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Abstract: In this paper, a modified two-layer scattering model is applied to a three-stage algorithm
for high-precision retrieval of forest parameters from Polarimetric Synthetic Aperture Radar
Interferometry (Pol-InSAR) data. Traditional Random-Volume-over-Ground (RVoG) model considers
forest target as a two-layer combination of flat ground and volumetric canopy. However, when it
comes to sloped terrain, the inversion accuracy of three-stage process deteriorates with the ascending
estimation error in volume correlation which is mainly caused by the existence of underlying terrain
slope. Aiming at this problem, a Range-sloped RVoG (R-RVoG) model is presented in this paper.
By modifying the ground layer as a range-sloped plane, the complex correlation of R-RVoG model
can be amended as a function of ground phase, ground-to-volume scattering ratio, forest height,
mean extinction and range slope. The introduction of range slope variable makes this modified model
better resemble to real scene and thus improves the performance of three-stage algorithm. Both of the
simulated data with different terrain slopes and the Space-borne Imaging Radar-C (SIR-C) real data
in Tianshan test area are processed to verify the validity of this modification.
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1. Introduction

Polarimetric Synthetic Aperture Radar Interferometry (Pol-InSAR) is known as a technical fusion
of Polarimetric Synthetic Aperture Radar (Pol-SAR) and Interferometric Synthetic Aperture Radar
(In-SAR) [1]. In a Pol-InSAR system, two Pol-SAR sensors work at slightly different positions in space
to acquire fully polarimetric data sets. This technique has been widely used for forest parameter
inversion by virtue of its sensibility to both vertical structures and physical characteristics of the
scattering media without the influence from time and weather. By extracting the phase and amplitude
information from the observed complex correlations, Pol-InSAR can effectively separate the vertical
locations of different phase centers with different polarization scattering mechanisms [2,3]. So far, there
are various inversion algorithms for Pol-InSAR data, but in terms of model-based retrieval methods,
the estimation accuracy is closely related to the coherent scattering model [4].

RVoG model is a two-layer scattering construction which considers forest target as a combination
of flat ground and volumetric canopy [5,6]. In RVoG model, the underlying topography is regarded
as a flat plane so that its complex correlation can be approximated as a function of ground phase,
ground-to-volume scattering ratio and volume correlation, where the volume correlation can be fully
defined by forest height, mean extinction and other system parameters [7–9].

As for model-based inversion methods for Pol-InSAR data, three-stage process is widely applied
owing to its low complexity and high efficiency. The union of three-stage algorithm and RVoG model
is a typical scheme for forest parameter extraction [10]. The complex correlation of RVoG model can
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be visualized as a straight line in the complex plane which is the prior foundation of three-stage
process [11]. Through the least square fitting of the observed complex correlations under different
polarimetric channels, the ground phase and volume correlation can be extracted from the geometric
relationship between the coherent line and unit circle [12]. After that, allowing for the nonlinear
property of the volume coherent function, two dimensional (2D) search is carried out to accomplish
the estimation of forest height and mean extinction [13].

Three-stage process based on RVoG model has been extensively applied for forest parameter
extraction from Pol-InSAR data. However, the inversion accuracy of this scheme is rigorously limited
by underlying terrain [14]. In real scenario, the ground topography intricately fluctuates with the
coexistence of azimuth and range slopes, which leads to an extremely complex scattering contribution
from the ground and volume components. Under this situation, the flat-ground approximation in
RVoG model is likely to cause incorrect separation of the volume and ground correlations and thus
influences the estimation accuracy of related parameters. Therefore, the adjustment of RVoG model
need to be promoted from this aspect.

In order to restrain the deterioration of inversion precision derived from azimuth slope,
literatures [15–17] put forward a series of estimation and compensation algorithms based on the
polarization orientation angle of Pol-InSAR data. However, for the disturbance from range terrain
distortion, effective solutions are rare. Reference [18] proposes an improved algorithm from this
aspect, but its inversion accuracy strictly depends on the precision of external input. Motivated by
this purpose, this paper proposes an R-RVoG model to replace traditional RVoG model. By modifying
the underlying topography as a range-sloped plane, the complex correlation of R-RVoG model can
be amended as a function of ground phase, ground-to-volume scattering ratio, forest height, mean
extinction and range slope. The introduction of range slope factor makes this modified model better
resemble to real scene and thus improves the performance of three-stage algorithm. Both of the
simulated data with different terrain slopes and the Space-borne Imaging Radar-C (SIR-C) real data in
Tianshan test area are processed to verify the validity of this modification.

