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Abstract: Light Detection and Ranging (Lidar) is a state of the art technology to assess forest 

aboveground biomass (AGB). To date, methods developed to relate Lidar metrics with forest 

parameters were built upon the vertical component of the data. In multi-layered tropical 

forests, signal penetration might be restricted, limiting the efficiency of these methods. A 

potential way for improving AGB models in such forests would be to combine traditional 

approaches by descriptors of the horizontal canopy structure. We assessed the capability and 

complementarity of three recently proposed methods for assessing AGB at the plot level 
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using point distributional approach (DM), canopy volume profile approach (CVP), 2D 

canopy grain approach (FOTO), and further evaluated the potential of a topographical 

complexity index (TCI) to explain part of the variability of AGB with slope. This research 

has been conducted in a mountainous wet evergreen tropical forest of Western Ghats in India. 

AGB biomass models were developed using a best subset regression approach, and model 

performance was assessed through cross-validation. Results demonstrated that the variability 

in AGB could be efficiently captured when variables describing both the vertical (DM or 

CVP) and horizontal (FOTO) structure were combined. Integrating FOTO metrics with those 

of either DM or CVP decreased the root mean squared error of the models by 4.42% and 

6.01%, respectively. These results are of high interest for AGB mapping in the tropics and 

could significantly contribute to the REDD+ program. Model quality could be further 

enhanced by improving the robustness of field-based biomass models and influence of 

topography on area-based Lidar descriptors of the forest structure.  

Keywords: aboveground biomass; Lidar; volume profile; canopy grain; texture;  

tropical forests 

 

1. Introduction 

Tropical forests store over 40% of the terrestrial carbon and play a major role in the global carbon 

cycle. A large part of this carbon is sequestered in aboveground biomass (hereafter referred to as AGB 

or biomass), contributing towards climate regulation [1–3]. Consequences on ecosystem functional 

characteristics and climate changes have been associated with regional changes in biomass. Biomass 

determines potential carbon emissions that could be released to the atmosphere due to deforestation. 

Accurate estimation of AGB, especially of tropical forests, is hence necessary to not only understand 

their influence on water and energy fluxes but assess impacts of carbon losses due to deforestation and 

forest degradation on global change and environmental degradation [4–7]. 

Traditional techniques based on field measurements, particularly using destructive sampling, are 

considered most accurate in estimating biomass [5,8]. However, field measurements are restricted in 

terms of spatial distribution, repetitivity and cost, and are generally upscaled to larger areas using remote 

sensing data [9]. On the other hand, direct measurement of forest carbon stocks using  

space-borne sensors is also currently not feasible and researchers combine remote sensing based 

vegetation maps with carbon density values obtained either from the available global databases or local 

field-based measurements [10,11]. However, tropical forests present a challenging environment for 

biomass estimation as biomass levels are high, forest canopy is heterogeneous, often tall and largely 

closed with multiple layering in these forests. Sensor limitation, including spatial resolution, and 

vegetation complexity have been mainly attributed to poor performance and saturated biomass estimates 

in tropical forests with both optical and radar data [12–15]. Moreover, these limitations prevent from 

assessing rates of forest degradation which are often characterized by subtle changes in the canopy 

structure. Improving accuracy of biomass mapping could constrain these uncertainties to some extent. 

Multi-sensor fusion [16] or very high-resolution imagery (VHRI, i.e., <5 m resolution) has shown a 
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promise in overcoming the limitations of individual sensors [17]. For instance, texture analysis of 

VHRI (1–2 m resolution) of forest canopies that exploits the contrast between sunlit and shadowed 

part of tree crowns, not only improved details of the outer canopy structure but correlated well with 

crown size and stand density [18,19]. High potential for biomass mapping was also seen with methods 

like Fourier Textural Ordination (referred as FOTO [20]) or Gaussian variogram model [21] applied 

on IKONOS imagery as such textural Indices did not saturate in high biomass ranges of unstratified 

forest [20–22]. Although important, such image-based techniques describe only the horizontal 

distribution of biomass, thus lacking any insight into vertical description of the canopy structure, a 

complex issue in multi-layered forests. 

