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Abstract: Land cover mapping for large regions often employs satellite images of medium 

to coarse spatial resolution, which complicates mapping of discrete classes. Class 

memberships, which estimate the proportion of each class for every pixel, have been 

suggested as an alternative. This paper compares different strategies of training data 

allocation for discrete and continuous land cover mapping using classification and regression 

tree algorithms. In addition to measures of discrete and continuous map accuracy the correct 

estimation of the area is another important criteria. A subset of the 30 m national land cover 

dataset of 2006 (NLCD2006) of the United States was used as reference set to classify 

NADIR BRDF-adjusted surface reflectance time series of MODIS at 900 m spatial 

resolution. Results show that sampling of heterogeneous pixels and sample allocation 

according to the expected area of each class is best for classification trees. Regression trees 

for continuous land cover mapping should be trained with random allocation, and predictions 

should be normalized with a linear scaling function to correctly estimate the total area. From 

the tested algorithms random forest classification yields lower errors than boosted trees of 

C5.0, and Cubist shows higher accuracies than random forest regression. 

Keywords: training data; sample allocation schemes; discrete classification; class 

membership estimation; classification tree; regression tree; national land cover dataset of 

the United States 2006; MODIS 
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1. Introduction 

Land cover classification from satellite images is one of the primary fields in remote sensing.  

Finer spatial resolution data (10–30 m), in particular from Landsat, has been widely used for regional 

studies of land cover and change, and very fine spatial resolution imagery (<1 to 5 m) play an 

important role in local studies. Wall-to-wall mapping of large areas with 10–30 m data is expensive in 

terms of financial and computational resources, and there are only a few efforts for large areas, such as 

the National Land Cover Dataset (NLCD) of the United States [1], the National Land Cover of South 

Africa (NLC) [2], or the European Coordination of Information on the Environment as pan-European 

maps (CORINE) [3]. Recently, global forest cover [4,5] and global land cover maps [6] were derived from 

30 m Landsat data. Most macro-regional, continental, and global applications, however, employ data of 

relatively coarse spatial resolution (250–1000 m) from Terra-Aqua/MODIS, SPOT/VEGETATION, 

NOAA/AVHRR, and ENVISAT/MERIS. Besides fewer difficulties in handling data volumes, the 

increased number of available cloud-free images allows for generation of data composites, and the 

dense temporal information helps to discern classes by their distinct phenological patterns. The latter is 

advantageous for mapping across various ecoregions where classes are likely to be represented by 

multiple clusters in feature space [7,8]. 

The lack of spatial detail of coarse resolution data imposes limitations for accurate land cover 

characterization [9–11]. The assignment of discrete classes to coarse resolution cells cannot adequately 

describe spatially complex areas [12]. The likelihood for mixed pixels is a function of the spatial 

resolution, the thematic detail to be mapped, and the size and spatial pattern of land cover patches [13]. 

However, discrete class assignment of mixed pixels not only imposes serious difficulties to coarse 

image data classification but also alters the area estimation. Several studies have noted that at coarser 

spatial resolution dominating classes with large patches yield higher area proportions than expected at 

the expense of dispersed, small-patch classes [7,13,14]. Studies have postulated that area calculations 

from fractional estimates are more accurate than from discrete classifications [7,15]. 

Several algorithms have been explored for large area mapping with coarse resolution data.  

For instance, Fernandes et al. [10] compared a hard classifier, artificial neural networks (ANN), linear 

spectral unmixing, clustering, and linear regression for fractional class estimation and found 

differences of approximately 20% compared to fine resolution reference data. Studies focusing on 

urban land cover compared advanced regression algorithms [16] or various discrete classifiers [17]. 

Several studies for the same global 1° spatial resolution AVHRR Normalized Difference Vegetation 

Index (NDVI) dataset have shown that classification of 11 land cover classes with decision trees (DT) 

perform best with 93% overall accuracy [18] compared to Maximum Likelihood classification 

(78%) [19] and ANN (85%) [20]. Most automated processing systems for macro-regional to global 

land cover characterization employ DT approaches [1,12,21–25]. There are two general types of DT: 

classification trees (CT) with a discrete target value and regression trees (RT) with a continuous result. 

Besides the classification algorithm, features and training data for supervised image classification 

have to be defined. Several studies address feature generation and selection processes [26–29] and 

various aspects of training data selection [17,30–32]. However, only a few studies have focused on 

training data allocation schemes, such as between-class sample balance or the structure of 

heterogeneous samples. In particular classification trees may suffer from an unbalanced sample size 
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between classes because the number of samples in each leaf defines the class [33,34], and several 

allocation schemes have been recommended [24,26,27,32]. A few studies recommend heterogeneous 

training data for discrete classification [35,36] but most large-area mapping projects select 

homogeneous areas for training [7,22,27]. For regression techniques, the impact of non-random 

selection of heterogeneous training data is unknown, and the impact of combined tree models for 

several classes on correct area estimation has been widely overlooked. 

The objective of this study is to compare the accuracy and area estimations of several decision tree 

approaches trained with specific sample allocation schemes from an existing higher spatial resolution 

map for discrete and continuous land cover mapping. Specific goals are: 

(1). Evaluate the performance of DT algorithms using two common approaches of classification 

and regression trees 

(2). For classification trees, compare (a) heterogeneous training pixels with different allocation 

schemes against homogeneous pixels and (b) schemes of sample allocation between classes 

(3). For regression trees, assess (a) sample allocations for heterogeneous samples and (b) 

normalized and non-normalized results to combine multiple models. 

2. Data and Study Area 

2.1. National Land Cover Data of the United States from Landsat Images 

The National Land Cover Data set (NLCD) of the United States is a 30 m Landsat TM/ETM+-based 

classification with 16 classes produced by the United States Geological Survey (USGS). There are two 

maps (1992, 2001) [1] and map updates for 2006 and 2011 [37–39]; the 2006 update was used in this 

study. NLCD2006 has an overall accuracy of 78% [40] and a small class-specific minimum mapping 

unit [37]. NLCD data are provided in Albers Equal Area (AEA) projection with NAD83 datum, 

standard parallels at 23.5°N and 45.5°N, and an origin of latitude and longitude at 23°N and 96°W, 

which is also the map projection of this study. In this study, a subset of 60,000 × 30,000 pixels, 

extending from western Kansas (101°W, 39°N) to Jacksonville, FL (80°W, 30°N), was extracted (see 

Figure 1). In addition, ten Landsat images (Figure 1) were downloaded for accuracy assessment and 

evaluation of spatial co-registration between MODIS and Landsat from which NLCD2006 

was derived. 

