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Abstract: The urban heat island (UHI) phenomenon is a harmful environmental problem in urban
areas affecting both climatic and ecological processes. This paper aims to highlight and monitor the
spatial distribution of Surface UHI (SUHI) in the Casablanca region, Morocco, using remote sensing
data. To achieve this goal, a time series of Landsat TM/ETM+/OLI-TIRS images was acquired from
1984 to 2016 and analyzed. In addition, nocturnal MODIS images acquired from 2005 to 2015 were
used to evaluate the nighttime SUHI. In order to better analyze intense heat produced by urban core,
SUHI intensity (SUHII) was computed by quantifying the difference of land surface temperature
(LST) between urban and rural areas. The urban core SUHII appears more significant in winter
seasons than during summer, while the pattern of SUHII becomes moderate during intermediate
seasons. During winter, the average daytime SUHII gradually increased in the residential area of
Casablanca and in some small peri-urban cities by more than 1 ◦C from 1984 to 2015. The industrial
areas of the Casablanca region were affected by a significant rise in SUHII exceeding 15 ◦C in certain
industrial localities. In contrast, daytime SUHII shows a reciprocal effect during summer with
emergence of a heat island in rural areas and development of cool islands in urban and peri-urban
areas. During nighttime, the SUHII remains positive in urban areas year-round with higher values
in winter as compared to summer. The results point out that the seasonal cycle of daytime SUHII
as observed in the Casablanca region is different from other mid-latitude cities, where the highest
values are often observed in summer during the day.
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1. Introduction

Since 1950, world urban population and urban infrastructure has grown rapidly [1]. Much research
documented that this urban concentration leads to substantial climatological and meteorological
problems [2], posing a heavy burden on the environmental sanitation and water quality, accompanied
by a significant increase of air temperature [3–6]. The most important problem affecting urban
microclimate is the urban heat island (UHI) that is considered as a difference of temperature between
the urban and rural area [7]. The UHI results from several factors such as built-up intensity [8],
city size [9], low albedo [4] and greenhouse gases emissions [10]. Its worsening is based on specific
synoptic conditions which are summarized in anticyclonic weather, nebulosity and a low wind [11].
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In addition to the adverse effects of heat islands on the local climate it affects human health [12,13]
and contributes to excess mortality and morbidity [13–16]. In climatology, two types of UHI can be
distinguished: the first one is called the atmospheric UHI, usually just called UHI, and is split into
two subcategories: the urban canopy layer (UCL) heat island, and the urban boundary layer (UBL)
heat island [17]. This first type can be assessed and studied by using meteorological data [18,19].
The second type is the surface UHI (SUHI), which can be assessed and studied by using land
surface temperature (LST) data retrieved from thermal infrared satellite sensors [19,20]. The SUHI
is controlled by surface heat fluxes and is substantially affected by urbanization [21]. It is based
on remote sensing techniques and is a valid means to measure urban thermal environments [22],
since spatial distribution of data acquired from weather stations do not reflect the spatial variation of
temperatures caused by various land use/land cover (LULC) [21,23] especially in the built environment.
Therefore, time series of satellite thermal observations allow us to better interpret processes and
mechanisms of the SUHI associated with LULC change [24]. A variety of remote sensing products
can be used to retrieve the LST such as Advanced Very High Resolution Radiometer (AVHRR) [9],
Moderate-resolution Imaging Spectroradiometer (MODIS) [8,25–27], Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) [28–30], and Landsat [22,31,32]. Several models have
been developed to quantify the correlation between LST and different parameters derived from
remote sensing data, and to understand related spatial distributions. Indeed, models derived by
statistical approaches were adopted to derive empirical relationships between LST and different
socio-economic or biophysical factors such as population density [33], economic activity [34], land
use and land cover [24,35], normalized difference vegetation index (NDVI) [10,36,37] and impervious
surface abundance [38,39].

The SUHII was studied in different climatic zones and especially in the large metropolitan
areas [28,40–42]. Furthermore, it can emerge due to land surface modification and anthropogenic
heat emission in urban areas [43,44]. A study focused on quantifying the diurnal and seasonal
SUHII in China’s 32 major cities shows that SUHII differed considerably between day and night and
varied greatly with season [45]. Some studies indicated that SUHII is more intense during the day
than at night [39,46] and its intensity varies according to the climate conditions and geographical
location of cities [45,47]. The seasonal variations of SUHII remains not well understood due to the
several contrasting of the previous studies. Indeed, the SUHII in the major cities of China is still
more pronounced in summer than in winter [45], while some of Japan’s cities show that the spatial
distribution of SUHII is weakest in summer and strong in winter [48].