The emergence of Light Detection and Ranging (Lidar) in the late 1990s provided new insights in 

quantifying vegetation distribution in both vertical and horizontal directions and estimating several 

biophysical parameters from a very fine (tree) to coarser (landscape) scales [23,24]. Owing to the 

capability of Lidar returns to sample the ground elevation (about 10%–20% penetration to the ground 

depending on the density of the canopy), accurate measurements of the foliage height and its distribution 

has been possible [25] using both full waveform as well as discrete return recording sensors [23], even 

within tropical forests [26]. Studies in different forest ecosystems have shown that both point 

distributional metrics (DM) and canopy profiles extracted from waveform or discrete return systems are 

analogous in accurately describing the distribution of biomass in 3D [24,25,27]. From  

full-waveform data analysis in a tropical context, the height of median energy returns of the canopy 

profile was reported to be more powerful than total height because it is sensitive to both vertical 

arrangement and density of canopy elements [28]. Similarly, from using discrete Lidar data, the mean 

canopy height profile, defined as the vertical center of canopy volume profile, was found to be a good 

estimator of biomass of tropical forests [29]. Extending the concept of vegetation profile, [24] proposed 

a voxel-based approach to assess the spatial organization of vegetation material in 3D. Indicators 

extracted from the so-called Canopy Volume Profile approach (CVP) were found to be more closely 

related to several of the conventional forest parameters. Similar voxel-based approaches were also 

successfully used to retrieve forest parameters at stand, plot and tree levels using total frequency of 

discrete return sampling along height bins of canopy columns [23,30–32]. Generally speaking, [33] 

indicated that structural parameters that combine height and gap fraction, i.e., the fraction of open sky 

not obstructed by canopy elements [34], improve biomass estimations. Both [35] and [33] also noted 

that Lidar might not be adapted to quantifying biomass variations in deciduous forests due to saturation 

effects. The attenuation of the signal is expected to be even more pronounced in multi-layered forest, 

preventing exhaustive sampling of the whole vegetation stratums. Nevertheless, assuming that crown 

shape and crown structure is directly related to the vertical foliage profile [36], one might hypothesize 

that inclusion of crown size and crown density, as achievable from texture analysis of images of the 

canopy [19], might lead to improved Lidar-based models of biomass, at least at the plot level. 

The primary goal of this study is to find a suitable Lidar-based method to estimate aboveground 

biomass from a local to landscape-scale of tropical wet evergreen forests over a complex terrain. We 

would like to demonstrate how vertical and horizontal descriptors of the forest canopies could be 

efficiently combined to develop such a suitable Lidar-based method. Towards this, we will assess the 

capability and complementarity of recently proposed DM, CVP and FOTO methods applied to Lidar 

hillshade models of an area with contrasting gradients of stand conditions (post-fire to post-logging and 



Remote Sens. 2015, 7 10610 

 

 

preserved close-canopy), and propose modifications, if necessary, to account for terrain complexity to 

minimize errors in estimation. This selected 5 km2 Dipterocarp-dominated study site falls within the 

Western Ghats mountain range and is representative of the landscape. It may be noted that previously 

developed Lidar-based biomass models for tropical forests [29] were not tested on such high-wood 

density forests with a highly varying complexity in forest structure or terrain (Figure 1). 

 

Figure 1. Conceptual view of the proposed method for improving biomass models from 

Lidar data in complex tropical environments. 

2. Materials  

2.1. Study Area 

The study site (12°32'47N, 75°40'01E) is located in the Kadamakal Reserve Forest of the Pushpagiri 

Wildlife Sanctuary in the Southern part of Karnataka, India [37]. Field plots were spread within a  

7 km2 area falling inside a watershed whose main river stream is oriented in the Northwest direction 

(Figure 2). The topography is complex, with altitudes ranging from 90 to 600 m above sea level, and 

average slope of 24.6° (±14°) but reaching 85° locally. Temperature varies between 25 °C and 30 °C. 

