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Abstract: Burn severity metrics and classification have yet to be tested for many eastern 

U.S. deciduous vegetation types, but, if suitable, would be valuable for documenting and 

monitoring landscape-scale restoration projects that employ prescribed fire treatments. Here 

we present a performance analysis of the Composite Burn Index (CBI) and its relationship 

to spectral data (differenced Normalized Burn Ratio (dNBR) and its relative form (RdNBR)) 

across an oak woodland - grassland landscape in southwestern Oklahoma, USA. Correlation 

and regression analyses were used to compare CBI strata, assess models describing burn 

severity, and determine thresholds for burn severity classes. Confusion matrices were used 

to assess burn severity classification accuracy. Our findings suggest that dNBR and RdNBR, 

thresholded using total CBI, can produce an accurate burn severity map in oak woodlands, 

particularly from an initial assessment period. Lower accuracies occurred for burn severity 

classifications of grasslands and raises questions related to definitions and detection of burn 

severity for grasslands, particularly in transition to more densely treed structures such as 

savannas and woodlands. 
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1. Introduction 

Despite burn severity metrics and classification through remote sensing being used throughout the 

world [1–4], they have yet to be described for many eastern U.S. vegetation types, such as deciduous 

forests. The ability to describe, quantify, and remotely sense burn severity in this region would be 

particularly useful for documentation, monitoring, and prioritization of landscape-scale restoration projects 

that include prescribed burning [5]. In the last decade, research on fire regime characteristics and  

post-fire effects has included increased emphasis on understanding the importance of the full range of 

burn severities in forest ecosystems [6–8]. The role of mixed- to high-severity fire has been of particular 

interest, both in wildfire and prescribed fire contexts [9–11]. 

Burn severity describes fire effects on above-ground vegetation and soil organic matter [12,13]. From 

field measures to remote sensing and modeling, assessing burn severity presents diverse challenges [14]. 

Within remote sensing, various data (e.g., optical, RADAR, LiDAR) and approaches for assessing burned 

areas exist [15–17]. Burn severity assessments have attempted to develop predictive models relating 

multispectral satellite data to field measured burn severity measures [18], compare conceptual historical 

fire regimes to current fire regimes [19], evaluate effectiveness of fuel treatments [20,21], and monitor 

trends over time [22,23]. In relation to forest ecology and management, burn severity data can be used 

to measure severity by vegetation type(s), project forest successional trajectories, and contribute to 

modeling second-order fire effects [24,25]. 

FIREMON Landscape Assessment [26] is a standardized burn severity monitoring approach that 

allows measuring and mapping burn severity from a combination of remotely sensed vegetation change 

and ground-based plot data, although other burn severity assessment techniques are capable of providing 

spatial data needed to support pre- and post-fire management decisions and monitoring [27,28]. A 

commonly used technique utilizes the magnitude of change in reflected electromagnetic (EM) radiation 

between pre-fire and post-fire landscape conditions. The spectral response curve of typical vegetation 

occurs from 0.4 to 2.5 µm. A relatively high green reflectance response occurs due to chlorophyll 

pigmentation in the visible range. A high near infrared (NIR; reflected infrared) response occurs due to 

healthy plant cell structure and shortwave-infrared (SWIR; partly reflected, partly emitted) has a relatively 

low response due to moisture absorption. 

The Landsat satellite collects multispectral EM data divided into spectral bands. Landsat Band 4 

measures radiance in the NIR range and Band 7 has sensitivity in the SWIR range. The band ratio between 

Band 4 (healthy vegetation) and Band 7 (burned area; increased cover of bare soil and ash, decreased 

greenness, and reduced plant moisture content) are commonly used for burn severity mapping [29]. This 

change metric is at the resolution of the remote sensing imagery (e.g., 30 m) and, as a result, the effects 

on the ground specific to trees, plants and soil are averaged to imagery resolution. In many cases, imagery 

resolution limits visibility of finer-scale variation of fire effects and a bridge is needed between the 

ground level and remotely sensed scales to help define the meaning of a range of severity scores across 

the landscape [29]. To this end, the Composite Burn Index (CBI) field protocol [26] was developed to 

enable “ground truthing” or definition of burn severity conditions at the plot level, to enable adjustment 

of the severity score at the resolution of imagery, and to understand the ground-level effects described 

by the severity classification across the landscape. CBI rates burn effects from the soil to the upper 

canopy layers and then averages those ratings to derive a plot-level index value (i.e., CBI). Rating factors 
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include changes to soil color, fuels consumed, stem char, vegetation mortality and resprouting, and changes 

in plant community composition [26]. Rating factors were designed to describe ecological attributes of 

change and correlate with changes detected by multispectral satellite imagery [26]. CBI has been tested 

and used to validate burn severity maps in many ecosystems [13,30,31], but has not been tested specifically 

in open-canopy structured oak woodlands of the eastern U.S. The objectives of this research were to: 

(1) describe burn severity in this community type using the CBI protocol; and (2) gauge the performance 

of satellite imagery to map burn severity across a gradient of grasslands and oak woodlands by 

considering differences in land-types, CBI strata, and remotely-sensed burn severity metrics. 

