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Abstract: Nighttime light imagery offers a unique view of the Earth’s surface. In the past, the
nighttime light data collected by the DMSP-OLS sensors have been used as an efficient means to
correlate regional and global socio-economic activities. With the launch of the Suomi National
Polar-orbiting Partnership (Suomi-NPP) satellite in 2011, the day-night band (DNB) of the Visible
Infrared Imaging Radiometer Suite (VIIRS) onboard represents a major advancement in nighttime
imaging capabilities, because it surpasses its predecessor DMSP-OLS in radiometric accuracy, spatial
resolution and geometric quality. In this paper, four variables (total night light, light area, average
night light and log average night light) are extracted from nighttime radiance data observed by the
VIIRS-DNB composite in 2013 and nighttime digital number (DN) data from the DMSP-OLS stable
dataset in 2012, respectively, and correlated with 12 socio-economic parameters at the provincial
level in mainland China during the corresponding period. Background noise of DNB composite
data is removed using either a masking method or an optimal threshold method. In general, the
correlation of these socio-economic data with the total night light and light area of VIIRS-DNB
composite data is better than with the DMSP-OLS stable data. The correlations between total night
light of denoised DNB composite data and built-up area, gross regional product (GRP) and power
consumption are higher than 0.9 and so are the correlations between the light area of denoised DNB
composite data and city and town population, built-up area, GRP, power consumption and waste
water discharge. However, the correlations of socio-economic data with the average night light
and log average night light of VIIRS-DNB composite data are not as good as with the DMSP-OLS
stable data. To quantitatively analyze the reasons for the correlation difference, a cubic regression
method is developed to correct the saturation effect of the DMSP stable data, and we artificially
convert the pixel value of the DNB composite into six bits to match the DMSP stable data format.
The correlation results between the processed data and socio-economic data show that the effects of
saturation and quantization are two of the reasons for the correlation difference. Additionally, on this
basis, we estimate the total night light ratio between saturation-corrected DMSP stable data and finite
quantization DNB composite data, and it is found that the ratio is ~11.28 ˘ 4.02 for China. Therefore,
it appears that a different acquisition time is the other reason for the correlation difference.
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1. Introduction

Remote sensing of the environment provides great opportunities to understand links between
human and nature and global socio-economic changes. With rapid advances in remote sensing
technology and its applications, it becomes increasingly more desirable to use remote sensing data
to study and monitor the socio-economic environment. Nighttime light imagery stands distinctly
against various remote sensing data sources, as it offers a unique view of the Earth’s surface in the
light of human activities. Nocturnal lighting becomes one of the hallmarks of modern development
and provides a unique attribute for identifying the presence of development or human activity that
can be sensed remotely. The presence of lighting across the globe is mostly due to some form of
human activity, such as human settlements, shipping fleets, gas flaring or fire associated with swidden
agriculture [1,2].

Satellite sensors, such as OLS on DMSP, have been acquiring day/night images since the early
1970s for applications, such as military surveillance, population estimation, monitoring social-economic
development and power consumption and providing weather- and climate-related data [3]. The
DMSP-OLS sensor distinguishes itself from the rest of passive, optical remote sensing in that the data
can be acquired at night and are sensitive to light sources down to a minimum detectable radiance of
10´9 W/cm2-sr [4,5]. In essence, the radiance detected by the sensor, after masking out clouds using
the OLS thermal infrared channel, are mostly man-made light sources, primarily from cities, but also
from oil-field gas-flare burn off, biomass burning and shipping fleets [6].

In the past, the remote sensing of nighttime light with DMSP-OLS was actively studied and
shown to be an accurate, economical and straightforward way of mapping the global distribution
and density of developed areas, as well as population [2]. Night light imagery data were also used in
mapping regional economic activity at the national and regional level. Welch [7] showed quantitative
relationships between DMSP-OLS nocturnal lighting images of the United States and population,
urban area and electric energy utilization patterns. Sutton [8] showed that the correlation between
DMSP-OLS data and population density within the urban areas in the United States can be as high
as 0.9. Elvidge et al. [9] found that light area estimated from the DMSP-OLS data is highly correlated
with gross domestic product (GDP) and electric power consumption. However, significant outliers
in the relation between light area and population indicate that it is difficult for DMSP-OLS stable
light products to provide direct detection of rural population. Doll et al. [10] developed a method to
correlate the light area of a city derived from DMSP-OLS data and statistic data of local socio-economic
development to map global economic activity (GDP) and carbon dioxide emissions at the regional
level. Elvidge et al. [5] developed a method to perform radiance calibration for the digital number (DN)
data of DMSP-OLS. With this method, Doll et al. [11] derived a linear relationship between the intensity
of light observed by DMSP-OLS and gross regional product (GRP) for a sub-set of countries within
the European Union and U.S. They concluded that different countries have different relationships
with total radiance based on their cultures. Sutton et al. [12] developed predictive relationships
between observed changes in nighttime satellite images derived from the DMSP-OLS and changes in
population and GDP. Letu et al. [13] demonstrated the estimation of electric power consumption from
saturated nighttime DMSP-OLS imagery after correction for saturation effects. Additionally, recently,
Li et al. [14] used 38 monthly DMSP-OLS System composites covering the period between January
2008 and February 2014 to analyze the response of nighttime light to the Syrian Crisis. The results
indicate that the nighttime light experienced a sharp decline as the crisis broke out. Coscieme et al. [15]
presented a method based on DMSP-OLS nighttime data that uses nocturnal light data as a proxy
measure for the evolution of the non-renewable fraction of national emergy flow. Coscieme et al. [15]
found a strict correlation between the intensity of lights and the non-renewable component of national
energy flow for more than 100 countries.

One comprehensive study of correlating DMSP-OLS imagery data with multiple socio-economic
variables was conducted by Lo [16]. The DMSP-OLS imagery data were acquired between March 1996
and January to February 1997. Lo [16] modeled three types of population parameters (population,
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non-agricultural population and population density) at the provincial, city and county level in China,
respectively, by using four types of variables (light area, percent light area, light volume and pixel
mean) derived from OLS imagery data. It was found that the DMSP-OLS nighttime data produced
reasonably accurate estimates of non-agricultural population at both the county and city levels using
the algometric growth model and the light area or light volume as input. The logarithmic form of the
algometric growth model is logPopulation=loga` blogA. Here, a is a coefficient, b is an exponent and
A is the built-up area of the settlement. Both a and b are empirically determined. Non-agricultural
population density was best estimated using percent light area in a linear regression model at the
county level. Lo [16] concluded that the 1-km resolution DMSP-OLS nighttime light image has the
potential to provide estimation of the total and urban population of a country from space. Furthermore,
Lo [16] presented the relationship between DMSP-OLS imagery data and additional socio-economic
parameters at the provincial level in China, such as household, energy consumption, electricity
consumption, gross value of industrial output, per capita rural income and per capita urban income.
The correlation results between these additional socio-economic parameters and variables derived from
the DMSP image were less emphasized in Lo [16] as compared to those obtained with population data.

While the DMSP-OLS is remarkable for its detection of dim lighting, there have been some
limitations in DMSP-OLS, such as low spatial resolution (2.7 km ground sample distance), low
radiometric resolution (six bit), a saturation effect in bright regions, lack of on-board calibration, lack
of systematic recording of in-flight gain changes and lack of multiple spectral bands for discriminating
lighting types [2].