The rainfall regime showed a strong seasonality due to the Indian southern monsoon [38]. The site 

receives around 5100 mm of precipitation per year, with 90% received during June–October [39]. The 

wet evergreen forest characterizing the area belongs to the Dipterocarpus indicus–Kingiodendron 

pinnatum–Humboldtia brunonis low elevation forest type [40]. Although most of the area experienced 

selective logging during 1974–1988, previous studies noted that there has been no significant effect on 

the current stand structure [41]. However, an intense wildfire 25 years ago resulted in patches of  

semi-evergreen forests with different levels of degradation spread within the area. 

2.2. Field Data 

Fifteen (N = 15), 1-ha plots (100 m × 100 m) distributed in a gradient of stand structure were 

established, of which 7 were inventoried in 2009 and 8 in 2010. Each of these 1-ha plots were subdivided 

into 20 m by 20 m quadrats. Within each quadrat, diameter at breast height (DBH) of all the trees equal 

or above 10 cm was recorded using a tape (for layout and additional details refer to [22]). Biomass was 

then estimated at the plot level using a regional allometric model (1) derived by [22] using data acquired 

by [42]. For these 15 plots, plot biomass ranged from 161 to 687 tons of dry matter per hectare 

(t∙DM∙ha−1), with an average value of 443 ± 161 t∙DM∙ha−1. 
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log(𝐴𝐺𝐵) = 1.988422 × log(𝐷𝐵𝐻) (1) 

The structural complexity of the plots illustrating the relationship between the plot DBH distribution 

and the total plot biomass is highlighted in Figure 3. 

2.3. Lidar Data 

Lidar data was acquired by the National Remote Sensing Centre (Indian Space Research 

Organization) (Figure 2), between 14–31 December 2005, using Leica ALS 50 (Leica Geosystems, 

Germany) mounted on an aircraft flown at 2500 m above ground level. This small footprint system 

records up to 4 returns per pulse emitted at a frequency of 35 kHz with a 24 Hz scanning rate in the 

infrared domain (1084 nm). With a 44° field of view, the system produced 1455 m swath on the ground. 

The survey area was covered in 8 flight lines with a 15%–20% line overlap to avoid slivers or gaps in 

the data. The overall average first return point density was 0.5 hits∙m−2.  

 

Figure 2. Structure of ground topography and canopy height over the study area. Letters 

refer to plot names. 
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Points describing the ground topography were extracted in-house using Terrascan software 

(Terrasolid, Finland). Ground classified points represented only 5% of total number of laser hits. A 

Triangulated Irregular Network was computed from the resulting ground classified points and further 

rasterized to a 2-m regular Digital Terrain Model (DTM) in ArcGIS (ESRI, Redlands, CA, USA). The 

height (H) of the non-ground points was calculated by subtracting the corresponding DTM value at the 

location from the elevation of the point return.  

 

Figure 3. Relationship between plot biomass (upper part) and underlying tree DBH 

distribution (lower part, jitter representation) highlighting the complex relationship between 

function and structure.  

3. Methods  

3.1. Registering Field Plots with Lidar 

On the field, plot positions were fixed using a Trimble JunoTM SB GPS (Trimble, Sunnyvale, CA, 

USA) that had a real time positioning accuracy of 2–5 m. Because lower accuracies were expected under 

forest conditions, plot positioning was further improved by searching for an optimal match between 

Lidar and plot maximum height in its neighborhood. This was accomplished by moving the plot in 

incremental steps around a given neighborhood (up to ±50  m in both x and y directions giving a 1 m 

incremental step in each direction) and computing the elevation difference between field (Hfmax) and 

Lidar maximum height for every 10 m × 10 m quadrats. Hfmax is the maximum of Hf of each quadrat. 

Field tree height (Hf) was estimated using DBH to H Equation (2) published by [39]  

(R2 = 0.67). 

log(𝐻𝑓) = 0.93 +  0.63 log(𝐷𝐵𝐻)  (2) 

The best plot position was fixed at the x, y shifted position where the root mean squared error of 

height differences is the lowest. Note that since some large tree crowns spread over multiple quadrats, 

thus affecting Lidar height estimations, 4 plot positions were adjusted visually based on field knowledge 
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and Lidar DTM. Accuracy of positioning of such plots was qualitatively estimated to be beyond 10% of 

the total plot surface.  