2. Data and Methods 

2.1. Study Site 

The study site was located in the Wichita Mountains Wildlife Refuge (WMWR) at the western edge 

of the Cross Timbers region in southwestern Oklahoma, Comanche County, USA (Figure 1). Mountain 

peaks are surrounded by a matrix of mixed-grass prairie with wooded lower slopes and creeks forming 

an intermediate zone between the relatively flat valley floor and the steep, rocky slopes. Elevations range 

from 411 m asl to 756 m asl. Three major land-types (grasslands, woodlands, and rock outcrops) occupy 

98.5% of the refuge area. 

The WMWR serves as an important ecotone for eastern and western plant and animal species. 

Dominant trees are post oak (Quercus stellata), blackjack oak (Quercus marilandica) and eastern 

redcedar (Juniperus virginiana), and dominant grasses include little bluestem (Schizachyrium scoparium), 

big bluestem (Andropogon gerardii) and hairy grama (Bouteloua hirsuta) [32]. Southwestern Oklahoma, 

encompassing the Wichita Mountains, is characterized by a continental, temperate climate with a mean 

annual temperature of 16.1 degrees Celsius (Period: 1895–2011; National Climatic Data Center, Division 7, 

SW Oklahoma) and 78 cm average annual rainfall (period: 1914–2008) [33]. 

Since the beginning of the 20th century, the landscape of the WMWR has been transitioning towards 

more forested conditions and increased eastern redcedar density primarily due to altered fire regimes [34,35]. 

Starting 29 January 2010, one of the most destructive ice storms of local record caused significant 

damage to overstory trees and, consequently, large increases in woody fuel loadings. From about July 

2010, much of the southern plains had experienced severe to exceptional drought conditions (i.e., Palmer 

Drought Severity Index (PDSI) ≤ −3.0). Beginning in May 2011, drought conditions were extreme  

(PDSI < −4.0) for much of southwestern Oklahoma. The Ferguson Fire of September 2011 burned a 

large portion of the WMWR and resulted in a wide range of fire severities. The Ferguson Fire started  

1 September 2011 during exceptional drought conditions and continued until 7 September 2011, with  

a total of 16,150 hectares burned (Figure 1). Moisture contents of 1000-h fuels were recorded at 3% by 

WMWR fire staff. Though drought conditions eased during spring of 2012, southwestern Oklahoma 

continued to be moderately to exceptionally dry until summer 2015 [36]. Persistent drought conditions 

following the Ferguson Fire likely accentuated the observed fire effects. 
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Figure 1. Topographic map of the Wichita Mountains Wildlife Refuge (WMWR) showing 

the perimeter of the Ferguson Fire and locations of plots used to measure post-fire vegetation 

and burn severity. Asterisk on inset map of Oklahoma indicates location of the study area. 

2.2. Sampling Design 

Prior to the Ferguson Fire, 343 vegetation plots (706 m2) were sampled across WMWR. Plot locations 

were randomly generated in GIS (ArcView 3.2; ESRI) and then realigned to the center of the associated 

30-meter grid cell of a digital elevation model (DEM) [37]. Plot vegetation was classified into three 

land-types following Hoagland’s [38] Oklahoma vegetation community type definitions with minor 

modification: (1) woodland: ≥25% deciduous tree cover; (2) grassland: >25% combined grass and forb 

cover, and <25% deciduous tree cover; and (3) rocky: >25% rock cover and <25% deciduous or 

grassland cover. 

Following the Ferguson Fire, we re-measured 120 plots (Figure 1). This resampling effort was timed 

with the production of the Monitoring Trends in Burn Severity (MTBS) Extended Assessment for the 

Ferguson Fire. The MTBS project utilizes Landsat multispectral data and the differenced Normalized 

Burn Ratio algorithm (dNBR, Equation (2)) to produce burn severity maps for all large fires in the US, 

significantly aiding the efforts of land managers and researchers in assessment of fire effects [39]. 

Criteria for re-measurement of vegetation plots were: (1) located within the Landsat 7 dataset (i.e., not 

included in strips of “no data” resulting from a known Scan Line Corrector error (see Figure 2);  

(2) photographed prior to the fire; (3) evenly distributed among burn severity classes (unburned, low, 
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moderate, and high) (Figure 2); (4) located within a relatively homogenous burn severity “patch”;  

(5) distributed among land-types (grassland, rocky, and woodland); and (6) readily accessible. To locate 

plots on the ground, we utilized GPS locations (3 m horizontal accuracy) followed by geo-rectification from 

four pre-fire photographs taken from plot center. Plots were stratified by severity using the classified, 

extended assessment (EA) (Table 1) differenced Normalized Burn Ratio (dNBR) dataset produced by 

the USGS Center for Earth Resources Observation and Science (EROS) for the MTBS project in July 

2012. Landsat pair acquisition and processing followed MTBS EA protocols and was timed to detect 

maximum greenness one growing season post-fire, coincided with our season of survey, and was 

constrained by cloud, dust, and smoke-free atmospheric conditions [39]. We expected that utilizing the 

extended assessment (EA) data, as compared to the Initial Assessment (IA) data, would enable 

accounting for delayed mortality or survival of vegetation and better characterize the longer-term 

ecological response to burn severity [26]. Additionally, based on observations by WMWR biologists, 

the EA classified dNBR severity map more closely matched the visually detected effects on canopy trees 

than did the classified initial assessment severity map. 