With the launch of the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite in October
2011, the day-night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard
represents a major advancement in nighttime imaging capabilities [17–21]. DNB serves primarily to
provide imagery of clouds and other Earth features over illumination levels ranging from full sunlight
to quarter moon. Other applications of using DNB, such as light outage detections during major storms,
have been recently demonstrated [19]. The basic parameters for DNB specifications can be found in
Table 1 [22] (Shao et al., 2013). The DNB is a de facto radiometer, because it uses an onboard calibration
system to generate the radiances for Earth observations, compared to the DMSP-OLS, which is an
imager and has no onboard calibration. The DNB of the VIIRS sensor utilizes a backside-illuminated
charge coupled device (CCD) focal plane array (FPA) for sensing of radiances spanning seven orders
of magnitude in one panchromatic (0.5 to 0.9 µm) reflective solar band (RSB). In order to cover this
extremely broad measurement range, the DNB employs four imaging arrays that comprise three gain
stages. The low gain stage (LGS) gain values are determined by solar diffuser data. In operations, the
medium and high gain stage values are determined by multiplying the LGS gains by the medium
gain stage (MGS)/LGS and high gain stage (HGS)/LGS gain ratios, respectively [23]. The DNB relies
on collocation with multispectral measurements on VIIRS and other Suomi-NPP sensors for accurate
geolocation. The spatial resolution of the DNB is approximately 750 m across the entire swath. This is
achieved by performing on-chip aggregation of the CCD detector elements that form pixels, which
results in 32 aggregation zones through each half of the instrument swath on either side of nadir. The
aggregation zones near the end of scan (EOS) have fewer pixels than the zones near nadir, as the
footprint of a single CCD detector element on the ground is much larger at EOS. These improvements,
coupled with the multispectral complementary information from other collocated VIIRS channels,
enables the use of Suomi-NPP to pursue quantitative applications heretofore restricted to daytime
measurements, a true paradigm shift in nighttime remote sensing capability.

Shi et al. [24] suggested that VIIRS data might be more indicative of demographics and economics
than DMSP data at both the city and the province scales by statistically comparing the correlations
between nighttime light brightness and socio-economic variables. Ma et al. [25] investigated
correlations of DNB nighttime light radiance with GDP, population, electrical power consumption
and paved road areas, and this work indicated that these parameters had a significantly positive
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linear relation with nighttime light radiance. The application of VIIRS DNB nighttime data, beyond
correlating with socio-economic data [26–32], also can be used to detect social insurgency [33].

Table 1. Design specifications for Suomi-National Polar-orbiting Partnership (Suomi-NPP)
VIIRS-day-night band (DNB). HGS, high gain stage; MGS, medium gain stage; LGS, low gain stage.

Spectral Band 0.5 to 0.9 µm

Relative Radiometric Gains 119,000:477:1 (HGS:MGS:LGS)
Dynamic Range Lmax/Lmin = 6,700,000

Number of Bits in analog to digital (A/D) 14 bits (16,384 levels) for HGS; 13 bits (8192 levels) for
MGS and LGS

Spatial Resolution 750 m
Aggregation 32 aggregation zones

Time Delay Integration (TDI) 1, 3 and 250 pixels for LGS, MGS and HGS, respectively
Number of Samples per Scan 4064

Recent work by Li et al. [26] compared the capabilities of using DNB and DMSP-OLS data to
model the gross regional product (GRP) in China. One variable, total night light (TNL), is derived
from DNB and DMSP imagery data to model GRP at the provincial and county level in China with a
linear regression model. It was shown that the TNL derived from Suomi-NPP DNB exhibit R2 values
of 0.8699 and 0.8544 when correlating with the provincial and county GRP, respectively, which are
significantly better than the correlative relationship between the TNL from DMSP-OLS F16 (0.6923) and
F18 (0.7056) satellites and GRP. This demonstrated that the DNB nighttime light imagery has a stronger
capability in modeling GRP than those of the DMSP-OLS data. However, the comparison between
Suomi-NPP DNB and DMSP-OLS in correlating with regional socio-economic variables performed by
Li et al. [26] is limited to correlating one socio-economic parameter, i.e., GRP, with one light variable
(total night light) derived from nighttime imagery data. However, Li et al. [26] only gave the three
general potential factors (the saturation effect of DMSP-OLS in city centers, the different acquisition
time between DNB and DMSP-OLS data and the onboard calibration system on NPP-VIIRS) that make
DNB data more efficient than the OLS data in modeling the economy, but without any quantitative
analysis. Factors that cause the difference between DNB and DMSP observations in correlating with
GRP remain to be investigated.

In this paper, we focus on comparing the performance of imagery data of the DMSP-OLS stable
data with that of Suomi-NPP DNB composite data in correlating with multiple regional socio-economic
parameters in China. We developed methods to remove the background noises that are not related
to economic activities in DNB data. Different from the work of Li et al. [26], we calculate correlations
between four light variables derived from nighttime imagery data and multiple socio-economic
parameters to assess the difference between the DMSP-OLS stable data and the DNB composite data
in correlating with socio-economic parameters. In view of the significant differences between DMSP
data and DNB, such as different data quantization, the saturation effect of the DMSP stable data and
data acquisition time at night, i.e., DNB at ~1:30 a.m. versus DMSP-OLS at ~9 p.m. Equator cross time,
we use a cubic regression model to correct the saturation pixels of the DMSP stable data, artificially
quantize the pixel value of the DNB composite data into six bit and estimate the ratio of total night
radiance between saturation-corrected DMSP-OLS stable and finite quantization DNB composite data
for China.

In the following sections, we first introduce the data and regional areas studied in our work.
In Section 3, we first illustrate the variables of interest derived from nighttime light data. Then, the
noise masking method (NMM) and the optimal threshold method (OTM) are presented for removing
background noise of DNB composite data. The correlation results between variables from nighttime
data and socio-economic parameters are given. Section 4 explores the factors that contribute to the
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correlation difference between the DNB composite data and the DMSP-OLS stable data. The conclusion
is given in Section 5.

2. Data and Study Area

2.1. Nighttime Imagery Data

In this study, both DMSP-OLS stable data and Suomi-NPP VIIRS DNB composite data over
mainland China are used. The VIIRS-DNB (Figure 1) composite data used in this study are the first
global cloud-free composite of VIIRS nighttime lights and acquired from the Earth Observation Group
(EOG) of NOAA‘s National Geophysical Data Center (NGDC).

Figure 1. The VIIRS-day-night band (DNB) composite data of mainland China in 2013 (multiplying the
pixel value by 10´9 gives radiance in units of W/cm2-sr).

These global composite of VIIRS nighttime light data are assembled with observations collected
at nights with zero moonlight during the periods of April and October in 2012 and January in 2013.
Cloud screening was performed based on the detection of clouds using the observations from the
M15 infrared thermal band of VIIRS. However, this data product has not been filtered to remove
lights associated with fires, gas flares, volcanoes or aurora. Furthermore, the background noise has
not been subtracted [34]. First, we used a mean algorithm to remove the abnormal lights that may
be associated with fires and gas flares. Then, we introduced the noise masking method (NMM) and
the optimal threshold method (OTM) to remove background noise in DNB composite data, and these
methods are illustrated in Sections 3.2 and 3.3. 2012 composite data reveal significant geolocation
issues, which were due to a DNB pointing error or systematic offset in computing the location of nadir.
In the nighttime data, this resulted in a westward shift of entire scans, with off-nadir pixels more
affected than pixels close to nadir. When making a composite (or average) product, the effect was an
enlarged footprint in the track direction of the composite and an average radiance, which was not
representative of the ground pixel, as it was an average of a close-by region depending on geolocation
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accuracy. NOAA/NGDC developed software to correct for these pointing errors, and these errors
were fixed in the January 2013 composite. Therefore, we use January 2013 DNB composite data to
compare to the DMSP-OLS stable product in this paper. January is not the burn season in China, so the
biomass burning effect can be ignored in this month.