3.2. Lidar Parameter Estimation 

3.2.1. Distributional Metrics (DM) 

First and last Lidar returns vegetation height distributions (i.e., from returns above 2 m in height) 

were generated for each plot. Based on previous research, 54 metrics were derived from these height 

distributions [43,44], including:  

 mean height (Mf, Ml for first and last return distribution respectively), height range (Rf, Rl) and 

coefficient of variation of height (CVf, CVl); 

 quantiles of height computed every 10th percentiles for both first (Pfi, i = 1, 10, …, 100) and 

last returns (Pli, i = 1, 10, …, 100), complemented by 25th, 75th, 95th and 99th percentiles, i.e., 

Pf25, Pf75, Pf95, Pf99 for first return distribution and Pl25, Pl75, Pl95, Pl99 for last  

return distribution; 

 canopy densities, corresponding to proportions of points above given height threshold values. 

Height thresholds were defined by dividing into 10 equal parts the range between the 95th 

height percentile and the lowest point height associated with vegetation. The canopy densities 

of first and last returns, respectively Dfi and Dli (i = 0, 10, …, 90) were then computed as the 

proportion of points above the corresponding ith threshold value to the total number of points. 

3.2.2. Canopy Volume Profile (CVP) 

CVP computation was introduced in [24] for fullwaveform data and adapted to discrete Lidar data in [23]. 

The main steps of the method are summarized below: 

 Each 1-ha plot was divided into volume elements or voxels of 20 m × 20 m × 1 m each. A 20 m 

horizontal resolution was selected to be in line with the field sampling strategy and ensure at 

least 1 ground return within each quadrat to ably describe the ground topography.  

 The number of Lidar returns falling in each voxel was counted, and corrected for occlusion 

effects according to the procedure introduced by [32]. 

 Empty voxels were classified into either open (OG) or closed gaps (CG). OG corresponded to 

those voxels above the first filled voxel with respect to the highest filled voxel within the plot. 

All the remaining empty voxels were classified as CG. 

 Filled voxels were similarly classified into euphotic (EA) or oligophotic areas (OA). For a given 

subplot, EA corresponded to the voxels falling within the uppermost 65% of the canopy heights [24]. 

All the remaining filled voxels were classified as OA.  

 Plot-level statistics were achieved by simply summing the number of voxels belonging to 

each class.  
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3.2.3. Canopy Grain Analysis (FOTO) 

FOTO is a well-established method to quantify image textural properties [19,20,22]. A brief introduction 

to the main steps of the method is given below, while more details can be found in [20]. The image data is 

first divided into continuous unit windows, fixed here to 100 m by 100 m. A 2D Fast Fourier Transform is 

then applied to each unit window, and the resulting amplitudes are squared to yield a 2-D periodogram 

providing information about the variability in pixels according to spatial frequencies. Averaging the 

periodogram across all possible planar directions provided a radial spectrum representing the frequency 

distribution of the Fourier frequency. The variability of the radial spectra is analyzed by principal component 

analysis (PCA) and scores of the most prominent axes are used as texture indices [19], which were found 

to correlate well with various forest biophysical parameters including biomass [22].  

FOTO has been efficiently applied to hillshade models generated from Lidar elevation model to 

analyze the sensitivity of the method to varying sun-view acquisition conditions [45]. In this study, 

hillshade models of both Lidar digital surface model (DSM) and canopy surface model (CHM,  

CHM = DSM − DTM) were computed using 4 different azimuths (75°, 165°, 255°, and 345°) using 

ArcGIS Spatial Analyst. The azimuth line 165°-345° follows the main slope direction of the watershed 

in which the plots are localized. DSM was generated by selecting the maximum Lidar elevation within 

a 1 m × 1 m cell and interpolating the empty cells using a natural neighbor method. FOTO metrics were 

computed at the plot level for each hillshade model. The 3 first PCA axes of either  

the DSM-based (FD1, FD2, FD3) or CHM-based (FC1, FC2, FC3) hillshade models were then retain for 

each azimuth. 