Larger commercial cities of Morocco do not escape from the rules of rapid urbanization since
they experienced significant social and economic changes over the last decades. Their attractiveness
by national and foreign migrants is one of the essential factors explaining population growth [49].
The demographic increase in the region of Casablanca causes enough repercussion in a straightforward
manner in the expansion of the built-up land and increasing need for more infrastructure at the
expense of natural land. The city of Casablanca can therefore be expected to be exposed to intense
UHI/SUHII [10]. Only one study focused on the evaluation of UHI pattern in the Casablanca
region [10] but it does not describe its seasonal variation.

This study focuses on assessing and monitoring the spatial distribution of the surface urban heat
island intensity from 1984 to 2015, in Casablanca region, in order to study the influence of season
cycles and urbanization on SUHII patterns in Casablanca municipality and the cities at its outskirts
and close by region.

This research is very promising and it is the first of its kind since it will enable us for the first time
to have an overview about the seasonal variation and drivers of SUHII in the Casablanca region.
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2. Study Area and Data

2.1. Study Area

The Casablanca region is located along the Atlantic coast, with a 50-km-long shore, in the center
of Morocco. It covers the urban area of Casablanca and some of its surrounding cities and suburbs.
The climate of the study area is characterized by Mediterranean and semi-arid climate with high
oceanic influence. Its location along the Atlantic Ocean gives it soft and relatively wet winters
and moderately warm summers without precipitation. The region is influenced by moderate air
temperatures compared to other Moroccan and subtropical regions [50]. However, monthly mean
air temperatures in Casablanca ranges from about 13 ◦C in January to 23 ◦C in August. In terms of
precipitation, the annual rainfall is about 400 mm/year near the coast and about 300 mm/year in
inland which usually occurs between the months of October and May [50]. The Casablanca region
includes two prefectures (Mohammedia and Casablanca) and two provinces (Nouaceur and Mediouna),
and spreads over an area of 1615 km2 with a population of 4,270,750 inhabitants according to the
2014 census of September conducted by the High Commission for Planning (HCP), while population
density exceeds 40,000 inhabitants/km2 in some communes such as Al Fida and Ben M’sick (HCP).
The region is bounded to the north, south and east by Chaouia-Ouardigha, and to the west by the
Atlantic Ocean (Figure 1).
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2.2. Data Used

In this study, we used multi-temporal Landsat products acquired from the U.S. Geological Survey
(USGS) from 1984 to 2016 (Table 1). Three Landsat products were employed in this study to compare
seasonal and temporal differences in SUHI pattern, which are Landsat-5 Thematic Mapper (TM),
Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8 Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS).

Table 1. Landsat TM/ETM+/OLI-TIRS imagery used in this study.

Landsat Product Acquisition Date Path/Row Spatial Resolution
of TIR Band (m) Id-Scene Information Cycle

Landsat TM 25 August 1984 202/37 120 LT52020371984238XXX04 Daytime
Landsat TM 7 February 1987 202/37 120 LT52020371987038XXX08 Daytime

Landsat ETM+ 8 February 2002 202/37 60 LE72020372002039EDC00 Daytime
Landsat TM 30 August 2003 202/37 120 LT52020372003242MTI01 Daytime
Landsat TM 10 November 2006 202/37 120 LT52020372006314MPS00 Daytime
Landsat TM 1 October 2009 202/37 120 LT52020372009274MPS00 Daytime
Landsat TM 8 January 2011 202/37 120 LT52020372011008MPS00 Daytime
Landsat TM 14 April 2011 202/37 120 LT52020372011104MPS00 Daytime
Landsat TM 8 November 2011 202/37 120 LT52020372011312MPS01 Daytime

Landsat OLI/TIRS 24 July 2013 202/37 100 LC82020372013205LGN00 Daytime
Landsat OLI/TIRS 6 April 2014 202/37 100 LC82020372014096LGN00 Daytime
Landsat OLI/TIRS 12 August 2014 202/37 100 LC82020372014224LGN00 Daytime
Landsat OLI/TIRS 3 January 2015 202/37 100 LC82020372015003LGN00 Daytime
Landsat OLI/TIRS 25 April 2015 202/37 100 LC82020372015115LGN00 Daytime
Landsat OLI/TIRS 17 June 2015 68/207 100 LC80682072015168LGN00 Nighttime
Landsat OLI/TIRS 6 January 2016 202/37 100 LC82020372016006LGN00 Daytime

Only Landsat image scenes covering the entire area of Casablanca region and without cloud cover
were selected.