2.2. MODIS Data 

The MODIS nadir bidirectional reflectance distribution function (BRDF)-adjusted surface 

reflectance (NBAR) product with 926.6 m spatial resolution (MCD43B4) and the corresponding 

quality assessment science dataset (MCD43B2) were downloaded from the Land Processes Distributed 

Active Archive Center (LP DAAC) for the period of October 2005 to March 2007. The NBAR product 

applies the BRDF parameters to cloud-free and atmospherically corrected surface reflectance data 

(bands 1 to 7) with a solar angle at local solar noontime. This mimics a nadir-viewing instrument and 

results in a stable and consistent dataset [41,42]. MCD43 products combine images of Terra and Aqua 

acquisitions over a 16-day period but are produced every eight days by rolling compositing. Three tiles 

(h09v05, h10v05, h11v05; Figure 1) were mosaicked, resampled to 900 m using nearest neighbor (NN) 
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resampling, subset to 2000 × 1000 pixels, and projected to the AEA projection with projection 

parameters equal to NLCD. The cell size of 900 m, as compared to the more commonly used 1000 m, 

was chosen to nest the grid with 30 m cells from NLCD; thus a block of 30 × 30 cells of NLCD2006 

corresponds to one MODIS cell at 900 m. 

 

Figure 1. Study area in the southeastern United States, showing MODIS tiles and  

Landsat path-rows. 

3. Methods 

A common classification process similar to Blanco et al. [7], Clark et al. [21], and Colditz et al. [43] 

was used. Figure 2 illustrates this process which can be divided into five general blocks for (1) feature 

generation; (2) reference data processing; (3) training data sampling; (4) classification/regression; and 

(5) accuracy assessment and area calculation. 

3.1. Feature Sets 

The product quality for each pixel was analyzed using the Time Series Generator (TiSeG) [44].  

Only best observations for each band with a generally good quality and no snow cover were selected, 

and data gaps were temporally interpolated with a linear function. Additionally, the NDVI was 

computed from red and near infrared bands. 

The usefulness of metrics, which are univariate statistics computed over a defined period, for land 

cover mapping has been demonstrated in several other studies [7,21,33,43]. The mean, standard 

deviation, minimum and maximum value, and range between the minimum and maximum for the 
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period of the entire year, two six-month, three four-month, and four three-month periods were 

computed from time series of each spectral band and the NDVI. This results in a feature set of  

400 variables (seven spectral bands + NDVI, five univariate statistics, 10 periods). 

 

Figure 2. Process-flow for data processing and map assessment. OA: overall accuracy, 

MAD: mean absolute difference, CT: classification tree, RT: regression tree, RF-C: 

Random Forest Classification, RF-R: Random Forest Regression, prop: proportion. 
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3.2. Reference Data Processing 

3.2.1. Spatial Co-Registration 

A prerequisite of this study is near-to-perfect spatial co-registration between MODIS and Landsat 

images from which NLCD2006 was mapped. Spatial co-registration errors were estimated with an 

iterative two-step approach: (1) coarsening Landsat data to the MODIS grid cell size and 

(2) correlation. This process was repeated within a defined window displacing Landsat data by a 

specified interval in x- and y-direction, and the offset with the highest correlation coefficient indicates 

the displacement between both images [45]. In this study, the correlations are based on the NDVI from 

downloaded Landsat images and the closest available MODIS composite. 

3.2.2. NLCD2006 Data 

For this study 15 classes present in the subset of 30m NLCD2006 in the southeastern United States 

were combined to a final set of nine classes (Table 1). Next, blocks of 30 × 30 cells that spatially 

match one MODIS pixel were aggregated. Homogeneity H describes for each 900m MODIS pixel the 

area proportion of each land cover class from corresponding NLCD2006 data. In equation 1 x and y 

refer to individual pixels in NLCD2006, and expression c(x,y) = i counts all pixels in that block that 

correspond to class i. As a result, homogeneity, expressed in percentage, represents for each class the 

area proportion at the coarse grid. ܪ௜ = ∑ ∑ ܿሺݔ, ሻݕ = ݅ଷ଴௬ୀଵଷ଴௫ୀଵ 30 × 30 × 100 (1)

The argument maximum, argmax(H), also known as the majority rule, extracts the dominant class 

for each MODIS pixel. The corresponding area proportion, the homogeneity value of that dominant 

class, max(H), indicates the level of dominance in percent. 

Table 1. Legend and area of each class from NLCD2006. Class 12: Perennial ice/snow 

was not present in the study area. 

Class Abbreviation Area (Mio ha) Area (%) Classes in NLCD2006 

Water Wat 3.09 1.91 11: Open water 

Developed Dev 12.18 7.52 21–24: Developed, open space, low-high intensity; 31: Barren land

Deciduous forest DF 38.63 23.84 41: Deciduous forest 

Evergreen forest EF 21.76 13.43 42: Evergreen forest; 43: Mixed forest 

Shrubland Shb 10.23 6.31 52: Shrub/scrub 

Grassland Grs 20.15 12.44 71: Grassland/herbaceous 

Pasture Past 22.18 13.69 81: Pasture/hay 

Cultivated crops Crop 24.87 15.35 82: Cultivated crops 

Wetland Wet 8.92 5.51 90: Woody wetlands; 95: Emergent herbaceous wetlands 

  



Remote Sens. 2015, 7 9661 

 

3.3. Training Data Sampling 

3.3.1. Training of Classification Trees 

A total of 5400 training samples (0.25% of the study area) were allocated from the homogeneity of 

NLCD2006 with a minimum distance of five pixels apart. For homogeneous training data the required 

number for each class was allocated with H = 100% which was decreased if this number could not be 

achieved [27]. Heterogeneous training data were allocated uniformly across six bins, with one bin for  

H = 100 and five bins for 100% > H ≥ 50% with 10% intervals. An alternative heterogeneous training 

set used random allocation. 

With respect to between-class sample balance, this study compares (1) random sampling; 

(2) allocation proportional to the expected area as obtained from NLCD2006; and (3) equal number of 

samples for all classes. Since random and area-proportional allocation can lead to a very low number 

of samples for scarce classes, a minimum of 50 samples per class (1% of all samples) was required. 

3.3.2. Training of Regression Trees 

As for each class a separate regression tree has to be trained, the issue of between-class allocation 

becomes irrelevant. More important are allocation schemes across different levels of homogeneity, 

which was divided in 12 bins (H = 0%, ten bins with 0% < H < 100% with 10% intervals, and  

H = 100%). For each class, 5400 samples were allocated, testing three schemes: (1) random allocation 

with a minimum of 50 samples per bin (Random-50), (2) random allocation with no minimum per bin 

(Random-0), and (3) a uniform allocation with 450 samples per bin. 

3.4. Classification and Regression Trees 

3.4.1. Classification Trees 

Classification trees (CT) apply recursive partitioning to a set of discrete (categorical) training data 

with the goal to reduce the impurity among classes by selecting an appropriate discriminating feature 

and threshold [46,47]. Commonly, classification trees generate discrete maps in which the class is 

defined by the highest proportion of samples in each terminal node. However, additional strategies 

such as randomization [48] or the use of class frequency at the leaf level together with boosting [27,42] 

can be used to derive class memberships and thus continuous classifications. 

C5.0 decision trees (www.rulequest.com) [49] in the tree-mode together with 10-folded boosting 

were used as the simplistic model. For each tree the proportion of each class in every leaf was 

calculated and for each class the trees were combined to estimate class memberships [43]. 