3.2.4. Terrain Complexity (TC) 

Because of the complexity of the ground topography, the plot-level topographic information was 

reduced through the use of topographical complexity indices (TCI). Such indices aim at summarizing 

the main terrain features without losing critical topographic information. Here, we followed the method 

introduced by [46]. First, four terrain attributes were computed from the DTM using a 3 × 3 kernel 

window (total curvature, terrain rugosity, local relief and local standard deviation). The four terrain 

attributes were then combined using a normalization factor to deduce the compound terrain complexity 

index. Finally, plot-level statistics, i.e., mean (TCIM) and standard deviation (TCISD) were computed to 

evaluate local terrain complexity.  

3.3. Model Development and Statistical Analysis 

Overall five regression models were developed. The first three aimed at quantifying the potential of 

DM, CVP and FOTO metrics (benchmark models) to quantify biomass over such complex evergreen 

tropical humid forest. The last two models aimed at quantifying the potential improvement of biomass 

estimations resulting from combining 3D-based metrics (i.e., DM or CVP) with both 2D textural indices 

(i.e., FOTO) and indices of topographical complexity (i.e., TCI). 

Predictive linear models were built for each of the five scenarios under study by carrying out a best 

subset regression analysis. The maximum number of predictors was set to five for parsimony. We only 

retain models having a variance inflation factor (VIF) below five [47], normally distributed residuals 
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(Shapiro test at a level 0.05) as well as all predictor variables significant at a level 0.01. For each scenario, 

the overall best model was selected using the corrected Akaike Information Criteria (AICc) [48], which is 

more adapted to small sample size than AIC [49]. For FOTO, azimuth directions were modelled 

separately, and only predictor variables computed from the best direction were retained for the two last 

scenarios. The accuracy of the predictive models was assessed estimating leave-one-out cross-validation 

(LOOCV) [50], and reporting root mean squared error (RMSEcv) and adjusted determination coefficient 

(adj. R2). The statistical analyses were performed within R Software, using leaps, car and DAAG 

packages (cran.r-project.org/). 

4. Results 

Predictive models resulting from the 5 different sets of Lidar-based parameters are presented in Table 

1. The 3 benchmark models (Models 1 to 3) provided cross-validation adj. R2 ranging from 0.74 to 0.90 

with corresponding RMSEcv ranging from 17.24% to 10.92%. Among these benchmark models, the best 

results were obtained using DM (Model 1, ANOVA F-Test, F14,13 = 121, p < 0.001), and included 2 

percentiles computed from last returns, representing the highest (Pl99) and lowest (Pl0) values, as well 

as the median density value computed from the first returns (Df50). The model residuals are unbiased 

but show an increased variability above 450 t·DM·ha−1 (Figure 4). The model based on CVP (Model 2, 

ANOVA F-Test, F14,13 = 77.7, p < 0.001) performed almost as good with an RMSEcv of 13.29% and adj. 

R2 of 0.85 (Table 1). However, the model residuals varied more on the full range of biomass (Figure 4). 

The poorest model was obtained using FOTO metrics (Model 3, ANOVA F-Test, F14,13 = 41, p < 0.001) 

computed from hillshade models generated using an azimuth angle of 166°. Model 3 integrated two 

variables from the CHM (namely, FC1 and FC3) and a variable from the DSM (FD2). It has a 17.24% of 

RMSEcv and explained 74% of the total variance in biomass. Interestingly, all three of the PCA 

components were selected in the resulting model. Compared with the two other benchmark models, 

Model 3 showed a slightly higher residual variability on the full range of biomass (Figure 4). Note that 

models computed from other azimuth angles were not considered owing to their significantly lower 

performances (results not reported here). 

Table 1. Predictive models of aboveground biomass obtained using the 5 sets of independent 

variables derived from Lidar data. Model performance includes cross validated root mean 

squared error (RMSEcv), cross validated adj R2 and corrected Akaike Information Criteria 

(AICc). FOTO metrics were obtained using an azimuth angle of the light source of 166. 