The OLI/TIRS was developed compared to the rest of Landsat sensors technology. Indeed, at the
level of TIRS sensors and unlike for TM and ETM+ products, which have thermal infrared bands
acquired in a single wavelength interval that ranges from 10.40 to 12.50 µm, the Landsat 8 contains two
thermal infrared bands similar to those of the MODIS thermal bands [51,52]. Thus, it is now possible to
apply atmospheric correction of thermal imagery of Landsat-8 using the split-window techniques [51].

Since nocturnal Landsat images free of clouds were not available in our study area, except for the
17 June 2015, times series ranging between 2005 and 2015 were acquired from MODIS data (MOD11A2)
in order to study the influence of season cycle on nocturnal SUHII. The MOD11A2 products (level 3)
have a sinusoidal grid projection with a spatial resolution of 1 km, and represent the average values of
the MOD11A1 data over eight days.

The MODIS LST were generated from two thermal infrared bands, 31 and 32, using the
Split-Window algorithm. In this study, we look at the LST_Night_1 km local attribute of
MOD11A2 products.

3. Methodology

Figure 2 summarizes the methodology adopted in this paper.
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Figure 2. Flowchart of methodology (NDVI: normalized difference vegetation index; NDBI: normalized
difference built-up index; K1 and K2: calibration constants; LSE: land surface emissivity; BUI: built up
index; Li: spectral radiance of band I; FVC: fraction vegetation cover; TB: brightness temperature).

3.1. Data Preparation

Corrections were performed prior to processing and analyzing images. For the Landsat
(TM/ETM+/OLI-TIRS) product, we converted the signals received by the sensors to TOA (Top Of
Atmosphere) planetary reflectance [53–55]. Then, we combined this planetary reflectance with a
correction of the solar elevation angle for more accurate reflectance calculations [55]. Processing of the
thermal infrared bands was done by conversion digital numbers to spectral radiance.

Once the values of spectral radiance of the TM/ETM+/L8-TIRS thermal bands were computed,
the brightness temperature, also called the effective at-satellite temperatures, can be calculated using
the equation provided by the National Aeronautics and Space Administration. The conversion formula
is given as Equation (1) [56].

Tb =
K2

ln(K1
Lλ

+ 1)
(1)

This transformation equation requires two calibration constants, which are listed in Table 2.

Table 2. Calibration constants used for effective at-satellite brightness temperature retrieval.

Landsat 5 TM
Band 6

Landsat 7 ETM+
Band 6

Landsat 8 TIRS

Band 10 Band 11

K1 [K] 607.76 666.09 774.89 480.89
K2 [W/(m2 sr µm)] 1260.56 1282.71 1321.08 1201.14

3.2. Calculation of NDVI

The normalized difference vegetation index (NDVI) has been widely used as radiometric indicator
for photosynthesis and hence vegetation cover [57] and density distribution of vegetation [58,59].
This index allows observing plant responses to climate change [60]. In this study, we used NDVI to
determine the Land Surface Emissivity (LSE).
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NDVI images of all scenes were obtained by calculating the ratio between the corrected reflectance
of the red (R) and near-infrared (NIR) bands as mentioned in Equation (2) [61]:

NDVI =
(ρ (NIR)− ρ (R))
(ρ (NIR) + ρ (R))

(2)

where ρ(R) and ρ(NIR) are the surface reflectance for the red bands and near-infrared
bands, respectively.

3.3. Inter-Calibration of Data

Three Landsat products were used to retrieve LST. Several studies shows that the spectral bands
of each product make relative gap (overlap) in term of spectral response compared to the similar bands
used on other sensors [62–65]. These differences are more noticeable on the OLI Near InfraRed (NIR)
band, which is narrower in order to eliminate the water vapor absorption effect at approximately
825 nm [52,63,64,66–68]. The relative spectral response differences may induce different values of
at-sensor radiance while the sensors focus on a given region at the same time [64], and then at
differences in reflectance values [52,63]. The Inter-sensor calibration (data normalization) method
plays a key role in reducing reflectance differences of different sensors.