Thirty plots were resampled in each burn severity class. Focal statistics analysis (Spatial Analyst, 

ArcGIS 10.0) on a 3 × 3 neighborhood identified the range (minimum − maximum) of dNBR values and 

was used to select plots located in relatively homogeneous burn severity patches. Previous work by Key 

and Benson [26] suggested that sampling within a patch of uniform burn severity was useful for refining 

relationships among remotely sensed data and CBI. Due to the offset between the circular vegetation 

plot coverage and the center of each grid cell, bilinear interpolation was used with the Spatial Analyst 

Extract (ArcGIS 10.0) tool to assign dNBR and Relative differenced Normalized Burn Ratio (RdNBR) 

values to plots. Bilinear interpolation considered the average value of the four nearest adjacent cells, 

while the no interpolation option gives the value of the grid cell containing the center point. Because 

plots may not always be located exactly at the center point of a grid cell, point scores could differ from 

half or more of the plot score. Thus, the interpolation option was expected to improve the correlation 

between CBI and burn ratios based on a comparable study [30] that found that bilinear interpolation 

performed better than using the nearest neighbor average or a distance-weighted averaging method of 

16 surrounding cells. 

2.3. Composite Burn Index (CBI) 

CBI measurements followed methods of Key and Benson [26] with scores generated for five strata: 

(1) substrate; (2) herbs, low shrubs and trees <1-m tall (termed “grass stratum” in remainder of 

document); (3) tall shrubs and trees (1 to 5 m tall; termed “shrub stratum” in remainder of document); 

(4) short trees; and (5) tall trees. Due to the short stature of trees in the Cross Timbers and at the WMWR, 

we modified tree height ranges measured in each stratum resulting in “short trees” ranging from 3 to 9 m 

tall, and “tall trees” being >9 m tall. Tree height was the only modification we made to the CBI protocol. 

Trees were scored based on the total change to foliage as green, scorched or torched, percent canopy 

mortality, and total char height. 
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Figure 2. Maps of burn severity classification produced by the Burned Area Emergency 

Response (BAER) and MTBS projects for the Ferguson Fire. Thematically classified Burned 

Area Reflectance Classification (BARC) maps are produced for both a rapid initial 

assessment (IA) of burn severity within approximately one month following the fire and, for 

an extended assessment (EA) of burn severity, one growing season following the fire [39]. 

Thematically classified maps are produced using the dNBR (Equation 2) without the use of 

CBI plot data. See Table 1 for timing of the IA and EA. Stripes of “no data” resulting from 

a Landsat 7 scan line corrector (SLC) error were filled by MTBS analysts for the production 

of the thematically classified map, however, plot data analyzed by this study were not 

affected by the SLC error. 



Remote Sens. 2015, 7 10507 

 

 

Table 1. Data collection dates and methods for vegetation plots, the composite burn index 

(CBI), and satellite imagery-based initial and extended assessments of fire severity. 

Data Collection Date(s) Sampling Method 

Pre-fire vegetation 3/2010 to 6/2011 15 m radius plots 

Post-fire vegetation 8/2012 15 m radius plots 

Composite Burn Index 8/2012 15 m radius plots 

Pre-fire imagery-Initial Assessment 8/17/2011 Landsat 5 TM 

Post-fire imagery-Initial Assessment 10/04/2011 Landsat 5 TM 

Pre-fire imagery-Extended Assessment 5/29/2011 Landsat 5 TM 

Post-fire imagery-Extended Assessment 5/23/2012 Landsat 7 ETM+ 

2.4. Satellite Imagery and Pre-Processing 

The normalized burn ratio (NBR) was calculated as: 

𝑁𝐵𝑅 =  (𝑇𝑀4 −  𝑇𝑀7) / (𝑇𝑀4 +  𝑇𝑀7) ×  1000 (1) 

where TM4 and TM7 are the pixel surface spectral reflectance intensities of the Landsat Band 4 (0.76 to 

0.90 µm, near-infrared) and Landsat Band 7 (2.08 to 2.35 µm, shortwave-infrared), respectively [26,40,41] 

(Table 1). 

Differencing the NBR between pre- and post-fire scenes allows for isolating burned from unburned 

areas. The differenced NBR (dNBR) is defined as: 

𝑑𝑁𝐵𝑅 =  𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 –  𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒 (2) 

A “relativized” version of the dNBR may be useful for removing bias effects of the pre-fire vegetative 

conditions. The relative differenced Normalized Burn Ratio (RdNBR) considers offset calculations for 

pre-fire landscape heterogeneity in vegetation condition [42]. The relative differenced Normalized Burn 

Ratio is defined as: 

𝑅𝑑𝑁𝐵𝑅 =  𝑑𝑁𝐵𝑅 / √𝐴𝐵𝑆(𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒/1000) (3) 

Satellite imagery access, pre-processing, and burn ratio calculations (dNBR and RdNBR) were 

conducted by the MTBS Project (www.MTBS.gov). 

2.5. Data Analysis 

We calculated summary statistics to describe burn severity using the CBI protocol. Correlation 

analysis was conducted to relate CBI to satellite burn classifications. We summarized the CBI data for 

all plots and by fire severity classes designated by the dNBR classification. CBI averages and ranges were 

described for each stratum. We calculated Pearson correlation values to test for relationships among 

strata scores, CBI, and satellite burn severity classifications (dNBR, RdNBR) for both IA and EA 

periods. Correlation and regression analysis were used to relate plot CBI values to overall vegetation 

changes for all plots and by burn severity class sub-groupings. Burn severity of grasslands is not well 

defined or understood. Based on the differences between grassland and woodland land-types and 

structure, fire behavior, fuel combustion and consumption, and directed heat effects (e.g., fires in 

grasslands affect greater proportion of ground and ground fuel strata compared to woodlands with varied 



Remote Sens. 2015, 7 10508 

 

 

strata), it is possible that separate CBI reflectance models are needed for the different land-types. For 

these reasons, we developed separate predictive models of burn severity for grasslands and woodlands. 