Random Forest Classification (RF-C) [48] uses the classification and regression tree (CART) 

algorithm [46] as base classifier. The version provided for R [50] was employed with default options, 

i.e., for each tree a set of 63.2% of the samples is extracted, the number of features is limited to 20 (the 

floored square root of the total features), and trees are grown with the Gini index until each leaf is 

pure. Class memberships were derived by the combination of 1000 trees. 
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3.4.2. Regression Trees 

In contrast to classification trees, regression trees apply recursive partitioning to a set of continuous 

training data. They largely follow the same logic but use the reduction in standard deviation as criteria 

for feature and threshold selection. Regression models were generated for membership estimation of 

each class. An equation of Xu et al. [24] normalizes the regression value RV for class i among all classes J. 

This linear scaling function (Equation (2)) ensures that the membership total for each pixel will be 

100%. The majority rule was used for transformation of regression results to discrete maps. ܯ௜ = ܴ ௜ܸ∑ ܴ ௜ܸ௃௜ୀଵ  (2)

Cubist, a rule-based classifier (www.rulequest.com) [51,52], was employed as simplistic regression 

model. Initially, a regression tree similar to regression in CART is generated. Subsequently the tree is 

simplified and transformed into a set of rules with multiple conditions, and a multivariate regression 

equation estimates the numeric value. Thus, models from Cubist are not regression trees in a strict 

sense, however they yield promising results and were successfully employed in remote 

sensing [1,25,34,53,54]. The options for unbiased value estimation, no extrapolation of data values 

beyond training data range, and 5 committee models (similar to five-folded boosting) were selected. 

Random Forest Regression (RF-R) uses the regression tree option of CART as base classifier [46]. 

Unlike Cubist, CART regression trees use the value estimate at the leaf level. The version provided for 

R [49] was executed with default options, i.e., for each tree a set of 63.2% of the samples is extracted, 

the number of features is 133 (total features/3, floored), and trees are grown with the standard 

deviation as splitting criterion, a minimum node size of 5 samples, and the numeric value is the mean 

of all samples in a leaf. The average of 1000 trees derived the class membership. 

3.5. Accuracy Assessment and Area Estimation 

3.5.1. Discrete Map Assessment 

From a set of potential samples, constrained to the location of Landsat path rows (Figure 1) and 

having a homogeneity greater than 50% (H > 50%), 150 samples per strata, i.e., the class as defined in 

NLCD2006, were extracted. As response data served Landsat imagery from the year 2006 and very 

high resolution Google Earth data as close as possible to the year 2006. It is important to note that 

NLCD2006 only served for stratification to ensure that some samples will correspond to scarce and 

scattered classes, but it was not consulted by the analyst to assign the reference label. This approach 

also allowed for a better comparison among all classifications using the same reference set. 

Due to ambiguity in interpretation of coarse cells, either uncertainty in the interpretation or presence 

of more than one land cover type in a coarse resolution cell of 900 m (mixed pixel issue), it is 

recommended to assign two labels [7,23]. The primary class is the most likely call, i.e., the most 

certain class or class with the largest area proportion, and the alternative label indicates the potential of 

presence of another class. In case of high certainty or presence of only one class both labels are 

the same. 
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Discrete maps were assessed with (1) only using the primary reference label or (2) the  

primary + alternative reference label. In the latter case, the land cover map was considered as correctly 

classified if it corresponded to the primary or the alternative reference label; in case of disagreement 

with both the primary class was used to assign the error in the confusion matrix. The overall accuracy 

(OA, sum of the diagonal against the total of the error matrix) as well as users and producers accuracies 

were employed using standard formulas for confidence estimation [55]. 

Pair-wise comparisons of accuracies were performed in two ways. The McNemar test aims at the 

difference between correctly and incorrectly classified class allocations [56]. This test is recommended 

as the reference set was identical for the assessment of all maps [57], and the z-test form (Equation (3)) 

was implemented where fAB and fBA indicate the frequency of correctly classified in map A but 

incorrectly in map B and vice versa. ݖ = | ஺݂஻ െ ஻݂஺|ඥ ஺݂஻ ൅ ஻݂஺ (3)

The overall accuracy was tested with standard z-test-statistic (Equation (4)) where OAA and OAB are 

the overall accuracies of map A and map B and SDA and SDB are their respective standard deviations. ݖ = ஺ܣܱ| െ ஺ଶܦ஻|ටܵܣܱ ൅  ஻ଶܦܵ
(4)

3.5.2. Continuous Map Assessment 

Class memberships were assessed with four measures against the homogeneity from NLCD2006 as 

continuous reference set. The coefficient of correlation r is a means to evaluate the strength of 

agreement between the membership and reference set. The mean absolute difference (MAD, 

Equation (5)) addresses the absolute error in percent between the membership estimates (M) and 

reference set (R) for all pixels (K). For a spatial representation of the error, MAD was computed for 

each pixel with K being the total of classes for one pixel. The slope and intercept of the linear 

regression function between reference and membership indicate the dynamic range of the predicted 

values and the bias. ܦܣܯ = ∑ ௞ܯ| െ ܴ௞|௄௞ୀଵ ܭ  (5)

3.5.3. Area Estimation 

Area estimation from discrete maps is a straight-forward pixel count for class i multiplied by the 

area of each pixel. The area of each class from memberships is the total of all membership values times 

their pixel area [15]. The total absolute difference in area (AD) between reference R (NLCD2006) and 

classification or membership CM, with K being the total of all pixels, was calculated using 

Equation (6) and expressed in area and in percent against the total of the study area. 

ܦܣ =෍|ܴ௞ െ ௞|௄ܯܥ
௞ୀଵ  (6)
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4. Results and Analysis 

4.1. Reference Data 

4.1.1. Spatial Co-Registration 

Table 2 shows near-to-perfect spatial co-registration between NDVI from ten Landsat images and 

corresponding dates of MODIS composites. The offsets are negligible, with averages of x = −3 m,  

y = −3 m and extremes lower-equal ±30 m. The coefficient values itself are all positive and indicate a 

sufficiently high correlation, i.e., the spatial patterns in Landsat and MODIS NDVI are closely related 

to each other. This finding is an important prerequisite for the following analysis as it permits a direct 

relation between Landsat-based NLCD2006 maps and MODIS. 

Table 2. Spatial offset between Landsat images (for their spatial location see Figure 1) and 

temporally corresponding composites of MODIS data using the NDVI. 

Path-Row Location 
Acquisition of 

Landsat Image 
X-Offset (m) Y-offset (m) 

Correlation 

Coefficient 

021-037 East Gulf Coastal Plain, AL 15 June 2006 −30 30 0.71 

025-036 Ouachita Mountains, AR 15 September 2006 −30 0 0.76 

018-038 East Gulf Coastal Plain, GA 10 June 2006 0 0 0.74 

028-034 Osage Plains, KS 13 April 2006 −30 −30 0.83 

020-034 Interior Low Plateaus, KY 23 May 2006 30 −30 0.75 

023-037 Mississippi Valley MS 3 October 2006 −30 0 0.90 

023-034 Mississippi Valley, MO 31 July 2006 30 −30 0.55 

018-036 Piedmont, SC 10 June 2006 0 0 0.68 

027-037 Dallas Area, TX 13 September 2006 0 30 0.86 

028-038 Central Texas, TX 20 September 2006 30 0 0.84 

4.1.2. NLCD2006 Data 

Figure 3A shows the NLCD2006 map recoded to nine classes (Table 1) at 30 m spatial resolution. 