The DMSP stable data are also acquired from the NGDC/EOG. This dataset is cloud-free
composites assembled using all of the archived smooth resolution data of DMSP-OLS that are available
during calendar years. The products are in a spatial resolution of 30 arc seconds [35]. The composite
products of DMSP data we use in this study were stable light products and acquired by the F18
satellite in 2012. In this data product, the background noise was identified and replaced with values
of zero, and ephemeral events have been discarded, so that only lights from cities, towns and other
sites with persistent lighting (including gas flares) remain [36]. All of the nighttime light imagery
was re-projected using Albers conical equal-area projection with its original resolution. The details of
nighttime light data are described in Table 2.

Table 2. Year and spatial resolution of the satellite imagery data used in this study and the year of the
corresponding socio-economic data used to correlate with these imagery data. All of the satellite data
are obtained from National Geophysical Data Center (NGDC)/Earth Observation Group (EOG).

Year Imagery Data Archived
Composites

Resampled Imagery
in this Study

Year of Socio-Economic
Data to Correlate with

2013 VIIRS/DNB composite data 15 arc seconds 491 m 2013

2012 DMSP/F18 stable data 30 arc seconds 982 m 2012

In this paper, we assume that the night light distributions in mainland China during the 12-month
composite in 2012 and the 1-month composite in 2013 are the same. Then, four types of variables, total
night light (TNL), light area (LA), average night light (ANL) and logANL of each administrative region,
were derived from nighttime image. Details on these four variables can be found in Section 3.1.

2.2. Socio-Economic Data

In this study, socio-economic parameters chosen to be correlated with nighttime imagery data are
acquired from China Statistical Yearbook for Regional Economy, China City Statistical Yearbook, and
China Statistical Yearbook. In total, there are 12 socio-economic parameters chosen for correlating in
this study. The abbreviations, sources and units of these parameters are described in Table 3.

Table 3. The abbreviations, sources and units of socio-economic parameters at the provincial level used
in this study.

Socio-Economic Parameters Abbreviations Unit Source

Total Population TP Ten thousands a
City Population CP Ten thousands d1

City and Town Population CTP Ten thousands b
Household HH a
City Area CA Square km c

Built-up Area BUA Square km c
Gross Regional Product GRP One hundred million Yuan a

GRP Per Capita GRPPC Yuan d2
City and Town Per Capita Income CTPCI Yuan b

Rural Per Capita Income RPCI Yuan b
Power Consumption PWC A hundred million kilowatt hours b

Waste Water Discharge WWD Ten thousand tons a

a, China Statistical Yearbook; b, China Statistical Yearbook for Regional Economy; c, China City Statistical
Yearbook; d1, calculated by multiplying city population density and city area; d2, calculated by dividing GRP
by total population.
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2.3. Region of Interest and Identification

To evaluate the correlations between socio-economic parameters and night light variables derived
from DMSP-OLS and NPP-VIIRS imagery data, we focus on analyzing administrative regions at the
provincial level in mainland China. Thirty-one provinces in mainland China are selected for the
analysis. Boundary data of these 31 provinces at the scale of 1:4 million in ArcInfo format for year
2000 were obtained from the Data Sharing Infrastructure of Earth System Science [37]. The nighttime
imagery data were registered to the corresponding provincial units using ENVI software. Figure 1
illustrates the composite observations by DNB of these 31 provincial regions of mainland China.

3. Methodology and Results

3.1. Variable Extraction from Nighttime Imagery Data

Both the DNB composite data and DMSP stable products are arranged in longitude/latitude
format. In our analysis, nighttime image and provincial boundaries are projected using Albers
equal-area conic projection available in ArcGIS, which is a conic, equal-area map projection that uses
two standard parallels. With this projection, distortion is minimal between the standard parallels. This
projection is best suited for land masses extending in an east-to-west orientation.

After applying projection, we extract the pixels and their values within each provincial boundary
and derive four variables, total night light (TNL), light area (LA), average night light (ANL) and logANL,
which are defined as follows.

Following the approach of Lo [16] and Li et al. [26], the TNL indicates the total amount of light
within a given administrative region and is closely related to the socio-economic activities in the region.
It is calculated using the following formula:

TNL “
ÿ

LiąLt

Li (1)

where Lt is the threshold value in mainland China and i is the i-th pixel with a pixel value L ą Lt. For
DMSP-OLS stable data, the pixel value is DN, and the Lt is zero. Additionally, for DNB composite
data, the pixel value has a radiance unit of W/cm2-sr; the Lt is zero when the data have been processed
by the noise masking method and is the optimal threshold value when the data have been processed
by the optimal threshold method. Each TNL value represents the sum of all pixel values larger than Lt

in an administrative region. For each kind of nighttime imagery data, we can extract 31 TNL values for
the 31 regions, respectively.

As Elvidge et al. [9] and Lo [16] suggested that light area estimated from the nighttime imagery
data is highly correlated with socio-economic parameters, we also introduce the light area (LA) as a
variable to be extracted from the imagery data, and it is calculated as:

LA “
ÿ

LiąLt

A pLiq (2)

where A is area of the i-th pixel with pixel value L ą Lt. In this case, the light area is the total area of
an administrative region with a pixel value greater than the threshold value Lt. Similarly, 31 LA values
can be extracted for each kind of nighttime imagery data.

The third variable we extract from the imagery data is average night light (ANL), and it is
calculated as:

ANLj “ TNLj{LAj (3)

where index j refers to the j-th administrative region and TNLj and LAj are the TNL and LA of region j,
respectively, as defined in Equations (1) and (2). Intuitively, ANL can be correlated with per capita-type
socio-economic parameters, such as per capita income.
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Meanwhile, referencing to the work of Lo [16] and considering the division calculation of the
variable ANL, we also introduce the fourth variable logANL in this paper.

3.2. DNB Noise Filtering with the Noise Masking Method

While DMSP-OLS products are stable nighttime data and the background noise and ephemeral
lights have been identified and replaced with values of zero [36], the DNB composite data acquired
from NGDC have not been filtered to remove light signals associated with fires, gas flares, volcanoes
or aurora. In calculating the TNL, LA, ANL and logANL, the key is to remove the dark background
noise and ephemeral noises, which are not related to socio-economic activities.

Before removing background noise of the DNB composite, we notice that there are a few outliers
of the 2013 DNB composite data in northeast and western China. The outliers are probably caused
by lights from the fires of oil or gas flares located in those areas. Since Beijing and Shanghai are
the two most developed administrative regions in China, the pixel values of the other areas should
not exceed those of the two regions theoretically [29]. The highest radiance of those two regions is
2.62 ˆ 10´7 W/cm2-sr, and other pixels whose radiance is larger than 2.625 ˆ 10´7 W/cm2-sr in the
DNB composite data were smoothed by their eight neighbors.

After that, this preliminary corrected data also have background noise left. Making reference to
the work of Lo [16] and Li et al. [26], we introduce two methods to remove these background noises.