Regression models were compared among CBI and satellite burn severity classifications. We developed 

final regression models predicting dNBR and RdNBR using CBI. Model performance using linear and 

non-linear regression was compared based on model significance and r-square. Final regression model 

selections were based on model significance, r-square values, and normality of residuals. Final 

regression models were used to determine severity class threshold values for dNBR and RdNBR. 

Thresholds of severity classifications can be adapted to address many applications and, using the 

regression equations, CBI severity determinations can easily be converted to threshold values for dNBR 

and RdNBR [30]. We chose CBI threshold values that both signified observed changes in vegetation 

conditions and facilitated comparison of our results to those of other studies. These thresholds were: 

unburned (CBI = 0 to 0.1); low severity (0.1 to 1.24); moderate severity (1.25 to 2.24); and high severity 

(2.25 to 3.0). Reclassifications were done using the Classify command in ArcToolbox (ArcGIS 10.3). 

Models of dNBR and RdNBR were compared based on model r-square values and confusion matrices 

that assessed classification accuracy. Confusion matrices showed the classification of field plots and 

remotely sensed pixels for each model. From confusion matrices we calculated the overall classification 

accuracy, user’s accuracy, and producer’s accuracy. Overall accuracy is the percentage of correct 

classifications across all burn severity classes, user’s accuracy is the percentage of pixel values classified 

correctly in each burn severity class, and producer’s accuracy represents the percentage of CBI plots 

classified correctly in each burn severity class. User’s and producer’s accuracies were developed for 

each burn severity class and compared. All statistical analyses and development of classifications were 

performed using SAS v 9.3 (Cary, NC, USA) statistical software package. 

3. Results 

3.1. Composite Burn Index (CBI) 

CBI scores ranged from 0.05 to 2.94 with a mean value of 1.90. Grass was the only stratum scored 

on all plots while the tall tree stratum was scored on the fewest (n = 14). Among strata, all had CBI 

scores that spanned nearly the entire range of possible values (0 to 3.0). The shrub stratum showed the 

highest mean CBI score (2.27) while tall trees had the lowest (1.22). Scores of grass and shrub strata 

were consistently higher than their respective plot-level CBI scores. Although plots were stratified by 

severity classes prior to sampling (i.e., 30 each of unburned, low, moderate, and high severity as 

classified in the dNBR EA (MTBS)), based on plot CBI scores of burned plots, we sampled 12 low 

severity plots (CBI ≤ 1.25), 52 moderate severity plots (CBI = 1.26 to 2.25), and 27 high severity plots 

(CBI > 2.26). 

Rank patterns in stratum scores were similar for low and moderate severity conditions (Figure 3). 

Specifically, average stratum scores increased from the substrate layer to the shrub layer and then 

decreased to the tall tree layer. The tall tree layer had the lowest average strata score for low and moderate 

severities. For high severity plots, all strata had average CBI scores >2.0 except for the tall tree stratum 

(mean score = 1.93) and, of these, the stratum scores of grass and shrub strata were the highest. Mean 

CBI values for low, moderate, and high classes increased with the severity classification. Similarly, 
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within the low, moderate, and high classes, each stratum’s mean CBI score also increased with severity 

(Figure 3). 

 

Figure 3. Box plots summarizing stratum scores and total plot CBI scores by severity class. 

Severity classes are determined by measured CBI scores of plots. The boundary of the box 

closest to zero indicates the 25th percentile, the line within the box marks the median, and 

the boundary of the box farthest from zero indicates the 75th percentile. Whiskers (error 

bars) above and below the box indicate the 90th and 10th percentiles. Means are represented 

by the dotted line. 

Data distributions and means of CBI stratum scores followed similar patterns across land-types 

(Figure 4). Only data from woodlands spanned the full range of CBI scores in all strata (Figure 4). From 
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the substrate to the tall tree stratum, scores tended to increase to the shrub stratum and then decrease. 

Mean CBI scores for grasslands were always higher than the grassland substrate stratum scores and 

lower than shrub stratum scores. Mean and median scores for shrubs were generally greater than 2.0 

while these scores for short trees were less than 2.0. 

 

Figure 4. Box plots summarizing stratum scores and total plot CBI scores. Plots show 

differences in stratum scores by land-types and for all land-types combined. The boundary 

of the box closest to zero indicates the 25th percentile, the line within the box marks the 

median, and the boundary of the box farthest from zero indicates the 75th percentile. 

Whiskers (error bars) above and below the box indicate the 90th and 10th percentiles. Means 

are represented by the dotted line. 
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3.2. CBI and Satellite Classification 

CBI was significantly correlated with all satellite-derived severity classifications regardless of 

assessment timing or interpolation use. CBI was most highly correlated with the IA dNBR severity 

classifications (r = 0.78, p < 0.0001; Table 2). The second-best relationship among CBI and satellite 

classifications existed with the IA RdNBR (r = 0.76, p < 0.0001). Across all strata, dNBR generally showed 

higher correlations with CBI than RdNBR (Table 2). The use of cell interpolation with satellite imagery 

classification of burn severity resulted in higher correlations among dNBR, RdNBR and CBI except for 

the case of dNBR in the EA. 