This paper is organized as follows: Through the processing of simulated data with different
range slopes, Section 2 analyzes the influence of range slope factor on the performance of traditional
RVoG inversion. In order to suppress this impact, Section 3 develops an R-RVoG scattering model and
deduces its complex correlation from the original echo signal of Pol-InSAR. By processing both of the
simulated data and SIR-C real data with the modified three-stage operation based on R-RVoG model,
Sections 4 and 5 respectively provide corresponding analysis of the inversed results and thus manifest
the outperformance of this modification. Conclusions are drawn in Section 6.

2. Three-Stage Process Based on RVoG Model

2.1. RVoG Model

The second-order statistics of RVoG model is contributed by the scattering properties from
two different layers, the ground layer and the volume layer. Under the flat-ground assumption, both
layers can be considered as horizontally homogeneous with a normalized distribution in vertical
direction because the influence of terrain slope is neglected [19]. Figure 1 shows the two-layer structure
of RVoG scattering model.
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However, attributed to the distinctive characteristics of internal structures, the vertically
normalized functions of these two layers are different, which can be respectively given by [20]:

ρ1(z) =
δ(z)r

δ(z′)dz′
, ρ2(z) =

e
2σ

cosθ0
z

r
e

2σ
cosθ0

z′dz′
(1)

After further deductions, the complex correlation of RVoG model can be depicted as [21]:

γ ≈ eiφ0

(
∆(ω) + γz

∆(ω) + 1

)
= ejφ0

(
γz +

∆(ω)

1 + ∆(ω)
(1− γz)

)
(2)

where, φ0 denotes the ground phase, ∆(ω) = 2σ
cosθ0(e2σhv/cosθ0−1)

· ωHTgω

ωHTvω
is the ground-to-volume

scattering ratio varying with polarization ω and γz represents the volume correlation which can be
expressed as a function of forest height hv and mean extinction σ [22]:

γz =
2σ
(

exp (2σ + jκzcosθ0)
hv

cosθ0
− 1
)

(2σ + jκzcosθ0)
(

exp 2σhv
cosθ0

− 1
) (3)

where, θ0 is the incident angle and κz is the effective wave number which can be defined as follow:

κz =
4π∆θ

λsinθ0
≈ 4πBn

λRsinθ0
(4)

where, λ is the wavelength, Bn stands for the effective baseline, R represents the slant range and ∆θ

denotes the incident angle difference caused by the existence of baseline.
Equation (2) can be approximately visualized as a straight line in the complex plane, which is

also known as the coherent line [23]. The geometric relationship between this line and the unit circle is
shown in Figure 2.
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In practical circumstances, the scattering from the ground and volume layers coexist with each
other, which means ∆(ω) = 0 and ∆(ω) = ∞ are two extreme conditions that cannot be obtained by
regular observation [24]. Therefore, the observed complex correlations are distributed in the range of
visible length which is demonstrated in Figure 2.

Three-stage algorithm takes advantage of the geometric features in Figure 2 to fulfill the forest
parameter inversion. However, the ground topographies in real scenes are so fluctuant sometimes that
the approximate hypotheses in RVoG model are broken. In this context, simulations of forest areas with
different terrains are carried out to analyze the behavior of three-stage process based on RVoG model.
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2.2. Three-Stage Processing under Different Range Slopes

In order to explore the influence of range slope variation on the performance of three-stage
algorithm based on traditional RVoG model. Three-stage processes are carried out within simulated
data with different range slopes. Forest simulation software is employed as a primary tool to generate
the full polarimetric forest data. Relevant simulation parameters are provided in Table 1.

Table 1. Simulation parameters.