Li et al. [26] developed a simple and approximate method for removing the background noise
and ephemeral lights in DNB composite data through applying the mask generated from the 2010
DMSP-OLS stable data to 2012 DNB composite data. It was shown in Li et al. [26] that after applying
this method, the correlation of TNL with regional GRP in China is largely increased. By using this
method, Li et al. [26] made an assumption that the light areas in the years 2010 and 2012 are the same.
During the time of their study, they can only acquire DMSP-OLS stable data in 2010, which is the
closest year to 2012. In our work, the DMSP-OLS stable data in 2012 can be acquired, and we can
generate a mask from the DMSP-OLS data in 2012, close to the year of DNB composite data. This
method is referred as the noise masking method (NMM). Furthermore, we assume that the light areas
in the years 2013 and 2012 are the same.

Figure 2. Flow chart of the noise masking method (NMM) in removing background noise for DNB
composite data.
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Figure 2 shows the flow chart of NMM. Different from the work of Li et al. [26], we use Albers
projection in this work instead of the Lambert projection used in Li et al. [26]. The DNB composite data
are resampled to the same resolution as that of DMSP-OLS stable light product, i.e., 982 m. Then, we
extract all of the pixels with a positive value (DN > 0) from 2012 DMSP stable data to generate a mask.
The mask is applied to the DNB January 2013 composite imagery data. For pixels outside the mask,
the pixel value of DNB data is set as NaN (not a number), and the pixel value is kept the same for
pixels inside the mask.

3.3. DNB Noise Filtering with the Optimal Threshold Method

Although NMM can be effective at screening out background noise and ephemeral lights in
DNB composite data, this method relies on the DMSP stable data to generate the mask. These masks
might not be readily available for the DNB observations of interest and can be outdated as the new
DNB observations are made available. Additionally, at the same time, NMM will exclude some small
towns and road features that the DNB product is sensitive enough to pick up. Therefore, we introduce
another method, the optimal threshold method (OTM), to remove the noises in DNB composite data.
To determine the optimal threshold (LT), we chose the correlation between LA and built-up area
as the object function. The choice of this object function originates from the work by Lo [16] and
Chen et al. [38], which showed that light intensity is closely related to the type of land use or land
cover and depicts built-up area the best. The object function is defined as:

O pLtq “ ρpLApL ą Ltq, bq (4)

where ρpLApL ą Ltq, bq is the correlation coefficient between LA with a pixel value above the intensity
threshold value Lt and built-up area b; Lt: intensity threshold value; LA pL ą Ltq: light areas with a
pixel value above the radiance threshold value Lt inside administrative regions; b: built-up areas of
the regions in China that were acquired from China Yearbook.

The optimal threshold value LT is therefore determined using:

O pLTq “ max
´

O pLtq|Lt“rLt1, Lt2s

¯

(5)

so that the resulting correlation O pLTq between LA and built-up area reaches the maximum when
Lt “ LT . Here, the light radiance threshold Lt varies from Lt1 to Lt2 to determine LT . In our calculation,
we use Lt1 equal to 0 and Lt2 equal to 10´7.

Figure 3 illustrates the determination of the optimal threshold value LT from DNB composite
data. The X-axis is the radiance value varying from 0 to 10´7 W/cm2-sr. The Y-axis is the correlation
coefficient between LA and the built-up area of the provinces of interest. When the correlation
coefficient reaches the maximum, the corresponding radiance value is determined as the optimal
threshold value LT . As can be seen from Figure 3, the optimal threshold value of the original DNB
composite data is determined as LT “ 2.15 ˆ 10´9 W/cm2-sr.
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Figure 3. Correlation coefficient between built-up area and light area vs. different threshold values
(see Equation (4)) for 31 provinces.

As we will show in Section 3.4.2, OTM is a more effective way than NMM to increase the
correlation between LA and socio-economic parameters.

3.4. Correlation Results

We compute TNL, LA, ANL and logANL using Equations (1) to (3) given above for DMSP-OLS
stable data and VIIRS-DNB composite data, respectively. For DNB composite imagery data, we applied
the NMM and OTM to remove the background noise in composite imagery. The relationships between
these variables derived from nighttime imagery and socio-economic parameters are evaluated using
the Pearson correlation coefficients.

3.4.1. Correlations with TNL

Table 4 and Figure 4 show the correlation results and scatter plots between TNL and
socio-economic parameters, respectively. As shown in Table 4, TNL of DNB composite imagery
derived with the NMM and OTM (hereinafter referred to as DNB NMM and DNB OTM, respectively)
all have a better correlation with socio-economic parameters than that of TNL-derived from DNB
composite imagery without noise filtering. This indicates the importance of noise removal in processing
DNB composite data. TNL of DNB NMM has overall better correlation than that derived with OTM.
With NMM, The TNL derived from the DNB composite image has correlation coefficients (ρ) with
socio-economic parameters all above 0.7. In particular, the correlation of TNL with built-up area (BUA),
GPR and power consumption (PWC) are the best, all above 0.9. The correlation of TNL with city
population (CP), city and town population (CTP) and waste water discharge (WWD) are relatively in
the middle, whose coefficients are 0.85, 0.84 and 0.86, respectively. The correlation of TNL with total
population (TP), household (HH) and city area (CA) are relatively weak, but still strong in absolute
value, whose coefficients are 0.70, 0.72 and 0.75, respectively.

Comparing the correlation of TNL of the DNB composite image with socio-economic parameters
and that of DMSP-OLS stable data, we found that the TNL’s of DNB NMM and DNB OTM in general
have a better correlation with most of the socio-economic parameters (except TP and HH) than the
correlation derived with DMSP stable data. For TNL from DMSP-OLS stable data, the best correlation
is with PWC, whose coefficient is 0.91; the correlations with TP, HH, BUA, GPR and WWD are in the
range of 0.8; the correlations with CP, CTP and CA are relatively weak, but still strong in absolute
value, whose coefficients are 0.74, 0.79 and 0.70, respectively.

Figure 4 shows the scatter plot of selected socio-economic parameters, such as BUA, GRP and
PWC, vs. TNL from DNB NMM, DNB OTM and DMSP-OLS stable data, respectively. It can be seen
that Guangdong has the highest BUA and GPR, and Jiangsu has the highest PWC in the year 2013;
Guangdong also has the highest BUA, GPR and PWC in the year 2012. Meanwhile, Guangdong has
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the highest TNL as derived from both DNB NMM (2013) and DNB OTM (2013), and Shandong has the
highest TNL as derived from DMSP-OLS (2012) stable data. Xizang has the lowest TNL as derived from
both processed DNB composite data and DMSP stable data and has the lowest BUA, GPR and PWC.
This suggests that Shandong, Jiangsu and Guangdong provinces are large administrative regions and
more industrialized with more night light, which is consistent with the actual situation in China.

Figure 4. Scatter plots of total night light (TNL) vs. socio-economic parameters (1st row: built-up
area; 2nd row: gross regional product (GRP); 3rd row: power consumption) together with the fitting
curve (in red) from regression. TNL data used in the 1st, 2nd and 3rd column are derived from DNB
composite data with NMM, the optimal threshold method (OTM) in 2013 and DMSP-OLS stable data
in 2012, respectively. Red labels in the panel denote: GD, Guangdong; SD, Shandong; XZ, Xizang;
JS, Jiangsu.

Table 4. Correlation coefficients between TNL and socio-economic parameters. TNL’s are derived from
DNB composite data with or without noise filtering and DMSP-OLS F18 stable data, respectively.