In this research, we statistically compared NDVI extracted from TM, ETM+ and OLI to improve
its temporal continuity between different sensors. This method is considered as the most widely used
in radiometric normalization of data. More than two hundred unchangeable pixels were used to study
the inter-relationship between NDVI values, extracted from different sensors, according to seasons.
The selected pixels show high inter-dependences between different dates with correlation coefficients
ranging from 0.832 to 0.872 during winter, from 0.836 to 0.855 during autumn, from 0.946 to 0.957
during spring, and from 0.779 to 0.924 during summer (Figure 3). The inter-calibration processing
was done by considering the OLI data as reference since its radiometric performance was improved
compared to the previous Landsat products.
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3.4. Retrieval of LSE

The estimation of an accurate LST requires estimating emissivity. Many methods have been
proposed and approved to derive the LSE from NDVI. Among the most used, one is that shown in
Equation (3) [69–72], which is based on the relationship between emissivity in the thermal infrared
and NDVI, and shows that the LSE varies according to the proportion of vegetation and bare soil.

ε =


a + bρred when NDVI < 0.2

ενPν + εs (1 − Pν) + dε when 0.2 ≤ NDVI ≤ 0.5
εν + dε when NDVI > 0.5

(3)

where εν is the vegetation canopy emissivity, εs is the bare soil emissivity, dε is the internal reflection
emissivity due to cavity effect, this term equal to 0 in the case of homogenous surface [73], and Pν

is the vegetation proportion achieved that can be estimated from NDVImin and NDVImax referring,
respectively, to non-vegetated and fully vegetated land covers. The Pν term was calculated using the
following equation [74]:

Pν =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
(4)

This technique has been validated in different areas from mid-latitude to tropical and allows
us to estimate emissivity with error of 0.6% [69]. This error is acceptable since any method for the
emissivity determination should not exceed an error of 1.7% and half of these values when using the
split-window algorithm [69].

3.5. Retrieval of Land Surface Temperature

LST is a key variable in earth environment research for evapotranspiration [75,76] and
urban heat island monitoring [24,77–79]. Several algorithms have been developed to retrieve
LST from satellite data, namely the Mono-Window algorithm [80], Single-Channel algorithm [81],
Split-Window algorithm (Multi-Channel algorithm) [82,83], Dual-Angle algorithm [84], Multi-Angle
algorithm [85–87], and the one described by Planck’s law [88].

In this study, two algorithms were used to retrieve the LST from Landsat images, namely the
Mono-Window and Split-Window algorithms. Mono-Window algorithm was used to derive the LST
from band 6 of TM and ETM+ sensors. The expression of Mono-Window algorithm is as follows[80]:

Ts =
a × (1 − C − D) + (b × (1 − C − D) + C + D)× Ti − D × Ta

C
(5)

where Ts is the land surface temperature (in K), Ti is the brightness temperature, Ta is the effective mean
atmospheric temperature estimated from water vapor distribution in the atmospheric profile [89], and a
and b are two constants equal, respectively, to −67.355351 and 0.458606. C and D are two parameters
that can be calculated according to the emissivity and atmospheric transmittance, respectively.

Split-Window algorithm was used to estimate LST from Landsat 8, since it is the first Landsat
series that incorporates two TIR bands in the atmospheric window between 10–12 µm. The strength
of this technique is that, in addition to emissivity, only one parameter is required, i.e., water vapor
content. The Split-Window algorithm is expressed as follows:

TS = T10 + c1 × (T10 − T11) + c2 × (T10 − T11)
2 + c0 + (c3 + c4 ×ω)× (1 − ε) + (c5 + c6 ×ω)× ∆ε (6)

where
Ts: Land surface temperature in Kelvin;
c0 to c6: Split-Window coefficient [90];
T10 and T11: At-sensor brightness temperature at band 10 and 11;
ε: Mean of land surface emissivity of band 10 and 11;
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∆ε: Difference between land surface emissivity of band 10 and band 11;
ω: Atmospheric water vapor content.

3.6. Calculation of SUHII

To better analyze areas affected by anthropogenic heat emissions, the SUHI intensity (SUHII)
was computed as the difference between the pixel value of LST and the average LST of surrounding
areas of the urban core (not including water bodies) [43] characterized by a low population, abundant
vegetation and fallow land.

3.7. Calculation of Built-Up Land Information

In remote sensing, several indexes have been proposed for delineation of built-up land and for
exploration of LU/LC types. One of the most important techniques for monitoring the distribution of
urban areas is the Normalized Difference of Built-up Index (NDBI) [91], derived as:

NDBI =
(ρ (MIR)− ρ (NIR))
(ρ (MIR) + ρ (NIR))

(7)

where MIR and NIR are the middle infrared and the near infrared band, respectively.
Another index, called Index-based Built-up Index (IBI), derived from existing indices, was

proposed by Xu [92]. The three thematic indices used in developing the IBI index are the soil adjusted
vegetation index (SAVI), the modified normalized difference water index (MNDWI) and the NDBI.
The strength of this index is that it offers the possibility of eliminating background noise while retaining
built-up land characteristics in satellite imagery [92].