Satellite Orbit Scene

Semi-major Axis 6871 km Range Slope 0◦/10◦/20◦/30◦

Angle of Inclination 97.42◦ Azimuth Slope 0◦

Eccentricity 0.0011 Size of Scene 200 m × 200 m
Argument of Perigee 90◦ Size of Forest 100 m × 100 m

Right Ascension of Ascending Node (RAAN) 180◦ Average Height 20 m
Baseline Length 800 m Standard Deviation 0 m

Back Projection (BP) imaging algorithm is recruited here to achieve fully polarimetric SAR imaging
without destructing any phase information [25]. Figure 3 gives the imaging results of Horizontal
transmit and Horizontal receive (HH), Horizontal transmit and Vertical receive (HV), Vertical transmit
and Horizontal receive (VH) and Vertical transmit and Vertical receive (VV) polarimetric data derived
from the master sensor when range slope is set as 0◦.
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After the execution of three-stage process based on RVoG model, Figures 4–7 respectively
demonstrate the retrieved forest heights of simulated data when their range slopes are set at 0◦,
10◦, 20◦ and 30◦.
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Figure 4. Estimated forest height when range slope is 0◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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Figure 5. Estimated forest height when range slope is 10◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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Figure 6. Estimated forest height when range slope is 20◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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As a standard to evaluate the performance of forest parameter inversion algorithm, the Average
(AVG) bias, Standard Deviation (SDEV) and Root Mean Square Error (RMSE) of the inversed forest
heights are calculated in Table 2. These three parameters separately stand for the estimation error,
variance and residual error of the estimated results. Normally, values with lower AVG bias and RMSE
at appropriate SDEV level are equipped with better inversion precisions [26].

Table 2. Analysis of inversed forest heights.

Range Slope AVG AVG Bias SDEV RMSE

0◦ 21.4928 m 1.4928 m 3.7126 m 4.0015 m
10◦ 24.6080 m 4.6080 m 5.3019 m 7.0245 m
20◦ 26.0583 m 6.0583 m 6.3778 m 8.7965 m
30◦ 29.6715 m 9.6715 m 8.3581 m 12.7826 m

It can be concluded from Table 2 that the ascending tendency of absolute range slope gives rise to
abrupt increase in AVG bias, SDEV and RMSE, which implies severe deviation between the estimated
result and the correct answer. Therefore, RVoG model need to be further improved for better adaptation
to the fluctuation of range slope.

3. R-RVoG Model

In this section, an R-RVoG model is proposed to compensate the precision deterioration of
three-stage process which is mainly caused by the existence of range slope. After relevant adjustments,
the constitution of the modified two-layer scattering model is presented in Figure 8.
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Figure 8. Two-layer structure of R-RVoG model.
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The R-RVoG model can be regarded as a modified version of traditional RVoG model where the
ground layer is amended as an inclined plane in range direction. The gradient of this plane can be
either positive or negative which respectively stands for the phenomenon of front and back slope.
Accordingly, the complex correlation of this model needs to be re-deduced from the original echo
signal due to the intrinsic change of physical characteristics.

Figure 9 demonstrates the irradiation geometry of Pol-InSAR system.
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where, S1,2 are the two Pol-SAR sensors used for the acquisition of Pol-InSAR data, P and P′
respectively stand for the referential and certain scattering points where the relative position between
them is denoted as r′, R10,20 represent the referential slant range distances of two sensors, θ0 is the
incident angle, Bn indicates the effective baseline and H is the height of the platform.

According to the geometrical relationship in Figure 9, the SAR signals for interferometry can be
given as:

s1 (x, R1) = Ae−i2k0R10
t

f1 (r′) e−2ik0r′ × h(x− x′, R1 − R′1)dV′ + n
s2 (x, R2) = Ae−i2k0R20

t
f2 (r′) e−2ik0r′ × h(x− x′, R2 − R′2)dV′ + n

(5)

where, A denotes the amplitude loss, k0 stands for the wave number, f1,2 (·) are the scattering functions
submitting to circular complex Gaussian distribution, h(x− x′, R1, 2 − R′1,2) refer to the SAR impulse
response functions at (x′, R′1,2) and n denotes the additive Gaussian noise.

The cross and auto- correlations of s1 and s2 can be respectively described as:

E {s1s∗2} = A2t E { f1(r) f ∗2 (r
′)} |h(·)|2 × ei2k0(R′2−R′1)dV′

E
{

s1,2s∗1,2

}
= A2t E

{
f1,2(r) f ∗1,2(r

′)
}
|h(·)|2 dV′ + σn

(6)

where, σn = E
{
|n|2

}
is the noise variance.