DNB TNL 2013 DMSP TNL

Original NMM OTM F18 2012

TP 0.43 0.70 0.63 0.80
CP 0.58 0.85 0.85 0.74

CTP 0.54 0.84 0.81 0.79
HH 0.45 0.72 0.66 0.81
CA 0.53 0.75 0.73 0.70

BUA 0.67 0.90 0.87 0.86
GRP 0.62 0.90 0.88 0.86
PWC 0.71 0.91 0.87 0.91
WWD 0.57 0.86 0.85 0.80



Remote Sens. 2016, 8, 17 12 of 24

In summary, applying noise-filtering methods, i.e., NMM or OTM, to DNB composite data helps
improve the correlation between TNL and socio-economic parameters. The NMM produces the best
performance in correlating TNL of DNB composite data with socio-economic parameters in comparison
with another method. The correlation of TNL from DNB NMM is better than that of DMSP stable data
for almost all of the parameters, except TP and HH, and that with PWC is comparable. Li et al. [26]
studied the correlation only between TNL and GRP, and our results on this correlation are consistent
with what they concluded.

3.4.2. Correlations with LA

Table 5 and Figure 5 show the correlation results and scatter plots between LA and socio-economic
parameters, respectively.

As shown in Table 5, the LA’s derived from DNB NMM and DNB OTM all have significant
better correlations with socio-economic parameters than that of LA derived from the DNB composite
without noise filtering. The correlation coefficients of LA derived from DNB OTM are all above 0.77. In
particular, the correlations of LA derived from DNB OTM with economic parameters (CTP, BUA, GRP,
PWC and WWD) are among the best, all above 0.9. LA of DNB OTM has a much better correlation than
that of DNB NMM, particularly in correlating with CP, CTP, CA, BUA, GRP, PWC and WWD. The best
correlation of LA derived from DNB NMM has ρ ~ 0.78, i.e., TP and HH, far less than ρ > 0.9 achieved
for the correlation of LA using OTM with CTP, BUA, GRP, PWC and WWD. This illustrates that OTM
is a more effective way than NMM to remove noisy background of DNB composite data and deriving
socio-economic activity-related LA from the data. Therefore, using OTM can more effectively improve
the correlative relationship between LA of DNB composite data and socio-economic parameters.

Table 5. Correlation coefficients between LA and socio-economic parameters. LA’s are derived from
DNB composite data with or without noise filtering and DMSP-OLS F18 stable data, respectively.

DNB 2013 LA DMSP LA

Original NMM OTM F18 2012

TP ´0.27 0.78 0.78 0.78
CP ´0.33 0.58 0.86 0.59

CTP ´0.33 0.72 0.90 0.75
HH ´0.29 0.78 0.80 0.78
CA ´0.27 0.55 0.77 0.54

BUA ´0.23 0.74 0.93 0.73
GRP ´0.31 0.68 0.94 0.68
PWC ´0.16 0.75 0.95 0.75
WWD ´0.30 0.65 0.92 0.65

Since the administrative region of interest of DNB NMM data is generated from the DMSP-OLS
mask, the correlations of LA using DNB NMM and the DMSP stable data are similar; only the
correlations with CP, CTP, CA and BUA have small differences, which is because the years of the
corresponding socio-economic data that DNB NMM and DMSP stable data correlated with are different.
Therefore, the performances of the correlation of LA derived from both DNB NMM and DMSP-OLS
stable data with socio-economic parameters are almost the same.

Figure 5 shows the scatter plot of selected socio-economic parameters, such as household, city
and town population and power consumption vs. LA from DNB NMM, DNB OTM and DMSP-OLS
stable data, respectively. From Figure 5, Guangdong and Shandong have the largest LA as derived
from DNB OTM (2013) and DMSP-OLS stable data (2012), respectively. Xizang has the smallest LA
as derived from both DNB denoised data and DMSP-OLS stable data. This relative ranking of LA
among Guangdong, Shandong and Xizang is consistent with the ranking of TNL. Correspondingly,
Shandong, Guangdong and Jiangsu have the highest household, city and town population and power
consumption in the year 2013, respectively, Shandong has the highest HH, and Guangdong has the
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highest CTP and PWC in the year 2012. Still, Xizang province has the lowest built-up area, GPR and
power consumption.

Figure 5. Scatter plots of light areas (LA’s) vs. socio-economic parameters (1st row: household; 2nd row:
city and town population; 3rd row: power consumption) together with the fitting curve (in red) from
regression. LA data used in the 1st, 2nd and 3rd column are derived from DNB composite with NMM
and OTM in 2013 and DMSP-OLS stable data in 2012, respectively. Red labels in the panel denote: GD,
Guangdong; SD, Shandong; XZ, Xizang; JS, Jiangsu.

From Tables 4 and 5 it can also be observed that using OTM in deriving TNL and LA from DNB
composite data, the resulting correlations with BUA, GRP, PWC and WWD are all quite strong, i.e.,
above 0.92 for LA and between 0.85 and 0.88 for TNL. This suggests that OTM is consistent in removing
noise for calculating the correlation with both LA and TNL and is an effective method for filtering
DNB data to model these socio-economic parameters. Meanwhile, based on the generation procedure
of DNB NMM data, its performance for LA in correlating with the parameters is the same as DMSP
stable data, but has better performance of TNL than DNB OTM data in correlating with the parameters,
especially with BUA, GRP, PWC and WWD (economic parameters).

3.4.3. Correlations with ANL and logANL

Tables 6 and 7 show the correlation results between socio-economic parameters and both ANL
and logANL, respectively. Figure 6 shows scatter plots between logANL and multiple socio-economic
parameters. Since the ANL is derived by dividing TNL with LA, it should be related to per-capita
socio-economic parameters, such as per capita GRP and per capita income, in evaluating its correlation.



Remote Sens. 2016, 8, 17 14 of 24

Table 6. Correlation coefficients between ANL and socio-economic parameters. ANL’s are derived from
DNB composite data with or without noise filtering and DMSP-OLS stable data, respectively.

DNB ANL 2013 DMSP ANL

Original NMM OTM F18 2012

GRPPC 0.69 0.71 0.67 0.84
CTPCI 0.78 0.81 0.77 0.88
RPCI 0.77 0.80 0.76 0.89

Table 7. Correlation coefficients between logANL and socio-economic parameters. logANL’s are derived
from DNB composite data with or without noise filtering and DMSP-OLS stable data, respectively.

DNB logANL 2013 DMSP logANL

Original NMM OTM F18 2012

GRPPC 0.83 0.84 0.75 0.89
CTPCI 0.84 0.88 0.79 0.90
RPCI 0.88 0.87 0.81 0.91

Figure 6. Scatter plots of logANL vs. socio-economic parameters (1st row: GRPPC; 2nd row: CTPCI;
3rd row: RPCI) together with the fitting curve (in red) from regression. logANL data used in the 1st,
2nd and 3rd column are derived from original DNB composite data in 2013, DNB NMM in 2013 and
DMSP-OLS stable data in 2012, respectively. Red labels in the panel denote: GS, Gansu; GZ, Guizhou;
GX, Guangxi; SH, Shanghai; TJ, Tianjin; XZ, Xizang.
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Figure 6 shows the scatter plot of the selected socio-economic parameters, such as GRP per
capita (GRPPC), CT per capita income (PCI) and RPCI vs. logANL from original DNB composite
data, DNB NMM and DMSP-OLS stable data, respectively. As mentioned above, ANL is derived by
dividing TNL with LA, so the province with the highest ANL is different from that with the highest
TNL and LA. Shanghai has the highest logANL for both DNB composite data and DMSP-OLS stable
data. Accordingly, Shanghai also has the highest CTPCI and RPCI over the two years of interest, and
Tianjin has the highest GRPPC in both years. On the other hand, Xizang, Guangxi and Guizhou have
the lowest logANL for original DNB composite data, DNB NMM data and DMSP-OLS stable data,
respectively. Guizhou has the lowest GRPPC, and Gansu has the lowest CTPCI and RPCI in both
years. This indicates that Shanghai is more industrialized, has a higher living standard per capita and,
therefore, more night light emission in ANL, which is indeed the scenario in China.

