classification. With the use of image enhancement and lognormal distribution, SHAR-LABFVC is 

much less sensitive to the shadow effect than LABFVC. Image enhancement was introduced to 

decrease the shadow effect, which is more convenient to implement than using artificial shelters to 

change the illumination conditions [21,25]. In contrast to other image analysis approaches [15,16], 

SHAR-LABFVC brightens and separates the shaded vegetation and background rather than classifying 

shadow as another class. This process also improves the accuracy of obtained green FVC. 

SHAR-LABFVC was designed to extract FVC from the images taken with a digital camera. 

Photography is a commonly-used method for obtaining FVC from crop, grassland, low shrub areas and 

understory in sparse forests. When the digital image contains heavily-shaded parts, LABFVC cannot 

obtain vegetation efficiently. Compared to LABFVC, SHAR-LABFVC obtains results more similar to 

the reference FVC, particularly when heavily-shaded components are present. Representing the 

extreme situations that may appear in these areas, the classification results for images with no shadow, 

many shadows, no leaves and many leaves with deep shadows are shown in Figure 9. When no shadow 

or a few shadows cover the vegetation or background (Figure 9A1, B1 and C1), the differences among 

the results of LABFVC, SHAR-LABFVC and visual interpretation are small. When the leaves heavily 

shade one another (Figure 9D1), shadows tend to be dark and LABFVC significantly underestimates 

the vegetation (Figure 9D3). 

Time series images of corn were processed to evaluate the accuracy of SHAR-LABFVC  

(Figure 10). The results of SHAR-LABFVC and LABFVC are quite similar during both the budding 

period and the period when leaves are withered. When the crops mature, leaves significantly shade the 
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incoming light from the Sun and the sky. Deep shadows occur during this period, and the advantages 

of SHAR-LABFVC are apparent.  

SHAR-LABFVC is shadow-resistant and reliable based on the evaluations. However, there are still 

some shortfalls in SHAR-LABFVC. Figure 7 presents a case in which the corn plants are tall and 

project many deep shadows that cover more than half of the image. Figure 7c shows that visual 

interpretation produces a smooth classification image. The main differences between the classification 

methods can be observed in the area in which the leaves are crimped or overlap with one another and 

generate dark shadows. Some shaded leaves are too dark to be stretched by SHAR-LABFVC. The leaf 

veins and solar glints also cause classification errors because they are extremely bright and nearly 

white. After adjusting the intensity, these leaves are still saturated and far from green. These situations 

correspond to the parts of the soil and vegetation histograms that are mixed in the image’s a* 

component (areas sv and sb in Figure 3), resulting in misclassification. Generally, the FVC estimates 

provided by SHAR-LABFVC are fairly close to those of visual interpretation under all possible 

illumination conditions.  

6. Conclusions  

Deep shadows severely affect the results of digital image classification, particularly when 

vegetation growth is at its peak. In this study, we developed a shadow-resistant LABFVC algorithm 

(SHAR-LABFVC) to extract FVC from digital images. SHAR-LABFVC improves the documented 

LABFVC method and resists shadows by equalizing the histogram of the image’s intensity component 

in the HSI color space and brightening the shaded parts of the leaves and background. Generally, the 

histogram of the vegetation’s green red component exhibits a lognormal distribution because of the 

shaded leaves. This property is considered when dividing the images into vegetation and background 

regions in the LAB (the Commission Internationale d’Eclairage L*a*b*) color space.  

The evaluation of SHAR-LABFVC revealed high accuracy similar to that of visual interpretation. 

The latter is assumed to be an accurate classification method that allows a reference FVC to be 

obtained from a digital image. As demonstrated by the results of this study, the RMSE of  

SHAR-LABFVC based on visual interpretation is 0.025, indicating similar performances of  

SHAR-LABFVC and visual interpretation. However, SHAR-LABFVC is more pragmatic and 

automatic. Compared to other automatic classification methods based on physical characteristics or 

feature space analysis, SHAR-LABFVC is less time consuming. Thus, SHAR-LABFVC can be used 

to obtain the FVCs of a large number of images.  

Shadows caused errors of up to 0.2 when estimating FVC at moderate resolutions (e.g., the scale of 

ASTER) in the flourishing vegetation period. This underestimation of FVC caused by shadow effects 

will also affect the evaluation of present global FVC products at coarse resolutions (e.g., 1 km), 

because the systematic errors of moderate-spatial resolution FVC cannot be eliminated in the  

up-scaling process. Therefore, the development of shadow-resistant algorithms for field measurements 

is required. Given the uncertainties in our algorithm, further research is needed to investigate 

additional vegetation types and data sources. However, SHAR-LABFVC is expected to facilitate the 

validation of satellite-based products in this context due to its efficiency.  
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