Considering that both of the volume and ground layers rotate with the ground plane, therefore,
they are horizontally homogeneous along the inclined range direction with a normalized distribution
perpendicular to the slant ground.

The normalized functions of the ground and volume layers can be separately updated as:

ρ1(zz) =
δ(zz)r

δ(zz′)dzz′
, ρ2(zz) =

e
2σ

cos(θ0−η)
zz

r
e

2σ
cos(θ0−η)

zz′
dzz′

(7)

where, zz is the height variable in the direction vertical to the range-sloped ground and factor η

quantitatively describes the gradient of underlying topography.
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Then, the second-order scattering statistics of R-RVoG model can be expressed as:

E { f1(r) f ∗2 (r
′)} = δ(r− r′)

(
σ0

v1eρ1(zz′) + σ0
v2eρ2(zz′)

)
E
{

f1,2(r) f ∗1,2(r
′)
}
= δ(r− r′)

(
σ0

v1ρ1(zz′) + σ0
v2ρ2(zz′)

) (8)

where, σ0
v1,2 and σ0

v1,2e respectively denote the total backscattering coefficients and the temporally
stable backscattering coefficients of two layers.

For further deductions, the phase delay in Equation (6) needs to be expanded at relevant reference
point in the inclined ground plane.

2ik0
(

R′2 − R′1
)
≈ iφ0 + ikrr (RR− RR0) + ikzz (zz− zz0) (9)

where, φ0 is the phase difference at reference point caused by the slant range deviation between two
SAR platforms, krr and kzz are the wave numbers along slant and vertical directions.

krr =
4πB⊥

λR0tan (θ0 − η)
, kzz =

4πB⊥
λR0sin (θ0 − η)

(10)

Corresponding integrals in vertical direction can be defined as:

Izz1 =
r

ρ1 (zz′)eikzz(zz′−zz0)dzz′, Izz2 =
r

ρ2 (zz′)eikzz(zz′−zz0)dzz′

I0
zz1 =

r
ρ1 (zz′)dzz′, I0

zz2 =
r

ρ2 (zz′)dzz′
(11)

As for the inclined ground plane, relevant integrals can be expressed as:

Irrx =
s
|h (·)|2 eikrr(RR′−R0)dRR′dx′

I0
rrx =

s
|h (·)|2 dRR′dx′

(12)

According to above-mentioned deductions, Equation (6) can be simplified as:

E {s1s∗2} = A2eiφ0
(
σ0

ve1 Izz1 + σ0
ve2 Izz2

)
Irrx

E
{

s1,2s∗1,2

}
= A2 (σ0

v1 I0
zz1 + σ0

v2 I0
zz2
)

I0
rrx + σn

(13)

Therefore, the complex correlation of R-RVoG model can be written as:

γ =
E{s1s∗2}√

E{|s1|2}E{|s2|2}

= eiφ0 ·

 σ0
v1 I0

zz1
σ0

v2 I0
zz2
·

σ0
ve1

σ0
v1
· Izz1

I0
zz1

+
σ0

ve2
σ0

v2
· Izz2

I0
zz2

σ0
v1 I0

zz1
σ0

v2 I0
zz2

+1

 · Irrx
I0
rrx
· σ0

σ0+σn

= eiφ0 ·
(

∆(ω)·γtemp1·γzz1+γtemp2·γzz2
∆(ω)+1

)
· γrr · γSNR

(14)

where, ∆ (ω) is the ground-to-volume scattering ratio, γtemp1,2 =
σ0

ve1,2
σ0

v1,2
and γzz1,2 =

Izz1,2
I0
zz1,2

respectively

stand for the temporal and volumetric decorrelations at different SAR platforms, γrr =
Irrx
I0
rrx

refers to

the baseline decorrelation and γSNR = σ0
σ0+σn

is the thermal decorrelation mainly related to the SNR of
the system [27].
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In conjunction with Equations (7) and (11), it is not difficult to find that γzz1 equals to one and
γzz2 is a function of hv, σ and η.

γzz2 = Izz2
I0
zz2

 Izz2 =
r hvcos(η)

0 exp
(

2σz′
cos(θ0−η)

)
exp (jκzzzz′) dzz′

I0
zz2 =

r hvcos(η)
0 exp

(
2σzz′

cos(θ0−η)

)
dzz′

=
2σ

{
exp

[(
2σ

cos(θ0−η)
+jkzz

)
·hvcosη

]
−1
}

[2σ+jkzzcos(θ0−η)]

{
exp

[
2σ

cos(θ0−η)
·hvcosη

]
−1
}

(15)

When the range slope variable η comes to zero, Equation (15) will convert into the volume
coherent function in flat terrain as Equation (3).