Table 2. Pearson correlations (r), p-values (p), and sample sizes (n) among satellite-derived 

burn severity classifications and stratum scores and the composite burn index (CBI). 

Correlations do not include unburned plots. 

    Substrate Herb/Grass Shrub Short Tree Tall Tree CBI 

n
o

 c
el

l 
in

te
rp

o
la

ti
o

n
 

In
it

ia
l 

dNBR 

r 0.48 0.43 0.42 0.46 0.63 0.74 

p <.0001 <0.0001 0.0001 <0.0001 0.0164 <0.0001 

n 90 91 81 73 14 120 

RdNBR 

r 0.33 0.25 0.39 0.45 0.49 0.66 

p 0.0015 0.0151 0.0003 <0.0001 0.0783 <0.0001 

n 90 91 81 73 14 120 

E
x

te
n
d

ed
 dNBR 

r 0.45 0.32 0.32 0.42 0.67 0.59 

p <0.0001 0.0018 0.0033 0.0003 0.0081 <0.0001 

n 90 91 81 73 14 120 

RdNBR 

r 0.41 0.30 0.32 0.40 0.72 0.18 

p <0.0001 0.0037 0.0035 0.0004 0.004 0.0472 

n 90 91 81 72 14  91 

in
te

rp
o

la
ti

o
n

 

In
it

ia
l 

dNBR 

r 0.51 0.43 0.43 0.48 0.59 0.78 

p <0.0001 <0.0001 <0.0001 <0.0001 0.027 <0.0001 

n 90 91 81 73 14 120 

RdNBR 

r 0.40 0.32 0.54 0.49 0.75 0.76 

p <0.0001 0.0017 <0.0001 <0.0001 0.0021 <0.0001 

n 90 91 81 73 14 120 

E
x
te

n
d
ed

 dNBR 

r 0.44 0.30 0.30 0.40 0.66 0.59 

p <0.0001 0.0044 0.0064 0.0004 0.01 <0.0001 

n 90 91 81 73 14 120 

RdNBR 

r 0.38 0.29 0.31 0.39 0.71 0.55 

p 0.0003 0.005 0.0053 0.0006 0.0045 <0.0001 

n 90 91 81 73 14 120 

The use of cell interpolation did not necessarily improve correlations among satellite classifications 

and individual stratum scores. Strata were generally most highly correlated to satellite classifications 

(either dNBR or RdNBR) from the IA using interpolation. Among individual strata, the tall tree stratum 

was consistently the highest correlated with satellite classifications followed by substrate, and then the 

shrub stratum. (Table 2). 
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3.3. Predictive Models of Burn Severity and Thresholding 

The ability of CBI to predict burn ratios was equal when comparing linear and non-linear models. 

Significant predictive models of both dNBR and RdNBR were made for the IA and EA periods (Table 3, 

Figure 5). Overall, best models occurred with the IA rather than the EA period. Examination and  

ground-truthing of IA models and maps, particularly of dNBR, suggested that satellite-derived burn 

severity in grassland land-types may be overestimated. Rocky plots were grouped with the woodlands 

since they typically supported trees. When separated by type, models utilizing data from woodlands 

performed better than those from grasslands. However, even models from grasslands were found to be 

significant (Table 3). Burn severity class threshold values were generally lower using dNBR versus 

RdNBR and higher for grasslands compared to woodlands (Table 4). 

Table 3. Regression models of remotely sensed burn ratios and the composite burn index (CBI). 

Variable Parameter Estimate SE Probability > t Model Probability > F Adjusted R2 

All plots (n = 120) 

dNBR_IA    <0.001 0.61 

Intercept 59.91863 16.93055 0.0006   

CBI 132.61502 9.76113 <0.0001   

RdNBR_IA      

Intercept 88.9992 49.41016 0.0742 <0.001 0.57 

CBI 359.14602 28.48691 <0.0001   

dNBR_EA      

Intercept −66.04456 28.40856 0.0056 <0.001 0.35 

CBI 108.52425 13.49596 <0.0001   

RdNBR_EA      

Intercept −79.28319 42.58894 0.0651 <0.001 0.30 

CBI 173.74911 24.55421 <0.0001   

Woodlands (n = 86) 

dNBR_IA    <0.001 0.69 

Intercept 50.92341 17.82425 0.0054   

CBI 137.77572 10.02647 <0.0001   

RdNBR_IA      

Intercept 40.5572 39.24262 0.3043 <0.001 0.74 

CBI 341.74184 22.07469 <0.0001   

Grasslands (n = 34) 

dNBR_IA    <0.001 0.38 

Intercept 89.38738 41.63793 0.0395   

CBI 114.00274 25.70259 0.0001   

RdNBR_IA      

Intercept 159.81218 134.76715 0.2444 <0.001 0.47 

CBI 442.91999 83.19011 <0.0001   
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Table 4. Burn severity classes and their corresponding CBI values, definitions, and threshold 

values. CBI values and definitions follow Miller and Thode [42] and were deemed appropriate 

for the study area. Threshold value determinations were based on regression models in Table 3. 

   Burn Severity Classes 

   Unchanged  Low  Moderate  High 

CBI Values a 0 to 0.1  0.1 to 1.24  1.25 to 2.24  2.25 to 3.0 

Definition 

One year after the fire the 

area was indistinguishable 

from pre-fire conditions. 