The map illustrates some spatial details such as the road network in Kansas that disappeared in  

Figure 3B, showing the spatial distribution of the dominant class at 900 m spatial resolution derived 

with majority rule argmax(H). Figure 3C indicates the corresponding area proportion of the 

dominating class, max(H). There are distinct regional patterns with homogeneous areas in the western 

portion (Shrubland, Grassland, Cultivated crops), the Mississippi valley (Cultivated crops), the 

southern Ozark and Appalachians mountains (Deciduous forest), the Okefenokee Swamp in southern 

Georgia (Wetlands), and large metropolitan areas like Atlanta, Dallas-Fort Worth, and St. Louis 

(Developed). In particular, the southeastern region is highly heterogeneous with area proportions of the 

dominating class below 50%; similar heterogeneous patterns exist in eastern Texas, Oklahoma, 

Louisiana, and Arkansas. 
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Figure 3. (A) Reference map at 30m spatial resolution; (B) coarsened map at 900 m using 

majority rule, argmax(H); and (C) area proportion of that class, max(H). 

Table 3 shows for each class the percentage of homogeneity in 12 bins. It is evident that there are 

more pixels with low homogeneity, but the magnitude is different for each class. For instance, class 

Water only exists in selected parts of the map and thus H = 0% makes up 76.7% of the study area.  

Class Deciduous forest is rather ubiquitous with a proportion of 37.6% for 10% ≤ H < 60%. Due to 

many roads that cause a homogeneity slightly above 0%, class Developed is an interesting example 

with only 21.3% for H = 0% but 61.5% for 0% < H < 10%. 
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Table 3. Homogeneity (H) in 10-percent bins and bins for 0 and 100 percent derived from 

NLCD2006. For abbreviations of class names see Table 1. 

Homogeneity (%) Wat Dev DF EF Shb Grs Past Crop Wet 

H = 0 76.67 21.32 23.43 39.92 55.22 39.46 47.16 58.16 61.32 

0 < H < 10 19.39 61.45 24.37 26.40 27.14 33.34 18.13 12.89 24.46 

10 ≤ H < 20 1.53 10.36 12.01 9.50 8.10 8.10 9.33 5.52 5.63 

20 ≤ H < 30 0.65 2.28 8.73 6.45 3.72 4.31 6.60 3.75 2.90 

30 ≤ H < 40 0.38 1.08 6.86 4.87 1.77 3.08 5.20 3.02 1.69 

40 ≤ H < 50 0.29 0.74 5.51 3.84 1.02 2.48 4.21 2.63 1.09 

50 ≤ H < 60 0.23 0.57 4.52 3.05 0.73 2.09 3.34 2.41 0.76 

60 ≤ H < 70 0.18 0.48 3.86 2.40 0.59 1.81 2.59 2.34 0.56 

70 ≤ H < 80 0.17 0.45 3.52 1.79 0.52 1.62 1.88 2.45 0.45 

80 ≤ H < 90 0.15 0.42 3.39 1.23 0.49 1.53 1.16 2.89 0.41 

90 ≤ H < 100 0.19 0.49 3.37 0.56 0.59 1.91 0.40 3.60 0.52 

H = 100 0.18 0.36 0.41 0.01 0.12 0.26 0.01 0.35 0.22 

4.2. Sample Allocation of Training Data 

This section exemplarily demonstrates training sample allocation schemes. Each of the following 

tables shows the expected sample frequency, which is calculated from the number of samples that 

fulfill the specific allocation criteria, the corresponding expected number of samples, in many cases 

considering a minimum of 50 samples per class or sample bin, followed by actual sample allocation.  

All numbers are specific for this study and are meant to demonstrate the sample allocation process  

in practice. 

Table 4 presents the random sample allocation for homogeneous pixels. The expected frequency 

and thus the expected number of samples is relative to the class proportion of H = 100% in Table 3.  

Actual sampling starts at H = 100% and decreases until the expected number of samples per class is 

reached. Sufficient samples of fully homogeneous pixels (H = 100%) were available for classes 

Deciduous forest, Grassland, and Cultivated crops. To reach the expected number of 358 samples for 

class Shrubland, Homogeneity had to be decreased to 96%. 

Table 4. Random allocation with a minimum of 50 samples per class using homogeneous 

pixels H = 100%. Homogeneity (H) in percent. See Table 1 for abbreviations of class names. 

Wat Dev DF EF Shb Grs Past Crop Wet 

Expected sample frequency (%) 9.29 18.70 21.46 0.44 6.23 13.77 0.31 18.26 11.54 

Expected number of samples 510 976 1112 72 358 731 66 954 621 

H = 100% 352 623 1112 28 181 731 0 954 420 

99% ≤ H < 100% 71 172 0 44 71 0 66 0 170 

98% ≤ H < 99% 53 117 0 0 56 0 0 0 31 

97% ≤ H < 98% 34 64 0 0 47 0 0 0 0 

96% ≤ H < 97% 0 0 0 0 3 0 0 0 0 

Table 5 shows the allocation proportional to the expected area from NLCD2006 (Table 1). 

Heterogeneous pixels were allocated uniformly across six bins of H ≥ 50%. Sampling should start at 
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the bin with the highest homogeneity (H = 100%) because in some cases the expected sample size may 

not be available and will be allocated from the next bin. For instance, for class Evergreen forest with an 

expected total of 715 samples each bin should contain 119.17 samples (rounded to 119 or 120 samples), 

but only 29 samples could be selected for H = 100% and the remaining 90 samples were allocated 

from bin 90% ≤ H < 100%. 

Table 5. Allocation proportional to expected area with a minimum of 50 samples per class 

using heterogeneous pixels with uniform allocation across six bins of H ≥ 50%. 

Homogeneity (H) in percent. For abbreviations of class names see Table 1. 

Wat Dev DF EF Shb Grs Past Crop Wet 

Expected sample frequency (%) 1.91 7.52 23.84 13.43 6.31 12.44 13.69 15.35 5.51 

Expected number of samples 145 422 1230 715 362 666 727 810 323 

H = 100% 24 70 205 29 60 111 0 135 54 

90% ≤ H < 100% 24 71 205 209 61 111 242 135 54 

80% ≤ H < 90% 25 70 205 120 60 111 122 135 54 

70% ≤ H < 80% 24 70 205 119 60 111 121 135 53 

60% ≤ H < 70% 24 71 205 119 61 111 121 135 54 

50% ≤ H < 60% 24 70 205 119 60 111 121 135 54 

Table 6 presents equal allocation between classes of heterogeneous pixels with random allocation 

across sample bins of argmax(H). Although the lowest potential level of dominance could be as low as 

11.1% (1/9 classes) in reality, the lowest homogeneity was above 20%. For most classes pixels are 

highly heterogeneous with 40% ≤ H < 70%, i.e., the area of the dominating class makes up 

approximately half of the pixel. Only classes Grassland and Cropland indicated more homogeneous 

pixels with 70% ≤ H < 100%. 