4. Analysis and Discussions

From Section 3.4, it can be seen that the correlation of socio-economic data with the TNL and
LA of denoised DNB composite data is in general better than with DMSP-OLS stable data. The
correlations with ANL and logANL of DNB composite data are not as good as with DMSP-OLS stable
data. Therefore, this section focuses on the cause analysis of the correlation difference with variable
TNL. In this section, we analyze the reasons for the correlation difference between DMSP stable data
and DNB NMM data, rather than DNB OTM data, because, since the DNB NMM is derived from
DMSP stable data, we can pay more attention to the nighttime light intensity difference between DNB
composite and DMSP stable data instead of the difference caused by noise removal methods. For
the same reason, we will not analyze correlation difference with variables LA, ANL and logANL in
this paper.

To find out the factors that cause the correlation difference between DNB NMM and DMSP-OLS
stable data, we here analyze the primary difference (Table 8 [5,35]) between DNB composite and
DMSP-OLS stable data, such as the effects of the saturation and quantization of the pixel value and the
TNL ratio between different nighttime datasets.

Table 8. Main differences between VIIRS-DNB and DMSP-OLS data.

Data Spatial
Resolution Pixel Value Saturation

Effect Quantization Acquisition Time
(Local Time)

VIIRS/DNB

750 m
(Observed) 15

arc second
(NGDC)

Radiance NO 14 bit [39] 1:30 a.m.

DMSP-OLS

2700 m
(Observed) 30

arc second
(NGDC)

DN YES 6 bit [5] ~9 p.m.

4.1. Effect of Saturation

DN data of the DMSP-OLS stable light image can be saturated at centers of city areas where
nighttime light is strong [13]. At full spatial resolution (called “fine”), the OLS collects data with a
normal pixel size of 0.56 km. Onboard averaging of five by five blocks of fine data produces smoothed
data with a ground sampling distance (GSD) of 2.7 km [2]. In this case, saturated and non-saturated
fine pixels get averaged together, so the resultant data appears non-saturated [40]. The stable products
are made using all of the available archived DMSP-OLS smooth resolution data for calendar years
and re-mapped with 1 km ˆ 1 km spatial resolution, so that the sub-pixel saturation phenomenon is
not as obvious as the smoothed data. Meanwhile, China is a developing country, and the percentages
of saturation area (areasaturation/areapixel value>0) in administrative regions are small (the largest three
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percentage regions are Beijing, Shanghai and Tianjin, whose saturation area percentages are 0.182,
0.048 and 0.023, respectively). Therefore, we determine that the sub-pixel saturation effect is negligible
in this work.

Letu et al. [13] developed a correction method for the saturation light by using a cubic regression
equation in the power supply areas in Japan, China and other countries in Asia. The correlation results
between cumulative DNs and electric power consumption of each prefecture in China increases after
the correction for the saturation DMSP stable light. In this paper, we follow the correction method of
Letu et al. [13] to estimate the total DN values in the saturation areas and assess the effect of saturation
on the correlation difference.

The cubic regression equation is based on the tendency of DN change in non-saturated areas to
correct the saturation effect. The cubic regression equation is [13]:

DNT “ DNNS `

B
ż

A

´

ax3 ` bx2 ` cx` d
¯

(6)

where DNT is the corrected total DN of the administrative region, DNNS is the total DN of the
non-saturation area and A and B are the lower and upper limits of the total number of pixels in
the saturation area, respectively. Additionally, a, b, c, d are coefficients that were obtained from a
four-dimensional simultaneous equation on the least-squares method.

The correlation results between socio-economic parameters and TNL derived from the
saturation-corrected DMSP-OLS stable data are listed in Table 9, and even though the correlation
difference from that of TNL derived with DMSP-OLS stable data, ∆ρ, differs at the third decimal point,
all of the correlations with saturation corrected data have been improved. This indicates that this cubic
regression saturation correction method is effective, and the saturation effect of DMSP stable data is
one of the reasons for the correlation difference.

Table 9. Correlations between socio-economic parameters and TNL of DMSP stable data, TNL of
saturation-corrected DMSP stable data, TNL of DNB NMM and TNL of DNB NMM after quantization.
∆ρ: difference in the comparison with the correlation derived from TNL of DMSP stable data and DNB
NMM, respectively.

TNL of DMSP Stable Data TNL of DNB NMM Data

Original Saturation Corrected Original Quantization

∆ρ ∆ρ

TP 0.801 0.808 0.007 0.695 0.684 ´0.011
CP 0.738 0.747 0.009 0.850 0.860 0.010

CTP 0.789 0.797 0.008 0.841 0.844 0.003
HH 0.809 0.816 0.007 0.721 0.710 ´0.011
CA 0.700 0.709 0.009 0.754 0.756 0.002

BUA 0.864 0.870 0.006 0.904 0.898 ´0.006
GRP 0.856 0.865 0.009 0.899 0.910 0.011
PWC 0.911 0.917 0.006 0.906 0.909 0.003
WWD 0.799 0.808 0.009 0.861 0.877 0.016

Figure 7 shows the correction results for the saturation pixels in Beijing and Tianjin. The correction
data vary considerably from the DN of the non-saturated area, and therefore, we could estimate the
DN of the saturation areas.
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Figure 7. Correction of the saturation light by the cubic regression equation of Beijing and
Tianjin, respectively.

4.2. Effect of Quantization

The radiometric signals observed by the DNB sensor are digitized using 14 bits for the HGS and
13 bits for the MGS and LGS. The fine quantization of HGS enhances the appearance of terrestrial light
emissions, including faint city lights. By applying gain coefficients and offsets, raw data from DNB
observation are converted into radiometric units, i.e., W/cm2-sr [19]. On the other hand, the pixel
value of DMSP-OLS stable data obtained from NGDC is of a digital number (DN) in six-bit format
with a value between zero and 63.

Fourteen bit and six bit are different in quantization steps. There are more gray levels for 14-bit
data compared to six-bit DMSP stable data, so the different quantization might affect the correlation
results. Since there is no absolute radiometric calibration for the DMSP-OLS observation in 2012, in this
subsection, we show the relationship between the DN value and the radiance of DMSP-OLS stable data
firstly. Based on this premise, to study the effect of finite quantization embedded in the DMSP stable
data on the performance of correlations with socio-economic parameters, we artificially transform the
radiance value of DNB NMM data into six-bit format to match the DN value of the DMSP-OLS stable
data format and then compare the resulting correlations.

The DMSP-OLS stable data are acquired under operational conditions, and the gain is varied both
along each scan line and as the satellite follows its polar orbit. However, the gain is not recorded in the
data stream [40]. In this work, we assume that the gain of the operational stable light product, which is
taken by sensors set at the variable, but highest level of gain [41], is fixed (i.e., 55) [40].