Model Method Equation  
RMSEcv 

t∙DM∙ha−1 (%) 

Adj. 

R2 
AICc 

1 DM AGB ~ Pl0 + Pl99 + Df50 48.42 (10.92) 0.90 165 

2 CVP AGB ~ EA + OA + CG **  58.94 (13.29) 0.85 169 

3 FOTO AGB ~ FC1 + FC3 * + FD2 76.42 (17.24) 0.74 181 

4 DM + FOTO + TCI AGB ~ CVl + Df40 + TCIM + FD3 28.83 (6.50) 0.96 156 

5 
CVP + FOTO + 

TCI 
AGB ~ EA + OG ** + TCISD + FC3+ FD1 32.28 (7.28) 0.95 161 

Predictor’s significance levels: 0 “”; 0.001 “*”; 0.01 “**”. 
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Figure 4. Goodness of fit and residuals of the benchmark models 

 

Figure 5. Goodness of fit and residuals of the combined models 
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The combination of either DM or CVP with FOTO and TCI (Models 4 and 5) improved model 

performance. Model 4 (ANOVA F-Test, F14,13 = 366, p < 0.001), including DM, FOTO and TCI 

explained 96% of the variance in biomass, with an RMSEcv of 6.5%. This model integrated the 

coefficient of variation of last returns (CVl), a density metrics from first returns (Df40) as well as the 

average terrain slope complexity (TCIM) and the third component of texture-based PCA from the DSM 

(FD3). In terms of residuals, the model performed quite well up to 400 t∙DM∙ha−1, and showed a slight 

increase in variability towards the higher biomass levels (Figure 5). The model that included CVP, FOTO 

and TCI (Model 5, ANOVA F-Test, F14,13 = 289, p < 0.001) performed only slightly poorer than Model 4, 

with an adj R2 of 0.95, and an RMSEcv of 7.05%. The model is not biased and showed a homogeneous 

distribution of the residuals on the full range of biomass (Figure 5). Model 5 included 2 CVP variables, 

euphotic area (EA) and open gaps (OG), the standard deviation of the terrain complexity index (TCISD), 

as well as two textural indices from the CHM (FC3) and the DSM (FD1).  

4.1. Model Performance 

In this gradient of forest structure that varies from burnt to logged and closed-canopy preserved 

forests, benchmark biomass models (Models 1 to 3) have performed well, showing cross-validated adj 

R2 values above 0.70 and an RMSEcv in the range 17.24%–10.92%. Among these models, the DM 

approach (Model 1, Table 1) performed better than others. The model included the two extreme 

percentiles (i.e., the 99th and 0th) of the last return distribution, giving information on the range of the 

distribution, as well as the median density of the first returns, providing insights about canopy cover. 

Such a variable association was expected, their complementarity to assess forest structure having been 

reported in numerous previous studies [43,44,51]. The model is based on CVP variables (Model 2, 

Table 1) performed slightly poorer than that of the DM-based one. This result is more surprising because 

CVP was found to be well correlated with the spatial arrangement of elements within the canopy and the 

field inventory data [23]. Such a result might be partly explained by the low point density, and the low 

ground penetration, which prevented the use of a finer voxel resolution. As a consequence, the 

description of canopy structure might be suboptimal, as noted by the poorer model performance obtained 

here. The benchmark model developed from FOTO variables (Model 3, Table 1) also suffers from 

similar limitation. Moreover, hillshade models were generated assuming a Lambertian surface 

reflectance. Such an opaque surface represents a simplified representation of the canopy properties [45]. 

These two issues might decrease the quality of the information conveyed by texture and explained the 

lower performance of the FOTO-based model compared to the one obtained using IKONOS imagery 

over the same area [22]. Despite this drawback, hillshade models allow a good flexibility for textural 

analysis. Our results showed that azimuth taken along the slope direction (165° here) provided the best 

results. Surprisingly CHM-based metrics also performed better using the same azimuthal direction, 

highlighting the effect of topographical conditions on both forest structure and tree crown architecture. 