Table 6. Equal class allocation of heterogeneous pixels with random allocation across bins 

of argmax(H). Homogeneity (H) in percent. See Table 1 for abbreviations of class names. 

Wat Dev DF EF Shb Grs Past Crop Wet 

Expected sample frequency (%) 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11 11.11

Expected number of samples 600 600 600 600 600 600 600 600 600 

H = 100% 42 36 6 0 9 14 0 14 20 

90% ≤ H < 100% 54 66 62 20 50 100 12 121 60 

80% ≤ H < 90% 62 59 82 38 55 100 48 94 61 

70% ≤ H < 80% 63 71 82 73 66 92 93 101 46 

60% ≤ H < 70% 68 84 94 102 95 83 97 87 69 

50% ≤ H < 60% 108 90 104 131 117 91 137 73 104 

40% ≤ H < 50% 108 96 101 120 103 73 132 71 109 

30% ≤ H < 40% 80 75 58 94 75 40 69 27 101 

20% ≤ H < 30% 15 23 11 22 30 7 12 12 30 

Table 7 shows sample allocation schemes for regression trees for class Evergreen forest. 

Heterogeneous pixels were allocated randomly or uniformly across all bins of homogeneity (see also 
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Table 3). In case of insufficient available samples for a bin starting at H = 100%, the remaining 

samples were added to the next bin. 

Table 7. Random and uniform allocation of heterogeneous pixels for regression trees for 

class Evergreen forest. Homogeneity (H) in percent. 

 

Random-50 Random-0 Uniform 

Expected  

Sample  

Frequency  

(%) 

Expected  

Number  

of Samples 

Actual  

Number 

of Samples

Expected 

Sample 

Frequency 

(%) 

Expected 

Number 

of Samples

Actual  

Number 

of Samples

Expected  

Sample  

Frequency  

(%) 

Expected  

Number  

of Samples 

Actual  

Number 

of Samples

H = 100 0.01 50 29 0.01 0 0 8.33 450 29 

90 ≤ H < 100 0.56 77 98 0.56 31 31 8.33 450 871 

80 ≤ H < 90 1.23 109 109 1.23 66 66 8.33 450 450 

70 ≤ H < 80 1.79 136 136 1.79 97 97 8.33 450 450 

60 ≤ H < 70 2.40 165 165 2.40 129 129 8.33 450 450 

50 ≤ H < 60 3.05 197 197 3.05 165 165 8.33 450 450 

40 ≤ H < 50 3.84 234 234 3.84 207 207 8.33 450 450 

30 ≤ H < 40 4.87 283 283 4.87 263 263 8.33 450 450 

20 ≤ H < 30 6.45 360 360 6.45 348 348 8.33 450 450 

10 ≤ H < 20 9.50 505 505 9.50 513 513 8.33 450 450 

0 < H < 10 26.40 1318 1318 26.40 1425 1425 8.33 450 450 

H = 0 39.92 1966 1966 39.92 2156 2156 8.33 450 450 

4.3. Accuracy Assessment of Classification and Regression Trees 

4.3.1. Reference Data for Discrete Map Assessment 

Table 8 provides details on the reference sample allocation process and reference label assignment. 

For each class, the number of potential samples (each sample corresponds to one 900 m MODIS pixel) 

meets the following conditions: (1) its homogeneity in NLCD2006 is higher than 50% and (2) it is 

located within the extent of Landsat images (Figure 1). The average of the homogeneity shows that, 

albeit all samples belong in majority to one class (H > 50%), the level of dominance is moderate  

and most samples are not pure. For each stratum in NLCD2006, 150 samples were extracted. Out of  

1350 samples, four were excluded from analysis because response data were obscured by clouds or 

class assignment was too uncertain. The columns for primary and alternative label indicate for each 

class the number of assigned reference samples. For instance, there are 120 samples with primary label 

of class Water and another 84 samples labeled as Water by the alternative call. For 73 samples, the 

primary and alternative calls agree, i.e., class assignment is quite certain. On the other hand, there are 

47 samples for which the alternative class was not Water and 11 samples for which the primary call 

was not Water. As the assignment of Water in image interpretation is quite simple, these samples were 

likely located along the edge of a water body and contain a mixture of land cover types. There are 

extreme cases of ambiguity such as Grassland and Pasture, both indicating a specific land use difficult 

to classify only using satellite imagery, or frequently mixed pixels, e.g., Wetland. Less than half of the 

samples (48.8%) had corresponding class labels in the primary and alternative call. 
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Table 8. Sample allocation from NLCD2006 (H > 50%) and location in Landsat path-rows 

(Figure 1) and primary and alternative reference label assignment from Landsat and 

Google Earth image interpretation. Agreement shows the number of samples with equal 

primary and alternative label. Homogeneity (H) in percent. 

Class/Strata NLCD-Based Sample Allocation Reference Set from Response data 

Potential Samples Mean (H) Primary Alternative Agreement 

Water 4857 76.67 120 84 73 

Developed 14,197 79.32 155 153 130 

Deciduous forest 60,678 72.35 322 309 193 

Evergreen forest 35,733 67.06 90 84 20 

Shrubland 17,996 71.40 178 196 111 

Grassland 36,388 73.58 96 155 6 

Pasture 32,439 66.88 121 123 1 

Cropland 63,522 77.81 218 171 108 

Wetland 11,502 74.47 46 71 15 

4.3.2. Discrete Map Assessment 

The overall accuracies (OA) of all classifications for discrete maps are shown in Table 9 for the 

primary reference label (P) or the primary and alternative label (P + A) as correctly classified. 

Confidence intervals (p < 5%, two tailed z-test) range between 2.5% and 2.7% and are therefore 

not presented. 

Overall accuracies of RF-C are, on average, 1% higher than from C5.0, and Cubist yields about 

0.5% higher accuracies than RF-R. Assessing discrete maps from classification trees (C5.0, RF-C), 

heterogeneous training pixels show, on average, 6% better accuracy than homogeneous training data. 

There are no notable differences between uniform or random allocation of heterogeneous training 

samples. Area-proportional between-class sample allocations show 1% higher overall accuracies than 

equalized sampling, and accuracy for random training sampling decreases another 0.5%. Discrete maps 

from regression trees show a consistent pattern of 2%–3% higher accuracies for uniform allocation. 

Random allocation with no minimum sample size per bin resulted in 1%–2% lower accuracies than 

when allocating at least 50 samples for each bin. Note that normalization has no effect on discrete 

maps obtained with the majority rule. Best results for classification trees were obtained with RF-C, 

uniform allocation and area-balanced between-class sample allocation and for regression trees with 

uniform sampling but negligible differences between Cubist and RF-R (highlighted cells in Table 9). 