Using NDBI and IBI confronts us with an issue of distinguishing built areas outside cities, since
these two indices provide an important overlap between bare soil, fallow land and built-up areas.
Therefore, the accuracy of these indices remains limited to urban areas. To address this overlap issue,
we used a third one called Built Up Index (BUI), which is able to map built-up areas at an accuracy
level of 92.6% [91], using the difference between NDBI and NDVI (Equation (8)).

BUI = NDBI − NDVI (8)

Figure 4 shows the differences among NDBI, IBI and BUI.
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Figure 4 demonstrates that BUI allow us to better delineate the urban areas and shows high values
in the urban zone compared to the NDBI and IBI.
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4. Results

4.1. Spatial Distribution of LST in Winter

Spatio-temporal variation of daytime SUHII for LST estimations during winter shows an
important concordance between urban concentration and LST. This relationship is more significant in
municipalities and region coinciding with important density of built up or industrial areas experiencing
important air pollution emissions (Figure 5a–c). Land cover classifications have been established to
show the dynamics of urban cores and vegetation at the study area between 1987 and 2015 (Figure 6).
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The interpretation of the satellite images shows also that during winter the daytime SUHII in the
urban area become more significant when air temperature exceeds the average winter temperature
which ranges from 15 to 16.5 ◦C as shown in Figure 5a–c (with minimum air temperature of
approximately 13 ◦C). The presence of low outdoor temperature contributes significantly to reducing
soil moisture deficit [47,93,94], which is more sensitive to air temperature than precipitation [47],
and hence to reducing the emergence of daytime SUHII in the permeable cover of urban core
characterized by partial vegetation cover. The result illustrated in Figure 5d accentuates this effect and
shows a weak SUHII in Casablanca region on 3 January 2015, since that day, and during the consecutive
three previous days, the Casablanca region had air temperature below winter average temperature
(average air temperature in the neighborhood of 11.5 ◦C with air temperature of approximately 6.4 ◦C
at 8 am which correspond to the half of minimum temperature of Figure 5a–c). Preceding precipitations
can also impact this phenomenon. We highlight in the discussion section that these urban cooling zone
coincide exactly with areas affected by intense precipitations.
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4.2. Statistical Analysis Between LST and Urbanization in Winter

A statistical analysis correlating BUI and LST was performed. More than 2.5 million values
referring to all pixels were used to study the concordance strength between these two quantities for
each day. The results of the statistical analysis show a strong positive linear relationship between these
two quantities when the air temperature exceed the average winter air temperature with coefficient
correlation of approximately 0.85 (Figure 7a–c), while the strength of the link weakens on cooler days
(correlation coefficient of 0.322) (Figure 7d).
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correlation study (R2 = 0.849); and (d) 3 January 2015 BUI/LST correlation study (R2 = 0.322).

4.3. EvolutionAnalysis of SUHII in Winter

The data analysis shows that the daytime SUHII significantly increased between 1987 and 2011 in
Casablanca city and some of neighboring small cities around the economic metropolis. Casablanca
region daytime SUHII between 1987 and 2011 increased by 1.34 ◦C, 4.01 ◦C, 4.27 ◦C and 0.67 ◦C for
Casablanca, Errahma, Lahraouyine and BniYekhlef, respectively (Figure 8).

During the winters from 1987 to 2011, maximum SUHII values increased substantially.
Furthermore, we observed a significant surge of daytime SUHII in industrial and commercial areas with
threshold that can reach 18 ◦C as compared to rural areas. Mohammedia and Casablanca industrial
zones experienced significant release of air pollution, which contributed to raise SUHII values, since
emissions from industries contribute significantly in enhancing global warming [95–98]. Winter SUHII
can be used as an indicator of climate change since urbanization that contributes to CO2 emissions [99]
and the highest SUHII values are marked in these areas and explain warming.
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Figure 8. Variation of the average daytime SUHII during winter from 1987 to 2011 (obtained from
average winter SUHII in 1987, 2002 and 2011).