This does not always 

indicate the area did  

not burn 

 

Areas of surface fire 

occurred with little 

change in cover and little 

mortality of  

the structurally dominant 

vegetation 

 

The area exhibits a 

mixture of effects 

ranging from 

unchanged to high 

severity within  

the scale of one pixel 

(30 m2) 

 

Vegetation 

has high  

to 100% 

mortality 

All land-types  Threshold values     

Initial Assessment       

dNBR * 73  225  358  

RdNBR 123  536  895  

Extended Assessment       

dNBR −56  69  178  

RdNBR −63  137  311  

Woodlands       

Initial Assessment       

dNBR † 64  222  360  

RdNBR 73  466  808  

Grasslands       

Initial Assessment       

dNBR 100  231  345  

RdNBR * 202  711  1154  

* = best prediction with CBI, † = best prediction with CBI for individual land-type models, a = CBI threshold 

values chosen so to be comparable to most studies 

  

Figure 5. Scatterplots and regression models for initial assessment satellite imagery burn 

ratios predicting CBI from the full set of burned and unburned plots (n = 120). The use of 

non-linear models did not improve the predictive ability of regressions. 
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3.4. Accuracy Assessment 

In general, the accuracy assessment of severity classifications did not reveal any model that excelled 

above all others. Accuracies generally seemed to be comparable to that of the MTBS classification; 

however these results may not be comparable due to different classification methods, particularly of  

the unburned areas. Overall model accuracies ranged from 37.5 to 44.2 percent using data from all  

land-types (Table 5). Overall accuracies of satellite classifications using IA dNBR, IA RdNBR, and EA 

dNBR were nearly equal (43% to 44%) while EA RdNBR was lower (37.5%). Compared to overall 

accuracies based on all land-types, accuracies were improved 4.4% to 11.6% by considering burn 

severity classification developed from woodlands only. Models considering just burn severity in 

grasslands had similar accuracies as those that consider all land-types. User’s accuracies were highest 

for moderate and high severity classes and lowest for classifications of unburned conditions.  

For all land-types, user’s accuracies of the high severity class were more accurately predicted by EA 

imagery, while moderate and low severity classes were more accurately predicted by IA imagery (Table 5). 

For woodlands, user’s accuracy generally decreased from high to moderate to low severity classes.  

For grasslands, user’s accuracies were greatest for moderate severity classes and lowest for high and low 

severity classes. Producer’s accuracies (i.e., the probability that a given fire severity class of a plot is 

classified as such) were lowest for unburned and high severity classes and greatest for low and moderate 

severity classes. Unburned class thresholds were typically only slightly outside of the dNBR and RdNBR 

ranges, but nonetheless were classified incorrectly. Producer’s accuracies were mixed across burn 

severities for the different combinations of dNBR and RdNBR in initial and extended assessments. 

Compared to models based on all land-types, producer’s accuracies were generally higher for models 

based only on woodlands and lower for models based on grasslands. 

Table 5. Confusion matrices results showing the accuracies of the different methods/models 

produced. User’s and producer’s accuracies are divided into four burn severity classes; unb. 

(unburned), low, mod (moderate), and high. Overall accuracy of the MTBS classification 

method may be inflated since classification of some severity classes (e.g., unburned) did not 

follow the same methodology. 

Method Overall Accuracy User’s Accuracy Producer’s Accuracy 

  unb. low mod high unb. low mod high 

All land-types          

dNBR_IA 43.3 100.0 13.0 61.1 61.1 6.7 54.5 66.0 37.9 

RdNBR_IA 44.2 - 16.7 60.3 53.3 0.0 63.6 76.0 27.6 

dNBR_EA 43.3 100.0 10.9 57.4 90.9 6.7 45.5 70.0 34.5 

RdNBR_EA 37.5 - 10.6 51.5 100.0 0.0 45.5 70.0 17.2 

Woodlands          

dNBR_IAwood 47.7 100.0 12.9 60.5 80.0 8.7 57.1 71.9 50.0 

RdNBR_IAwood 55.8 83.3 15.4 68.6 78.9 21.7 57.1 75.0 62.5 

Grasslands          

dNBR_IAgrass 44.1 - 15.4 66.7 33.3 0.0 50.0 66.7 20.0 

RdNBR_IAgrass 44.1 - 15.4 68.4 0.0 0.0 50.0 72.2 0.0 

MTBS - - 19.4 65.6 57.1 - 54.5 42.0 55.2 
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4. Discussion 

4.1. Application of CBI 

This study quantified changes in oak woodland and grassland vegetation across a gradient of burn 

severities. The results of this study are new given that no known published information using the Landscape 

Assessment [26] is currently available from oak woodlands and only one other published study in the 

eastern U.S. exists from a site with a significant oak component [43]. FIREMON Landscape Assessment 

methods and applications are new for many managers and scientists in this region likely due to the lack 

of large-scale wildfires and federal lands compared to the western U.S. Methods and results presented 

here may help to refine and understand future burn severity and monitoring activities. 