Assessments using the primary and alternative reference label as correctly classified result in, on 

average, 14% higher accuracies, which indicates ambiguity in reference label assignment of some 

classes. In terms of class accuracies (see supplemental material), Water and Developed are well 

classified (on average 75% or better in users and producers accuracy). Shrubland and Cropland form a 

second group with above 50% in both class accuracies. There is confusion between Evergreen and 

Deciduous forest, and between both classes and Wetland as many forests in the southeastern US are 

interconnected with wetlands either as riparian vegetation or along estuaries at the coast. It should be 

considered that Wetland was the class with lowest accuracies in NLCD [40]. Other classes with below 

50% class accuracy are Pasture and Grassland as both indicate land use forms of herbaceous areas. 
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Table 9. Accuracy measures and absolute difference in area for discrete and continuous 

(class memberships) classifications. OA: overall accuracy using primary (P) or primary 

and alternative (P + A) label of reference data as correctly classified. r: correlation 

coefficient. MAD: mean absolute difference. Int: Intercept. AD: absolute difference in 

million hectares and percent. Classification trees C5.0 and Random forest classification 

(RF-C) with homogeneous samples (H = 100) or heterogeneous samples allocated 

uniformly for H ≥ 50% or randomly (argmax(H)). Sample allocation between classes with 

random, area-proportional, equal allocation. Regression trees Cubist and Random Forest 

Regression (RF-R) with uniform and random allocation with no minimum or at least 50 

samples per bin. NN: no normalization. Norm: normalization. Highlighted cells indicate best 

results for classification and regression trees. 

Classification Accuracy Discrete Accuracy Continuous AD Discrete AD Continuous

Algorithm Allocation Class/Norm. 
OA (%)  

P 

OA (%)

P + A 
r 

MAD 

(%)
Slope

Int. 

(%)
Mio ha % Mio ha % 

C5.0 Homogen Random 46.14 56.24 0.64 9.94 0.70 3.32 89.99 55.55 85.47 52.76

Area 49.63 62.11 0.74 8.75 0.85 1.65 48.77 30.10 47.90 29.57

Equal 49.70 61.29 0.69 9.45 0.77 2.59 66.93 41.31 65.76 40.59

Uniform Random 52.23 65.23 0.81 7.34 0.90 1.12 28.73 17.73 15.45 9.54 

Area 54.53 67.83 0.81 7.25 0.89 1.20 23.35 14.41 8.52 5.26 

Equal 54.09 67.01 0.78 7.81 0.82 1.95 20.40 12.59 27.29 16.85

Random Random 53.12 67.38 0.81 7.16 0.85 1.68 32.41 20.01 15.26 9.42 

Area 53.79 66.86 0.81 7.22 0.82 2.00 21.78 13.44 7.11 4.39 

Equal 52.82 66.86 0.78 7.76 0.77 2.58 22.01 13.59 30.94 19.10

RF-C Homogen Random 47.03 57.06 0.67 9.49 0.71 3.19 91.14 56.26 82.34 50.83

Area 49.78 63.22 0.76 8.31 0.87 1.45 46.06 28.43 45.81 28.28

Equal 51.63 64.04 0.72 8.92 0.79 2.33 61.36 37.88 60.53 37.37

Uniform Random 53.27 67.24 0.83 7.02 0.92 0.82 31.89 19.68 16.83 10.39

Area 55.57 69.47 0.83 6.96 0.91 0.96 22.82 14.09 8.74 5.39 

Equal 54.09 67.61 0.80 7.41 0.85 1.69 20.93 12.92 27.03 16.68

Random Random 52.97 67.24 0.83 6.70 0.87 1.39 36.55 22.56 18.03 11.13

Area 54.75 68.72 0.83 6.67 0.85 1.66 27.37 16.90 6.36 3.93 

Equal 53.64 67.53 0.81 7.20 0.80 2.25 23.26 14.36 29.37 18.13

Cubist Random-50 NN 53.79 68.50 0.86 6.25 0.85 2.79 29.14 17.99 16.20 10.00

Norm 53.79 68.50 0.86 6.07 0.73 2.93 29.14 17.99 5.45 3.36 

Random-0 NN 51.93 65.90 0.86 5.95 0.76 2.56 35.36 21.83 2.51 1.55 

Norm 51.93 65.90 0.86 5.93 0.75 2.71 35.36 21.83 4.22 2.61 

Uniform NN 55.94 69.84 0.79 12.37 0.86 11.71 15.32 9.46 148.94 91.94

Norm 55.94 69.84 0.81 8.79 0.46 5.96 15.32 9.46 49.87 30.78

RF-R Random-50 NN 53.19 66.79 0.85 6.95 0.81 4.11 31.02 19.15 29.84 18.42

Norm 53.19 66.79 0.85 6.66 0.66 3.79 31.02 19.15 10.45 6.45 

Random-0 NN 51.41 65.75 0.86 6.54 0.73 3.59 39.21 24.20 9.15 5.65 

Norm 51.41 65.75 0.85 6.49 0.68 3.56 39.21 24.20 2.66 1.64 

Uniform NN 56.24 69.76 0.77 14.24 0.81 14.26 16.20 10.00 177.88 109.80

Norm 56.24 69.76 0.79 9.55 0.40 6.65 16.20 10.00 56.28 34.74
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The differences in classification accuracies were statistically tested using McNemar test and  

Figure 4A depicts the statistically significant differences. In contrast to using only the primary 

reference label (lower-left triangle), there are less significant differences for assessments with the 

primary and alternative reference label (upper right triangle). Most obvious is that sampling 

homogeneous training data for classification trees almost always performs significantly worse (for 

actual accuracies see Table 9 and supplemental material). There are statistically significant differences 

between classification trees using heterogeneous training samples and regression trees, even though the 

differences in overall accuracies are low. This is due to the nature of the test, which aims at the number 

in differences of correctly and incorrectly classified reference samples between two classifications. 

The statistically significant differences in overall accuracies are shown in Figure 4B. Again, most 

notable is that classifications with homogeneous training samples perform significantly worse than all 

others. The main difference to McNemar test is that there are more statistically significant differences 

for the reference set using primary + alternative calls as correctly classified due to the higher range in 

overall accuracies (see also Table 9). 

 

Figure 4. Statistical significance of difference in accuracies between (A) image 

classifications using McNemar test and (B) overall accuracies. Lower-left triangle shows 

results for the primary reference label, upper-right triangle for the primary and alternative 

reference label as correctly classified. 

4.3.3. Class-Membership Assessment 

The continuous reference derived from NLCD2006 is used for assessing class memberships across 

all classes using four statistics (Table 9): correlation coefficient (r), mean absolute difference (MAD), 

slope, and intercept (Int). Memberships from C5.0 show in general inferior results with lowest r and 
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highest MAD compared to other tested algorithms. Homogeneous training data for classification trees 

are clearly inferior compared to heterogeneous training pixels (∆r = 0.11 and ∆MAD = 1.94%).  