The following graph (Figure 9) represents the variation of the maximum SUHII in the industrial
area during winter from 1987 to 2011 calculated from maximum winter SUHII in 1987, 2002 and 2011.
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Figure 9. Variation of the maximum SUHII during winter from 1987 to 2011 (obtained from maximum
winter SUHII in 1987, 2002 and 2011).

In order to better understand the intense anthropogenic heat pattern in the Casablanca region
during winter, we proceeded a robust statistical method proposed in 2007 by Zhang [100], which
brings more credibility compared to the conventional segmentation technique based on the arbitrary
choice of the threshold value [100]. This method allows to divide the LST/SUHII into different scales
and different times of standard deviation [100] (Equation (9)).

T = a ± χ× s (9)

where T is the SUHII partition boundary value; a is the average SUHII; χ is the statistical series with
step of 0.5; and s is standard deviation. The basis of this technique is to subdivide the SUHII into three
classes: normal SUHII, low SUHII and high SUHII.
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The result of the segmentation method (Figure 10) shows important emergence of SUHII in some
urban areas and city outskirts in addition to the industrial zones identified previously. A significant
increase of daytime SUHII in slums zone, buildings concentration, and elevated structure of buildings
and parking lots was noticed. Table 3 shows the variation of daytime SUHII during winter of 2011
within areas exposed to intense anthropogenic heat, while Figure 11 shows the land use of Casablanca
region. The highest SUHII was marked in industrial zone of Mohammedia and especially in factories
specializing in the refining of petroleum products.
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Table 3. Variation of daytime SUHII within areas exposed to intense anthropogenic heat.

Classes
Daytime SUHII Range (◦C)

From To

Tall building - 7.51
Areas of high concentration (old city) 6.54 8.48

Slums 7.03 10.38
Commercial activity 4.61 9.91

Industrial areas 7.03 18.17

Although the period between 1 and 3 January 2015 was affected by low temperature, we observed
substantial rising of minimum surface urban cool island intensity (SUCII) (negative SUHII) in green
spaces during the winter period between 1987 and 2015 (Figure 12). This increasing is due mainly to
the warming trends [12] and important expansion of the city at the expense of the green space and
farmland (land use/land cover change) [12].
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The recent urban development of Mohammedia towards the North enhanced this effect.
Urban development also occurred in Bouskoura and Errahma, which experienced massive construction
encroaching over farmland.

Built environment encroaching over natural surfaces plays a key role in the loss of humidity and
water available for vegetation, reducing evaporation rates. On the other hand, the thermal properties of
different materials used in the construction greatly affect the urban heat island phenomenon. The roads
and the roof of urban areas are usually paved with black asphalt and other materials that have low
solar reflectance. The energy of the sunlight is converted into thermal energy [100], which explains
why these materials capture the heat when exposed to the solar radiation. Poor governance of urban
development is expected to lead to significant increase in SUHII and a reduction in the potential
cooling effect provided by vegetation.

Urban development encroaching over farmland affects also food security. However, higher
temperatures may also impact water availability and hence crop production [101,102]. Warmer urban
environment also affects temperature-related morbidity of urban dwellers [12,103,104]. Hence, with a
difference in winter SUHII between industrial areas and the remaining regions of Casablanca that can
exceed 18 ◦C, people employed in factories and living nearby these areas are especially vulnerable.
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4.4. Spatio-Temporal Evolution of SUHII in Summer

During summer, the spatial distribution of daytime SUHII faces a reciprocal effect with the
emergence of more intense surface heat island on fallow lands and harvested fields (Figure 13).
Results show a substantial increase of cool islands in urban and peri-urban zones, and allow better
demarcation of urban areas. However, a visual interpretation of images (Figure 13) shows that during
1984–2014 the Casablanca metropolis underwent dramatic change of urban area at the expense of
farmland. The industrial areas remain relatively affected by significant SUHII ranging from 2 to 7 ◦C.
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The presence of cool islands in the city was reported in several urban climate studies [50].
However, a recent study analyzed UHI and their characteristics, in Asian and Australian cities and
regions shows an important emergence of daytime cool islands in some cities [105]. Cooler areas were
observed in four Asian cities (Beijing, Kuala Lumpur, Seoul and Singapore), and two Australian cities
(Adelaide and Melbourne) [105]. The same results were found in few cities surrounded by desert, such
as Jeddah in Saudi-Arabia and Mosul in Iraq [46].