This might be explained by optimization of the shadow patterns along the slope axis, which might also 

have an incidence on inner tree crown description, and constitute the best acquisition conditions for 

textural analysis [52]. In addition, we perceive that, while DM metrics were found to be stable with a 

change in Lidar density [53], both CVP and FOTO approaches may perform better with increased 

point densities. 
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Combining either DM or CVP with both FOTO and TCI, the models not only had a direct impact on 

model performance but also improved description of the plot structure. Models 4 and 5 showed adj. R2 

values above 0.95 and corresponding RMSEcv of 6.50% and 7.28% respectively. Model 4 still integrated 

a density variable providing information on the canopy cover (i.e., Df40). However, height related 

variables are replaced by the coefficient of variation in height, which summarizes the dispersion of the 

canopy heights, completed by the third PCA (Fc3) axis computed from the DSM-based hillshade model, 

and the mean of the TCI (TCIM). In a similar way, CVP-based variables differed slightly between Model 2 

and 5. Model 2 included the three variables describing the canopy structure, i.e., euphotic (EA), 

oligophotic (OA) areas as well as the closed gaps (CG). In Model 5, EA is maintained along with open 

gaps (OG), which described the variability of the outer canopy, a topographical index (TCISD) and two 

FOTO metrics: the first and third PCA axes from the CHM and DSM, respectively. Overall, the selection 

of more general variables from DM and CVP in Models 4 and 5, respectively, suggested that part of the 

information needed to assess plot biomass is provided by the variables newly integrated. Indeed, [23] 

showed that the amount of OG characterized well the structure of the canopy surface, and [45] reported 

that the first PCA axis was well correlated with apparent tree crown size. [39] demonstrated that crown 

allometries are less affected than stem allometries to site factors, making the former more suitable for 

predicting forest parameters. In terms of texture, the selection of the third PCA axis (FC3 or FD3) is 

somehow contradictory with previous studies where it was noted that most of the textural information is 

synthetized along the two first PCA axes [54]. However, additional research is needed to fully understand 

the link between FOTO metrics and forest parameters in a range of forest conditions. Apart from texture, 

a significant difference between Models 4 and 5 is the integration of a topographical variable within  

Model 5. Such a result was expected because of the demonstrated relationship between forest structure and 

slope [55], as well as the impact of topography on remote sensing data products. In terms of texture, [22] 

reported topography induced texture variations in optical images is independent of variations in canopy 

properties. Similarly, Lidar variables were also found to be sensitive to terrain slope [56]. Indeed, Lidar 

heights might be inaccurate in slope areas, because individual point height is computed from the DTM 

independently from the tree structure. As a consequence, point heights are underestimated in part of the 

crown spreading upslope, and overestimated point height in downslope parts of the crowns [56]. 

Nevertheless, the fact that topographical variables were only included in one out the five models 

demonstrated that most of the models compensated for the topographic variability, thus minimizing its 

effect on model performance. 

Despite the fact that DM-based model performed little better than CVP-based one and that Model 5 

could not compensate for topographical variability, we would intuitively recommend using CVP-based 

approaches for estimating biomass, particularly in tropical forests. DM variables were found to be 

affected by the local forest structure, impeding the development of general models for predicting forest 

parameters like AGB [57]. Despite lower RMSEcv and AICc values, compared to CVP-based ones, a 

potential advantage of CVP approach lies in its capacity to provide insights on both the volumetric 

organization of the canopy in terms of presence (i.e., filled volume) or absence (i.e., gaps) of canopy 

elements, as well as function of the canopy through the estimation of the euphotic zones characterizing 

the photosynthetically active area [24]. That said, although CVP-based models performed fairly well 

across the range of canopy structure and AGB levels considered in this study, we perceive that 

resolution of the voxels and point density may have a significant impact on biomass estimation. In 
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dense tropical forests, higher point density will be required not only to better describe the 3D 

arrangement of vegetation structures but also to provide more accurate textural variables and more 

precise description of ground topography. 