Equal allocation between classes results in slightly lower correlation and higher MAD than random or 

area-proportional allocation. For regression trees, random allocation shows 0.07 higher correlations 

and a notably (4.9%) lower MAD than uniform sampling. Normalization only marginally improves 

correlation coefficients but the MAD decreases by 1.5%. Best results of classification trees were 

obtained for RF-C with area-proportional between-class sample allocation and randomly allocated 

heterogeneous samples (r = 0.83, MAD = 6.67%) which is almost as good as best results from 

regression trees with Cubist, random allocation of heterogeneous pixels with no minimum set and 

normalization r = 0.86 and MAD = 5.93%). 

Figure 5 shows the spatial distribution of the MAD for which MAD was computed for each pixel 

individually. The figure only displays results for RF-C and Cubist; the spatial distribution of the error 

was similar for C5.0 and RF-R, respectively. For classification trees there are no spatial differences 

between among-class allocations (area-proportional allocation is shown), and there are no differences 

between allocations of heterogeneous pixels (uniform is displayed), which corresponds to the spatial 

patterns shown in Figure 3C. Allocating only homogeneous pixels for training shows notably higher 

errors in general and in particular for transitional zones from Deciduous forest to Evergreen forest in 

Mississippi, Alabama, and Georgia as well as transitions from Shrubland to Cultivated crops to 

Grassland in Texas and Oklahoma. Regression tree results with random allocation of heterogeneous 

pixels depict no differences among each other (Random-0 is depicted) for which normalization has no 

impact on the spatial distribution of errors. There are isolated areas with high errors, e.g., the 

Okefenokee Swamp in southeastern Georgia for which the membership values for class Wetland were 

underestimated. Uniform allocation depicts high MAD throughout the entire image, which decrease 

when normalization is applied. 

 

Figure 5. Spatial mean absolute difference (MAD) of selected image sets of class 

memberships. Random forest classification (RF-C) with area-proportional sample 

allocation between classes and homogeneous and heterogeneous, uniformly allocated 

training pixels. Cubist with uniform and random allocation of heterogeneous training 

pixels and with and without normalization. 
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Parameters of the regression line between reference and predicted values show generally better 

results for classification trees with higher slopes and lower intercepts compared to regression trees. 

RF-C with uniform allocation of heterogeneous training pixels shows highest slopes (0.92) and lowest 

intercept (0.82%). For regression trees, uniform allocation of heterogeneous pixels and no 

normalization indicates highest slope (0.86) for Cubist at the expense of a very high intercept with 

11.71%; the lowest intercept of 2.56 was found for random sampling and no normalization. 

4.4. Area Analysis 

A second criterion for classifier performance and analysis of different sampling schemes is the 

similarity of area estimates. Table 9 depicts the total absolute difference between area proportions of 

the NLCD2006 map as reference and class membership or discrete maps expressed in million hectares 

and percent against the total study area. For instance, class-memberships of the C5.0 classification tree 

with homogeneous training pixels and random sample allocation between classes (first line in Table 9) 

shows a difference of 85.47 Mio ha or 52.76% to the NLCD2006 as reference. 

Area differences from discrete maps for classification trees show no notable differences among 

algorithms (average of 24.30% for C5.0, 24.79% for RF-C) and a clearly better performance of 

heterogeneous pixel allocation (16.02%) compared to 41.59% for homogeneous pixels. For 

heterogeneous training pixels, equal allocation of samples between classes shows up to 2% lower 

differences than area-proportional allocation and 5%–8% lower than random allocation. For this 

sample allocation the C5.0 algorithm shows a slightly better result than RF-C. For regression trees 

Cubist shows slightly lower differences (average of 16.42%) than RF-R (17.78). Uniform allocation 

using Cubist shows lowest difference (9.46%), which is in line with better overall accuracies when 

measured with homogeneous test data (H = 100). 

For membership estimates from classification trees, on average, there is no notable difference 

between C5.0 (20.83%) and RF-C (20.24%). Homogeneous training data show clearly inferior results 

with on average 39.90% difference compared to heterogeneous training pixels (10.85%).  

Area-proportional sample allocation of randomly sampled heterogeneous pixels yield best results with 

3.93% total difference for RF-C. Memberships from regression trees show lower differences for Cubist 

(average 23.37%) than RF-R (29.45%). Random allocation (6.21%) clearly outperforms uniform 

sampling (66.82%). The table also indicates the importance of normalization (13.27%) because  

non-normalized results on average cannot correct the total area estimate (39.56%). For Cubist (RF-R), 

sampling with Random-50 estimated 110.0% (118.4%), Random-0 99.1% (105.6%) and Uniform 

191.9% (209.8%) of the total area as compared to NLCD2006. Total areas of non-normalized results 

for random sampling are relatively close to the true total area, which is also the best result using Cubist 

with an absolute difference of 1.55%. 

5. Discussion 

5.1. Reference Data 

The NLCD data set provides a unique opportunity for this study because it maps common land 

cover classes at 30 m spatial resolution in a consistent manner over a large region. The area chosen in 
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this study includes various semi-natural and human-controlled landscapes with large and small patches 

as well as transitional environmental zones from dry to moist and temperate to sub-tropical climate, 

which is useful to test the effectiveness of different sampling schemes with discrete and 

continuous classifications. 

This study used the projection and spatial registration of NLCD2006 [37,38,40] and instead  

re-projected MODIS data, because NLCD2006 was considered to be the reference for this study that 

should not be altered. During re-projection, MODIS cells were resampled from 926 m to 900 m and 

referenced to the cell location of NLCD so one MODIS cell is nested to 30 × 30 NLCD pixels.  

The quantitative analysis of spatial co-registration for ten selected Landsat images, used for NLCD 

mapping in 2006, showed near-to-perfect spatial correspondence with MODIS image composites, 

which allows direct comparison between 30 m cells in NLCD2006 to its corresponding 900 m 

MODIS pixel. 

The classification accuracy of NLCD2006 with 16 original classes is 78% and class aggregation to 

level I with eight classes yields 84% overall accuracy [40]. In comparison, assessment of NLCD2006 

for the southeastern United States with nine classes (Table 1) and coarsened to 900 m (Figure 3B) 

using the primary or primary and alternative reference samples resulted in 59.3% respective 72.9% 

overall accuracy. Major sources of error are Wetland, which was frequently confused with forests, also 

having the lowest accuracies in NLCD2006 [40], and Pasture versus Grassland, as two land-use forms 

of herbaceous cover. Despite the coarse resolution developed areas were classified well. 

The potentially smallest unit to be mapped is the pixel area [58]. Applying a minimum mapping  

unit (MMU), that is the smallest area of contiguous pixels in the map, will remove isolated pixels.  