The existence of urban cool islands in the Casablanca region during summer is certainly due to
its geographical location at the coast. However, the presence of the sea breeze during the daytime
of warm periods allows the transfer of the relatively cooler air into the city and enhances wind
speeds [105,106]. Hence, the sea breeze contributes significantly in reducing heat island intensity in
coastal cities. This cooling effect from the sea breeze declines with distance from the coast [48,107].
The shading caused by tall buildings may also induce development of cool island areas [108].
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4.5. SUHII Pattern in Autumn and Spring Period

During autumn and spring, the spatial distribution of daytime SUHII becomes unstable (Figure 14).
Therefore, the spatial pattern of daytime SUHII shows a transitional phase with shifting of surface heat
island intensity from the rural to the urban area and vice versa, while we observe an important surface
heat island intensity in the industrial areas, bare land and farmland in biological recovery periods.
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4.6. Variation of Nighttime SUHII

During nighttime, the strength of SUHII in Casablanca region depends on the seasonal variations
of urban–rural difference in albedo that controls temperature cooling rate [45,109]. The SUHII reached
its maximum in winter of each year coinciding with decreasing LST, while the minimum SUHII is
marked during the summer when the LST reaches its peak. Figure 15 shows the variation of LST and
SUHII computed based on the eight-day mean MODIS LST product (MOD11A2).

The results also show that the average annual nighttime SUHII between 2005 and 2015 within
the commercial cities were constantly at 2.615 ± 0.225 ◦C and 2.375 ± 0.255 ◦C for Casablanca and
Mohammedia, respectively.

The SUHII is always higher in the urban areas irrespective of the season. Therefore, urban canyons
are considered main driver enhancing nighttime SUHII (Figure 16).
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5. Discussions

5.1. Climate Conditions Effect

This research involves the investigation of spatiotemporal variation of SUHII in Casablanca
region which is characterized by complex zonal variations. Different drivers highlight the variation
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of SUHII such as vegetation [8,110], albedo [111,112], built-up intensity [8,110], anthropogenic heat
emissions [46] and city size [9,39,113].

Results show that spatial distribution of SUHII varies considerably during the year and is more
pronounced in winter than summer and intermediate seasons. However, in winter some days can
escape from this role and show negative SUHII (SUCII) in some areas in the urban core due to the
climatic condition and meteorological forcing. Therefore, climate play key role in controlling the SUHII
in winter [45] and contributes in regulating albedo [114], and anthropogenic heat emissions [115].
The presence of high air temperature in winter lead to soil moisture deficit [116], which decrease more
rapidly in urban areas than the rural through evapotranspiration, and then in enhancing the emergence
of SUHII (Figure 5a–c), whereas low temperature keeps, as long as possible, soil moisture high allowing
to give the same results in reducing SUHII and UHII as that of vegetation cover (Figure 5d) [45,117].
Moreover, precipitation contributes in increasing soil moisture [47] and then in controlling SUHII [45].
Another study showed that the largest winter UHI follow long periods without precipitation and
became much smaller after rain or fog [118].

As regards climate of Casablanca region, the mean annual air temperature is high in the center
and east parts of Casablanca city and relatively weakens in the western part [50]. Therefore, it can be
observed variations in the spatial distribution of UHI which reaches its maximum in the central part of
urban areas especially in winter [10]. At the level of rainfall, the spatial distribution of mean annual
precipitation in Casablanca region shows distinctive intensities. The highest values are marked in the
northeast of Casablanca region, while the southern areas are driest (Figure 17b) [50]. These spatial
variations of precipitation and temperature in Casablanca region contribute significantly in variation
of soil moisture and then variation in SUHII pattern.

Figure 17a shows the spatial distribution of SUHII in 6 January 2016 after antecedent precipitation,
which reaches 23 mm in the day before image acquisition date (5 January 2016), while Figure 17b
represents the mean annual precipitation and wind field (10 m above ground) in Casablanca region
extracted from the domains of the Northwest Africa Reanalysis (NwAR) averaged over the first ten
hydrological years of the 21st century [50].
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Figure 17. (a) Spatial distribution of SUHII in the 6 January 2016 evaluated from Landsat 8; and (b) mean
annual of precipitation in the Casablanca region extracted from the domains of the NwAR (source:
Urban Agriculture for Growing City Regions [50]).

Figure 17 shows concordance between the spatial distribution of mean annual precipitation
and SUHII pattern. Indeed, we observe negative winter SUHII (SUCII) in the areas coinciding with
the highest precipitation intensities as the case of the northeast and important parts of the cities in
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Casablanca region. The permeable cover in urban areas experienced significant precipitation allows
infiltration of rainwater and then occurrence of important soil moisture rate compared to the relatively
driest zones of our study area.