The instrument gain of DMSP-OLS is a setting that determines how the detector converts the
radiance into a digital number. The transform equation is [40,42]:

DN “ DNmax pR{Rsatq (7)

where DN is the digital number of the DMSP-OLS data and R is the corresponding radiance. DNmax is
63, and Rsat is the saturation radiance of the detector. Additionally, the following equation gives the
relationship between gain setting (G) and saturation radiance:

log10Rsat « ´pC` Gq {20 (8)

where C is a constant coefficient of the relationship between gain and saturation that can be acquired
from a pre-launch calibration graph and is subject to change as the instrument degrades. The unit of
Rsat is W/cm2/sr. Even though the constant coefficient C for the DMSP-OLS F18 sensor is unreachable,
based on the assumption mentioned above and Equations (7) and (8), we can get that the relationship
between DN of a specific DMSP-OLS stable dataset, and its corresponding radiance value is linear.
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After that, we should find the radiance range of DNB NMM data that will be quantized. We
started with the hypothesis that the distribution of the composite night light in China is stable in
the years 2012 and 2013, so that the brightness levels of DNB NMM data and DMSP stable data
are the same. Therefore, if the DNB composite data have been artificially saturated, the saturated
pixel percentage is the same as that of DMSP stable data in China mainland. Then, we arrange the
pixels of DMSP stable data and DNB NMM data with a DN value in a gradually increasing order,
determine the corresponding radiance value for the saturated DN of DNB composite data, i.e.,
Lsat = 3.606 ˆ 10´8 W/cm2-sr, and set pixel values of DNB NMM data larger than Lsat equal to
Lsat. Then, we perform an inverse transformation of Equation (7) so that the radiance data from DNB
NMM data can be converted to six-bit format to match the DMSP stable data format.

Figure 8 shows the histograms of DNB NMM data transformed with finite quantization for Beijing
and Tianjin. Table 9 lists the correlation coefficients between socio-economic parameters and TNL of
DNB NMM data after quantization. From Table 9, we notice that, after quantization processing of DNB
NMM, the correlations of CP, GRP and WWD have improved compared to the original DNB NMM
correlations. Meanwhile, quantization processing makes the correlations with TP, HH and BUA worse.
Therefore, the effect of quantization on the correlation difference is noticeable, but socio-economic
parameter dependent.

Figure 8. (a) DNB imagery derived with NMM for Beijing (left) and Tianjin (right); (b) histograms of
DNB NMM data; (c) histograms of DNB NMM data transformed with finite quantization for Beijing
(left) and Tianjin (right), respectively.

4.3. Fluctuation of the TNL Ratio

In this sub-section, we compare the difference in the TNL of saturation-corrected DMSP stable
data and finite quantization DNB NMM data and finite quantization DNB NMM data for individual
provinces. For comparison‘s sake, we calculate the TNL ratio using the pixel value of DNB NMM
data instead of the radiance value, and multiplying the pixel value by 10´9 gives radiance in units of
W/cm2-sr.

The TNL ratio for 31 provinces derived from the saturation-corrected DMSP stable data in 2012
and quantized DNB NMM data in 2013 ranges from 3.4 to 24.9. The mean of the ratio is ~11.28 ˘ 4.02.
Figure 9 shows the TNL ratio for 31 provinces. This indicates that the fluctuation of these ratios in
Figure 9, other than saturation and quantization effects, is the other reason for the correlation difference
between DNB composite data and DMSP-OLS stable data. From Figure 9, for provinces that have
a large built-up area and are well industrialized, such as Beijing (2), Guangdong (6), Jiangsu (15),
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Shanghai (23), Tianjin (27) and Zhejiang (31), their TNL ratios are relatively small. For provinces that
are relatively underdeveloped, such as Gansu (5), Guangxi (7), Henan (12), Jiangxi (16), Neimenggu
(19) Ningxia (22) and Yunnan (30), their TNL ratios are larger.

Figure 9. TNL ratio between saturation-corrected DMSP stable data and quantized DNB composite
data for 31 provinces in China. Names corresponding to the indices of these provincial regions are
listed in Table A1. Mean ratio = 11.28 and standard deviation of the ratio = 4.02.

DMSP satellites operate in Sun-synchronous orbits with nighttime overpassing at local time
from 7 p.m. to 9 p.m. [2]. Additionally, the Suomi-NPP satellite was placed into Sun-synchronous
orbit with local equatorial crossing times at ~1:30 a.m. during the nighttime [18]. Because of their
different observation times, the characteristics of observed radiance data are quite different. At
1:30 a.m., people are asleep, and residential light sources and light emitted from vehicles are reduced,
but the commercial and city infrastructure light sources are still on. Therefore, the reason for the
phenomenon of the TNL ratio fluctuation is mainly because of the different data acquisition times. In
the well-industrialized regions, commercial and city infrastructure lights are still on at midnight, so
the light intensity changes are relatively small at night and midnight. On the contrary, the night light
intensity has larger variation in the underdeveloped regions at night and midnight.

We note the different instantaneous field of views (IFOV) and spectral responses will affect TNL;
but, for the TNL ratio, the IFOV and spectral response difference will be a constant factor, and the
ratio fluctuation tendency will not change. However, still, these ratios only serve as a preliminary
and rough estimate for the difference in the nighttime light emission at different night times, i.e., at
~8 p.m. vs. at ~1:30 a.m., in different provincial regions. Other factors, such as saturation correction
and finite quantization uncertainty, different data collection times in the year and sensor calibration, etc.,
can certainly contribute to the overall uncertainty of the ratio estimation.

We use a nearest-neighbor model to resample DMSP stable data to the same spatial resolution as
DNB composite data, and its TNL is four times the original DMSP stable data. This will not change the
correlation results between DMSP stable data and statistics.

Therefore, the reasons that caused the correlation difference between nighttime data can be the
effects of the saturation and quantization of DMSP stable data, and a different acquisition time is
another reason for the correlation difference.

5. Conclusions

In this paper, we calculate the correlations between four variables (TNL, LA, ANL and logANL)
derived from nighttime light data and 12 socio-economic parameters at the provincial level in mainland
China to compare the performance of Suomi-NPP VIIRS/DNB composite data and DMSP-OLS stable
data in correlating with regional socio-economic parameters. The noise masking method and optimal
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threshold method have been used to remove the background noise of DNB composite data that is not
related to economic activities before calculating the correlations.

From the correlation results, we can find that the OTM is effective at noise removal for both TNL
and LA variables of DNB composite data, and the NMM is effective at noise removal for TNL of DNB
composite data. Quantitatively, the correlations between TNL of DNB NMM and BUA, GRP and
PWC are higher than 0.90. Additionally, for the LA, OTM can improve the correlations significantly.
Correlations between LA of DNB OTM and CTP, BUA, GRP, PWC and WWD are higher than 0.9. For
the ANL and logANL, the processing of DNB composite data with NMM and OTM has little effect
on the correlations in comparison to the original DNB composite data. All of the results demonstrate
that OTM is consistent at removing noise and is an effective method for filtering DNB composite data
to model these socio-economic parameters. In addition, from an application perspective, OTM is not
bounded by time, but the NMM depends on the masks derived from DMSP stable data of the most
recent years.

A comparison is also performed of the relationship between DNB composite and DMSP-OLS
stable data with socio-economic parameters through correlation analysis. TNL and LA of DNB
composite data have a better correlation than DMSP-OLS stable data in general. For TNL, DNB
NMM has a better correlation with all of the socio-economic parameters (except TP and HH) than the
correlation derived with DMSP/F18 stable data. For LA, DNB OTM has a better correlation with all of
socio-economic parameters than the correlation derived with DMSP/F18 stable data. However, the
correlation between ANL/logANL and DNB composite data is not as good as DMSP stable data.