A “smart-eliminate algorithm” with eight-neighbor rule is applied to publically released 30 m 

NLCD2006 maps with MMUs of 5 pixels (0.45 ha) for developed classes, 32 pixels (2.88 ha) for 

classes pasture/hay and cultivated crops, and 12 pixels (1.08 ha) for all other classes [37]. The 

corresponding potential errors for each MODIS pixel (MMU (ha) × 100/81 ha) introduced by these 

minimum object sizes are 0.55%, 3.55%, and 1.33%, respectively. The error is directly proportional to 

the ratio between MMUs of NLCD2006 and a MODIS cell with 81 ha (900 m spatial resolution), 

which was the main reason for choosing the MCD43B4 data instead of MCD43A4 data with 463 m 

(resampled to 450 m, 20.25 ha pixel area). It should be noted that NLCD is the best regional fine 

resolution data source available for the analysis performed in this study. Therefore NLCD2006 was 

used as a high spatial resolution source to allocate training samples for MODIS image classification, 

for assessment of class memberships, and reference of areas for each land cover class. As decision tree 

classifiers can deal with some level of error in the training data the impact of error on the classification 

is considered to be low, but the impact on error statistics for continuous map assessment cannot 

be estimated. 

5.2. Sample Allocation for Training Data 

This study assessed different allocation schemes for training decision trees from a high spatial 

resolution map (NLCD2006) employing various accuracy measures for discrete and continuous maps 

and difference in area. Other issues such as sample size or feature set dimensionality were not 

addressed because there is ample literature on this subject [28,30,59]. The total size of 5400 samples 



Remote Sens. 2015, 7 9675 

 

for classification and regression was deemed sufficient; a training sample size set of approximately 

0.25% of the study area is realistic for many applied remote sensing studies. In addition, various 

sample allocations ensured a minimum size of 50 samples per class or sample bin, which corresponds 

to approximately 1% of all samples. The actual number of 5400 training samples should not be 

generalized to other studies, but was deemed useful here because it is divisible without remainder by 

the number of classes (9) and for the number of bins (6 and 12), which eased sample allocation and 

data processing in this study. 

For classification trees, heterogeneous training pixels are recommended and if possible uniform 

allocation should be preferred because of slopes closer to 1 and intercepts closer to 0. Even though 

previous studies for very small areas suggested that heterogeneous training data could improve discrete 

classifications [24,35,37], results of this study demonstrate for first time that they have a better 

performance for membership estimates over a large and diverse area. 

Sample size balance between classes is a controversial topic in image classification [7,26,27,30,32]. 

In particular classification trees may suffer from unbalanced sample sizes [33], because in their 

standard form the class with the highest number of samples determines the class label. On the other 

hand, it could be argued that classes with multimodal frequency distributions, e.g., cropland with 

different crop types and growing cycles, should have more samples to be accurately represented in the 

classifier than a spectrally and temporally well-defined class such as water. This study tested random, 

area-proportional and equal sample allocation between all classes. Area-proportional allocation is 

recommended because of best area estimations and similarly high accuracy measures as random allocation. 

This result corresponds with the hypothesis that classes with a large area proportion and thus a higher 

probability of multiple modes in the feature space require more samples than classes with a small area 

proportion [7,27]. 

At first sight, regression methods seem more suitable for estimating memberships because their 

predictions intrinsically derive fractional estimates [24,34,53,60], but the additional step of normalization 

is necessary to obtain correct area totals. In general random allocation of heterogeneous samples is 

recommended for which normalization may not even be necessary, but is still recommended for all 

regression results as differing area totals may complicate further data analysis. Uniform allocation may 

be useful for discrete maps with better area estimates and accuracies similar to random allocation. The 

reason for testing uniform allocation was based on the hypothesis that a higher number of training 

pixels with high homogeneity may improve the prediction of high membership values, which is 

commonly underrepresented in random allocation (e.g., Table 7). 

5.3. Classification Methods 

Membership estimation from classification trees requires multiple iterations. For random forest 

classification this was realized with 1000 iterations and randomized selection of features and  

samples [48]. For C5.0 a process described in Colditz et al. [43] computes the class proportion from 

samples of each leaf and averages the memberships of all boosted trees. Alternative possibilities to 

estimate class memberships are suggested in McIver and Friedl [61]. 

There are notable differences between results from classification trees (C5.0, RF-C) versus 

regression trees (Cubist, RF-R) and the performance of each algorithm depends on appropriate training 
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data allocation. Regression trees depict higher accuracies and lower area differences than classification 

tree results. This, however, comes at the expense of lower slopes and higher intercepts, which affects 

the dynamic range of predicted membership values. The selection of a decision tree type should also 

include the computational costs such as time and storage. Classification trees only require one 

sampling process for all classes with one tree model, which may be iterated to derive class 

memberships. The complexity for regression trees increments with the number of classes for which 

each requires a separate sampling process and tree model. 

With respect to the actual algorithm the differences are small, but from the tested algorithms RF-C 

should be preferred for classification trees and Cubist for regression. The main reason for the better 

performance of RF-C is likely related to the higher number of iterations (1000) as compared to  

10-folded boosting with C5.0. It should also be noted that RF-C was executed in the most basic way 

and there are multiple options to improve results, e.g., by outlier removal and a priori sample 

stratification [50]. The better performance of Cubist as compared to RF-R likely relates to the 

generation of a rule set and formulation of linear equations with specific weights for each input 

variable. In addition, Cubist results can be improved, e.g., by extrapolation beyond training data range 

which could increase the slopes of regression models and thus better estimate the full dynamic range. 

Many studies compare classification results among different conceptual approaches to classify 

remote sensing data such as Maximum Likelihood classification (MCL), Artificial Neural Networks, 

Decision trees, and Support Vectors [10,16,17]. This study only focused on decision trees, because 

each conceptual approach has certain needs with respect to feature sets and training data and thus 

results are likely biased towards one algorithm. For instance, multivariate statistics for MLC should 

include statistical tests for Gaussian frequency distributions and in case of multimodal frequency 

distributions training samples should be separated in different groups. Even in this study different 

sample allocation strategies had to be used to train classification trees, e.g., with respect to  

between-class sample balance, as compared to regression trees, for which this is not an issue. 

Therefore, results of this study can only be generalized for decision-tree models. 

6. Conclusions 

This study tested several sampling methods for discrete classification and class membership 

estimation (i.e., continuous land cover) using decision-tree methods. It employed an annual time series 

of spectral bands of MODIS data at 900 m spatial resolution and a subset of the 2006 National Land 

Cover Database as wall-to-wall finer resolution reference map from which training samples were 

allocated. Spatial co-registration was ensued with baseline Landsat data that also served as response 

data for discrete map assessment. There are three main conclusions: 

(1) Regression trees show higher accuracies and lower differences in expected area but 

classification trees better predict the full dynamic range of values. For tested regression tree 

methods, results of Cubist are better than random forest regression. Random forest classification 

performs better than C5.0 with boosted trees. 

(2) For classification trees, heterogeneous training data perform clearly better than homogeneous 

pixels for both, discrete and continuous land cover mapping. Uniform allocation of heterogeneous 
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pixels is slightly better than random allocation. For between-class sample allocation area-

proportional training data allocation is recommended. 

(3) For regression trees, normalization is imperative to correctly estimate the total area of class 

memberships. Random allocation is very important for estimating class memberships. A 

uniform sampling structure can be recommended for deriving discrete maps. 

This study only focused on one study area, the southeastern United States. Further tests in other 

regions of the world and with different data sets and scales, e.g., 30 m image classification trained with  

1 m reference data, will be needed to confirm and generalize its results. 
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