The presence of surface heat island in some of rural areas is due to the dry period before
precipitation since only 1 mm of precipitation is marked in Casablanca region between the 1 December
2015 and the 4 January 2016, while we observe an important winter air temperature during the same
period with mean minimum temperature of 11.2 ◦C and mean maximum temperature of 22.4 ◦C.
Indeed, the precipitation following a drier period allows increasing of thermal admittance of the most
permeable rural areas [118] and contributes significantly in producing surface rural heat islands.

The industrial areas of Casablanca region remain affected by Significant SUHII regardless of the
season and climate conditions. While the forests remain the coolest zone, since forest cover holds more
soil moisture than other land cover types and exhibited the smallest rate of soil moisture deficit at the
annual scale [47].

On the other hand, Climate conditions affect also UHI [119,120] which is significantly correlated
with SUHI and specially in the urban areas [19] and in nighttime [20]. They [121] highlighted that LST
pixel value coinciding with the weather station location generally indicated a closer relationship to
the respective air temperature. This correlation relatively decrease with increasing area covered to
compute the mean LST but remain statistically significant (p < 0.01) [121].

5.2. Comparative Studies

This study shows that the spatial distribution of SUHII is weakest in summer, moderate during
spring and autumn, and strongest in winter. Therefore, the regional climate plays a key role in
controlling the seasonal cycle of heating and cooling of buildings [122].

These results are similar to some of recent studies that accentuate these statements and which
prove the same distribution of UHII, during winter and summer, in some of Japan’s cities (Sendai and
Tokyo) [48,123,124]. Some recent studies focused on examining the spatiotemporal trend of SUHII
in 32 cities across different regions of China, showing that SUHII increases more rapidly in summer
than in winter [125]. The same study shows also that both daytime and nighttime SUHII increased
dramatically due to the urban development of cities [125].

Another study demonstrates that the UHIs in mid-latitude regions are generally stronger in
summer [126] and become more intense near the center of some cities during summer nighttime such
as London [126] and Łódź [127].

The SUHII in our study area can be highly variable and complex and it is different from
Mediterranean cities [128]. Indeed, a study focused on the evaluation of SUHI in 25 cities around the
Mediterranean, from 2001 to 2012, shows that the Southern European cities are affected by positive
SUHII, While negative SUHII dominate the Mediterranean cities in Northern Africa [128]. On the other
hand, UHI in European Mediterranean cities remain in the most cases influenced by urbanization
factor such as the Greater Athens Area [129] and Thessaloniki [130], and is associated to the poor air
quality and unfavorable comfort conditions [131].

At the global level, research showed that 36% of cities were affected by significant nocturnal
SUHII, especially in the west and south of Asia and northern Africa, while annual daytime and
nighttime SUHII are not correlated [46].

6. Conclusions

The spatial and temporal variations of the SUHII of the Casablanca region were analyzed.
Time series of Landsat TM/ETM+/OLI-TIRS and nightly MODIS data spread over a period of 32 years
(from 1984 to 2016) were used. Results show significant SUHII shifts across seasons. Throughout
the year, the urban zone of our study area was more conductive to the daytime SUHII in winter and
intermediate seasons than in summer. The diurnal SUHII reached the maximum during the winter
and spread in a spectacular manner within slum zones, high urban concentration areas, and industrial
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areas where important contaminated air is being emitted. However, in winter, SUHII can decrease
significantly due to the climate conditions. This research also shows that the urban development
encroaching over farmland and green spaces promotes the emergence and the aggravation of the
winter SUHII phenomenon. During the summer periods, the spatial distribution of SUHII undergoes
reciprocal effect with presence of surface cool islands in the urban areas and a significant warming
in the rural surfaces around cities. Surface urban cool island areas appear during the summer
because of extended shading in urban canyons and cooling effect of sea breeze in the coastal area.
Moreover, the surface heat island intensity becomes relatively moderate in autumn and spring periods.
The nocturnal MODIS observations allowed evaluating the variation of nighttime SUHII pattern.
The urban core contributes significantly in raising nighttime SUHII while the rural area remains
affected by cooling zones. SUHII experiences dramatic change during the year with increasing of this
magnitude in winter and significant decrease in summer.

However, the different factors enhancing SUHII/UHII deserve more in depth investigation to
understand why the seasonal cycles of SUHII/UHII differs from one city to another. Thus, only
combined climatological and remote sensing data would contribute to a better understanding of
this phenomenon.
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