To analyze the factors contributing to the correlation difference between DNB composite data
and DMSP stable data, we studied the effects of the differences in their saturation effect, quantization,
spatial resolutions and the TNL ratios. A cubic regression method is developed to correct the
saturation effect of DMSP stable data. Additionally, we artificially convert DNB composite data
into a six-bit value to match the DMSP stable data format. The correlation results between the
processed data and socio-economic data show that the effects of saturation and finite quantization
are two reasons for the correlation difference. Additionally, on this basis, we estimate the TNL ratio
between saturation-corrected DMSP stable data and finite quantization DNB composite data, and
it is found that the ratio is ~11.28 ˘ 4.02 for China. Based on the characteristic of the TNL ratio
fluctuation, the fluctuation tendency of the ratio is mainly due to different acquisition times: DMSP
and Suomi-NPP satellites overpass at local time about 8 p.m. and 1:30 a.m., respectively. At 1:30 a.m.,
residential and vehicle light sources are reduced, but commercial light sources are left. The fluctuation
tendency consists of the situation in which the night light intensity in more developed regions changes
less at night and midnight (Figure 9). That means that the social economic parameters we considered,
which have a good correlation with the VIIRS-DNB composite, are indicators of human-related activity.
This does not mean that these activities cease when humans are asleep. This means that societal
development, city infrastructure and, consequently, light emissions are all correlated.

Note that the ratio of TNL between DMSP-OLS stable and DNB composite data is a rough estimate
and can be affected by other factors, such as saturation correction and finite quantization uncertainty,
different data collection times in the year, sensor calibration, etc.

In this paper, the VIIRS DNB composite, like some eliminated ephemeral events in OTM, has no
further removal, and some faint sources of VNIR emissions have been removed wrongly. These are the
next steps of our work about the nighttime light.

The Suomi-NPP VIIRS/DNB is a major step forward from DMSP-OLS in its night-imaging
capabilities. The advantages of the DNB sensor are clear: higher radiometric accuracy, finer spatial
resolution and higher geometric quality. Additionally, and more importantly, the radiometric data are
more reliable and inter-comparable due to the on-board calibration process and three-gain stage of
DNB, which ensures no saturation effect at night. The comparison results in this paper confirm this
and show that with DNB data, we can quantitatively determine the regional night light in radiance
units and assess the correlation with socio-economic parameters. Additionally, our study demonstrates
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the promising aspects of applying well-calibrated VIIRS-DNB data to estimate long-term regional
socio-economic development. With the effort from NOAA to improve the calibration of VIIRS DNB
products, it is anticipated that the VIIRS nighttime lights will enable advances in more applications of
nighttime imaging products.
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Appendix A

Table A1. Socio-economic parameters during 2013 for 31 provinces in mainland China (units and
abbreviations for these socio-economic parameters are listed in Table 3).

Index Number Abbreviations TP CP CTP HH CA

Anhui 1 AH 6030 1380 2886 16,155 5852
Beijing 2 BJ 2115 1826 1825 6166 12,187

Chongqing 3 CQ 2970 1133 1733 9071 6134
Fujian 4 FJ 3774 1105 2293 11,340 4299
Gansu 5 GS 2582 568 1036 6280 1450

Guangdong 6 GD 10,644 4947 7212 27,050 16,136
Guangxi 7 GX 4719 942 2115 11,809 6104
Guizhou 8 GZ 3502 623 1325 9296 1828
Hainan 9 HN 895 246 472 2060 1265
Hebei 10 HB 7333 1608 3528 19,036 6478

Heilongjiang 11 HLJ 3835 1361 2201 11,554 2766
Henan 12 HN 9413 2321 4123 23,644 4658
Hubei 13 HB 5799 1841 3161 15,907 7349
Hunan 14 HN 6691 1430 3209 16,935 4312
Jiangsu 15 JS 7939 2884 5090 22,008 14,308
Jiangxi 16 JX 4522 960 2210 10,730 2113

Jilin 17 JL 2751 1127 1491 8206 3596
Liaoning 18 LN 4390 2324 2917 13,106 13,974

Neimenggu 19 NMG 2498 885 1466 7521 8356
Ningxia 20 NX 654 264 340 1684 2106
Qinghai 21 QH 578 164 280 1414 560

Shandong 22 SD 9733 2945 5232 28,638 21,635
shanghai 23 SH 2415 2415 2164 8377 6341

Shanxi 24 SX 3630 1057 1908 9903 2999
Shaanxi 25 SAX 3764 862 1931 10,203 1555
Sichuan 26 SC 8107 1866 3640 24,136 6433
Tianjin 27 TJ 1472 664 1207 4515 2334

Xinjiang 28 XJ 2264 706 1007 5634 1620
Xizang 29 XZ 312 62 74 636 339
Yunnan 30 YN 4687 806 1897 11,739 3337
Zhejiang 31 ZJ 5498 1998 3519 17,034 10,992

BUA GRP GRPPC CTPCI RPCI PWC WWD
Anhui 1777 19039 31,574 25,006 8098 1528 266,234
Beijing 1306 19501 92,201 45,274 18,338 913 144,580

Chongqing 1115 12657 42,615 26,850 8332 813 142,535
Fujian 1263 21760 57,657 33,383 11,184 1701 259,098
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Table A1. Cont.

Index Number Abbreviations TP CP CTP HH CA

Gansu 727 6268 24,276 20,149 5108 1073 64,969
Guangdong 5232 62164 58,403 36,504 11,669 4830 862,471

Guangxi 1154 14378 30,468 25,029 6791 1238 225,303
Guizhou 695 8007 22,863 21,413 5434 1126 93,085
Hainan 296 3146 35,156 24,920 8343 232 36,156
Hebei 1787 28301 38,595 24,143 9102 3251 310,921

Heilongjiang 1758 14383 37,504 21,149 9634 845 153,090
Henan 2289 32156 34,161 23,687 8475 2899 412,582
Hubei 2007 24668 42,539 25,181 8867 1630 294,054
Hunan 1505 24502 36,619 24,643 8372 1423 307,227
Jiangsu 3810 59162 74,520 35,131 13,598 4957 594,359
Jiangxi 1151 14339 31,708 22,949 8782 947 207,138

Jilin 1344 12981 47,188 23,544 9621 654 117,703
Liaoning 2386 27078 61,680 27,905 10,523 2008 234,508

Neimenggu 1206 16832 67,383 26,978 8596 2182 106,920
Ningxia 421 2565 39,221 23,767 6931 811 38,528
Qinghai 157 2101 36,350 22,131 6196 676 21953

Shandong 4187 54684 56,184 30,628 10,620 4083 494,570
shanghai 999 21602 89,450 48,879 19,595 1411 222,963

Shanxi 1041 12602 34,717 24,014 7154 1832 138,030
Shaanxi 915 16045 42,628 24,109 6503 1152 132,169
Sichuan 2058 26261 32,393 23,894 7895 1949 307,648
Tianjin 747 14370 97,623 35,656 15,841 774 84,210

Xinjiang 1065 8360 36,927 22,388 7297 1540 100,720
Xizang 120 808 25,887 22,561 6578 31 5005
Yunnan 936 11721 25,007 24,698 6141 1460 156,583
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