4.2. Limitations and Future Work 

This study demonstrates for the first time how vertical and horizontal descriptors of the canopy 

complement each other to improve the performance of Lidar-based models of AGB in multi-layered 

tropical forests. With RMSE errors below 10%, these results open up new research avenues to map AGB 

over large areas with a good accuracy. Despite this promising result, uncertainties remain with respect 

to field-based AGB estimation, plot positioning accuracy and robustness of Lidar descriptors. Here, field 

biomass was computed using DBH alone due to data limitations. Nevertheless, upon availability, models 

integrating DBH along with wood specific gravity, total height, and forest type, would provide more 

accurate estimations [58]. 

Plot positioning had been a known difficulty with Lidar-based models of forest parameters [59]. The 

semi-automated method implemented here to overcome the absence of precise GPS measurement 

performed reasonably well but could not achieve the accuracy that high end tachometers or differential 

GPS could bring needed for precision forestry. However, positioning errors have a marginal impact on 

model performance as the large plot sizes (i.e., 1 ha) used here maximizes the overlap between field and 

Lidar data [60,61]. 

Future work in Lidar will focus on understanding signal attenuation in different canopy layers, impact 

of topography on height estimation and derived metrics. While progress has recently been made at tree 

level [56,62], currently such effects remain difficult to assess on area-based models. This would require 

simulating forest structure and Lidar signals and developing metrics more robust to the variation in both 

forest structure and terrain conditions [63]. 

5. Conclusions 

Lidar is a state of the art technology for characterizing forests structures. Currently, most of the  

Lidar-based models of forest parameters relied on variables describing the vertical properties of the point 

data at either plot or stand level, thus neglecting information about the horizontal arrangement of forest 

canopies, which was largely used in 2D optical remote sensing. In dense and multilayered canopies, like 

those found in the humid tropical forest, the limited capabilities of Lidar signal to penetrate to the ground 

could limit the potential of such approaches. 

In this study, using a coarse density aerial Lidar over a mountainous wet evergreen tropical forest, we 

assessed the capability, complementarity and enhancement of three recently proposed methods for 

assessing aboveground biomass at the plot level. The results demonstrated for the first time how 

traditional descriptors of the vertical canopy structure, derived from either distributional metrics (DM) 

or canopy volume profiles (CVP), could be efficiently combined with descriptors of the horizontal 

arrangement of tree crowns derived from canopy grain analysis (FOTO) applied to Lidar hillshade 

models to improve Lidar-based models of biomass. Introduction of FOTO metrics further improved 

model accuracy of both DM and CVP approaches by 4.42% (Adj. R2 = 0.96, RMSE = 6.5%) and 6.01% 

(Adj. R2 = 0.95, RMSE = 7.28%), respectively. The study indicates that for higher accuracy and low 
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topographic effect, DM-based approach could be well adopted. However, CVP-based approach has an 

additional advantage of providing insights into volumetric organization of the forest canopy. 

With RMSEs of aboveground biomass achievable to below 10% using a low density small footprint 

discrete Lidar (0.5 pts∙m−2) in complex regions, these results show a significant improvement over 

traditional approaches in addition to providing enhanced description of the forest canopy structures and 

related functioning. DM and CVP models describe the vertical arrangement of vegetation components, 

while FOTO metrics provide complementary information on the variability in apparent tree crown size. 

This comprehensive assessment of forest canopies open up new research avenues to further map AGB 

over large areas with a good accuracy and can greatly contribute to the REDD+ program. 

While the results remain promising, uncertainties in the estimates could be reduced when reference 

aboveground biomass data set is better established, something that will be possible in the future with 

improved field equipment and protocols. In addition, more research is needed to better understand how 

signal extinction influences the robustness of Lidar metrics in multilayered forests, and how the effect 

of topography on Lidar height estimates could be corrected in area-based approaches. Ground breaking 

research in tropical forest ecology will also explore how image texture extracted from airborne or 

satellite imagery could be fused with Lidar data to provide enhanced assessment of AGB at the 

landscape level. 
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