An impetus for this study was concern that burn severity classifications do not perform well in oak 

woodland and grassland vegetation. Burn severity classification in grasslands poses a concern because 

vegetation change detection has potential to underestimate burn severities despite observations that fire 

may alter the composition of grasslands (e.g., shift composition from native bunchgrass to forb and 

annual grass dominance) which may not be detected using satellite imagery. However, it is possible that 

the IA imagery could detect a level of ash or bare soil that would correlate with resulting, lagged effects 

in grassland or woodland composition. This could explain why CBI was generally more highly correlated 

with the IA than the EA. In a longleaf pine (Pinus palustris) ecosystem, Picotte and Robertson [31] note 

that some burn severity effects evident on the ground at the time of CBI sampling one year post fire were 

no longer detected by the EA imagery and as a result compared the IA and the EA with imagery taken 

at an intermediate time frame of three months. 

A consequence of the lack of studies from the eastern U.S. that have utilized the Landscape 

Assessment methodology is that fire severity has been poorly defined with regard to changes in vegetation. 

By measuring the CBI at each plot we were able to identify strata changes associated with this burn 

severity classification scheme. Mean CBI scores were slightly higher for woodlands than grasslands. 

Though somewhat counterintuitive, mean CBI scores (Figure 4) in woodlands were higher than the means 

for both short and tall tree strata. For all land-types, mean scores of grass and shrub strata were 

consistently higher than the mean CBI while mean scores of substrate and short tree strata closely 

matched the mean CBI. Within grasslands, CBI scores were frequently higher than the substrate stratum 

score and lower than shrub stratum score. This suggests that the shrub stratum in the grasslands more 

readily achieved high severity effects and its scores generally elevated the CBI. In grasslands and open 

woodlands, there may be little opportunity to rate severity based on effects on woody cover change. 

However, where woody cover is present in grasslands, this may aid in better defining fire severity in 

grasslands, and may support the notion that ratings for grassland CBI scores are comparable to those of 

more forested areas and effects. Definitions and understanding of fire severity in grasslands are lacking, 

and therefore it is difficult to judge whether CBI methods are appropriate for grassland plots. A synthesis 

of fire severity and vegetation response is needed for grasslands similar to that presented by Keeley [13]. 

Based on our measurements, it appeared that most grassland plots had moderate burn severities and few 

fell within the ranges of low and high severity conditions. 

We thought that to get a representative severity assessment using the CBI in short-statured oak 

woodlands (i.e., Cross Timbers), we needed to modify the CBI strata. Stratum heights were developed 
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in western, coniferous forests [26] and we were concerned that the tree height break points did not fit 

the short tree stature and lack of canopy stratification that exists in woodlands and more open forest 

community structures. For example, little duff exists in the substrate strata of the WMWR, tall shrubs 

and short trees are largely composed of 1 to 3 m tall blackjack oak, and the overstory canopy is typically 

short (3 to 9 m) and rarely exceeds 9 m. For these reasons, we scaled the tree strata to what we perceived 

as an accurate representation of the pre-fire height stratification of these woodlands. 

Miller and Thode [42] attempted a relativized change metric based on the heterogeneity of the unburned 

landscape leading to the development of the RdNBR and DeSantis and Chuvieco [44] tested modifications 

to the CBI for a similar reason; to weight severity scores by pre-fire cover. Both efforts attempted to 

scale or adapt broad change metrics to more localized conditions. We chose to modify the height 

categories for the tree strata, for the same purpose: to scale the burn index to local conditions. However, 

because we did not sample with a control to compare results of un-modified strata, we cannot say if 

scaling the stratum heights had any effect on the classification accuracy or predictive relationship among 

CBI and satellite classifications. Another discrepancy between the CBI protocol and its apparent fit to 

the xeric oak ecosystem of the south central U.S. occurred regarding char heights in that they were too 

high and not appropriately scaled to the short trees in the Cross Timbers (thus lowering the score for that 

stratum). For example, for intermediate and tall trees, low severity char height was 1.8 m, moderate 

severity was 2.8 m, and high severity was greater than 5 m. In many cases, to score the highest rating 

for the char height (i.e., 3.0), char would have to be taller than the trees. This resulted in an incongruous 

score for char height relative to the other metrics in that stratum, and potentially had the effect of 

artificially lowering the severity score for that tree layer. To mitigate this problem in the future, if tree 

heights are modified, then char height modifications should perhaps also be considered. 

4.2. Satellite Imagery Classification 

Based on correlations among strata and satellite imagery classifications (Table 2), the tall tree stratum 

was most strongly related to satellite classifications, regardless of assessment timing, use of interpolation, 

or burn ratio (dNBR or RdNBR). The tall tree stratum was only measured on 14 of the 120 plots and this 

is likely to be a common rating frequency in short-statured forests and in open-structures in a mosaic of 

grasslands. The next best strata correlated with burn ratio were substrate and short tree. These strata were 

typically more highly correlated to burn ratios than the grass or shrub strata. All correlations among CBI 

and the substrate, grass, shrub, and short tree strata were greatest with the IA dNBR using interpolation; 

therefore we chose this burn ratio as the best-suited for predicting CBI. 

CBI and burn ratio correlations were higher in woodlands than grasslands. Other studies have shown 

that performance and utility of remotely sensed burn severity may be limited in grassland-dominated 

regions [45]. The observation that dNBR was more highly correlated with CBI for all plots, but RdNBR 

was more highly correlated with woodlands and grasslands separately, suggests that the relationships 

among the two ratios and CBI differed by land-type. This was our premise for providing separate models 

and thresholds for woodlands and grasslands in Table 4. Regardless of which burn severity ratio is 

chosen, it should be expected that the majority of the variance in observed CBI can be explained. 

Correlations among burn ratios and CBI were consistently higher for the IA compared to EA and this 

difference was consistent when separating correlations by strata (Table 2). Why would IA imagery better 
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predict burn severity when the timing of the measurement of burn severity matched the EA? Higher 

correlation between CBI and the IA imagery suggests that immediate post-fire changes detected by 

satellite remain identifiable by observers utilizing the CBI one year later, and/ or that “green-up” detected 

by EA imagery may mask post-fire effects detectable on the ground. The EA should provide additional 

data about delayed survival and mortality and, at this time, it is not clear why the EA is less useful for 

classifying severity. We hypothesize that it is related to the properties of grassland vegetation, their  

post-fire recovery, and reflectance. 

IA models for dNBR and RdNBR explained 61 and 57 percent of the variance in CBI, respectively. 

Coefficients of determination (R2) are comparable to or lower than the best model accuracies presented 

by Cansler and McKenzie [30] for the northern Cascades, Miller et al. [18] for sites in the Sierra Nevada 

and Klamath Mountains, Picotte and Robertson [31] for the southeastern U.S., and many other sites 

throughout the western U.S. (see Table 12 in Cansler and McKenzie [30] and Parks et al. [46]). Despite 

our models having similar explanatory power as many others, overall the classification accuracies  

were lower. 

Accuracies of burn classifications were much lower in unburned (user’s accuracy) and low severity 

classes (producer’s accuracy) compared to moderate and high severity classes. Accuracies of moderate 

and high severity classifications were comparable to those reported in other studies. It appears that the 

cause for the inaccuracy of unburned/low severity areas was that many of the unburned plots had image 

classified burn ratios in the range of low severity values. This situation is a case where a regression only 

approach to deriving class thresholds could be supplemented and improved with slight adjustments. In 

this case, classifications between unburned and low severity classes could be improved by increasing IA 

threshold values to around 140 for dNBR and 320 for RdNBR. These values would be on the high range 

for unburned/low severity threshold values compared to other sites throughout the western U.S. (see 

Table 13 in Cansler and McKenzie [30] and Parks et al. [46]). Based on the data, it is not clear why 

increasing these threshold values for dNBR and RdNBR is needed and whether similar results would be 

found in comparable conditions or vegetation. Differences in conditions (e.g., spatial, temporal, radiometric, 

and geographic) of two image scenes can affect fire severity quantification [29]. Further, it is possible 

that the need to increase threshold values is because changes on unburned plots are higher than typically 

observed due to the added effects of exceptional drought on vegetation conditions. Combined drought 

and fire effects influencing CBI is an example for why thresholds can vary between burns and thresholding 

may be needed for each fire. Further work could be done to refine threshold points and increase 

accuracies by including ground-truthing sites near mapped break points. 

Classification of high burn severity had the highest user’s accuracy while classification of moderate 

burn severity had the highest producer’s accuracy. Other studies have shown higher classification accuracies 

with increased severity. Depending on application, it may be that the accuracy of the burn severity 

classification is adequate for specific situations such as distinguishing moderate to high severity classes. 

Considering the accuracy of the woodland only model, it seems that woodland burn severity classification 

should be reliable, particularly for classifying moderate to high severity conditions. Based on the 

accuracy differences between woodlands and grasslands (Table 5), it would seem that much of the 

inaccuracy of classifying “All land-types” is likely to be due to classifying grasslands. Efforts to improve 

models and classification of grassland burn severity may consider modifications to the burn rating 

system (e.g., CBI), imagery processing approaches (i.e., scene timing), and classification methodology. 
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4.3. Recommended Methods for Validating Future Fire Severity Maps in Oak Woodlands 

Recommendations for future work are based solely on our findings from this single fire. Ideally, more 

studies would be available to compare the results over replications. Considering this, we would 

recommend using an unaltered CBI protocol paired with the IA period burn severity imagery (dNBR or 

RdNBR). In the Cross Timbers region it is highly likely that the tall tree class will not be rated using the 

standard CBI form. CBI—Satellite relationships will likely be best for strata that capture the dominant 

overstory layer, particularly for woodlands. Areas with higher percentages of woody cover are likely to 

be more accurately classified than those dominated by grasslands. In many parts of the eastern U.S. high 

severity burns are uncommon and occur during drought conditions. Burn severity monitoring should 

consider the non-fire related effects, such as drought, and how much they may contribute to the overall 

variability in vegetation observed. 

5. Conclusions  

Our findings suggest that dNBR and RdNBR reflectance data, thresholded using total CBI, 

particularly from the IA period, produces the most accurate burn severity map in oak woodlands. To our 

knowledge, this paper presents one of the most rigorous analyses of burn severity in eastern U.S. 

deciduous forests and is the first time that remotely sensed information has been used to develop burn 

severity thresholds and maps in oak-dominated woodlands including a gradient to grassland vegetation. 

The accuracy of burn severity models (Table 5) suggests that burn severity metrics have greatest utility 

for monitoring fire effects to woodlands and, less so, in grasslands. The lowered accuracies of 

classifications of grasslands (i.e., non-woody areas) beg the question: What are definitions of burn 

severity for grass/ herbaceous dominated areas, particularly in situations where they occur within  

a matrix of woodlands? Further advancements in burn severity monitoring in eastern U.S. vegetation 

types, including improved detection of substrate and grass strata change, would both improve our 

understanding of their fire ecology and significantly enhance documentation and monitoring through 

remote sensing. 
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