Furthermore, assuming that Pol-InSAR systems satisfy relations of γtemp1,2 ≈ 1, γrr ≈ 1 and
γSNR ≈ 1. Then, Equation (14) can be further simplified as:

γ ≈ eiφ0

(
∆ (ω) + γzz2

∆ (ω) + 1

)
= ejφ0

(
γzz2 +

∆ (ω)

1 + ∆ (ω)
(1− γzz2)

)
(16)

What can be concluded from Equation (16) is that the introduction of range slope variable does
not break the linearity of the complex coherent function. Thus, three-stage operation is still available
based on this R-RVoG model.

4. Three-Stage Processing of Simulated Data Based on R-RVoG Model

In this part, three-stage operations based on R-RVoG model are performed under the same
conditions as in Section 2. However, the participation of range slope factor increases the complexity
of three-stage algorithm and also brings down its calculation efficiency. In this context, Simulated
Annealing (SA) optimization algorithm is employed and incorporated into iteration to improve the
computing efficiency of three dimensional (3D) search [28–30]. The detailed procedures of three-stage
process before and after adjustment are listed in Figure 10.
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What can be concluded from Equation (16) is that the introduction of range slope variable does 
not break the linearity of the complex coherent function. Thus, three-stage operation is still available 
based on this R-RVoG model. 

4. Three-Stage Processing of Simulated Data Based on R-RVoG Model 

In this part, three-stage operations based on R-RVoG model are performed under the same 
conditions as in Section 2. However, the participation of range slope factor increases the complexity 
of three-stage algorithm and also brings down its calculation efficiency. In this context, Simulated 
Annealing (SA) optimization algorithm is employed and incorporated into iteration to improve the 
computing efficiency of three dimensional (3D) search [28–30]. The detailed procedures of 
three-stage process before and after adjustment are listed in Figure 10. 
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(b) R-RVoG model. 
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hardware condition of 2.6 GHz main frequency Central Processing Unit (CPU) and 4 GB internal 
storage. After the execution of three-stage process based on R-RVoG model, Figures 11–14 

Figure 10. The flow charts of three-stage process before and after modification: (a) RVoG model;
(b) R-RVoG model.

During the process, Matlab is employed as a primary programming language under the hardware
condition of 2.6 GHz main frequency Central Processing Unit (CPU) and 4 GB internal storage.
After the execution of three-stage process based on R-RVoG model, Figures 11–14 respectively present
the inversion results of forest height when the range slopes are set at 0◦, 10◦, 20◦ and 30◦.
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Figure 11. Estimated forest height when range slope is 0◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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Figure 12. Estimated forest height when range slope is 10◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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Figure 13. Estimated forest height when range slope is 20◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.
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Figure 14. Estimated forest height when range slope is 30◦: (a) 2D demonstration of retrieved forest
height; (b) 3D demonstration of retrieved forest height.

Table 3 lists the AVG bias, SDEV and RMSE of the estimated forest heights just like Section 2 so
that the performance of three-stage process based on R-RVoG model can be equivalently assessed.

Table 3. Analysis of inversed forest heights.

Range Slope AVG AVG Bias SDEV RMSE

0◦ 21.2126 m 1.2126 m 2.7657 m 3.0198 m
10◦ 22.3838 m 2.3838 m 2.9972 m 3.8295 m
20◦ 22.7107 m 2.7107 m 3.1673 m 4.1689 m
30◦ 22.8127 m 2.8127 m 3.3546 m 4.3777 m

In combination with Table 2, Figure 15 plots the variation tendencies of the height estimation
biases based on RVoG and R-RVoG inversions under different range slopes.
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Figure 15. Height estimation biases of RVoG and R-RVoG inversions: (a) Forest height bias; (b) RMSE.

As it is indicated in Figure 15, the increasing tendency of estimation biases is effectively under
control with the introduction of the range slope parameter in R-RVoG correlated model.

Figure 16 shows the inversed underlying topographies in three-dimension by utilizing both of the
retrieved ground phase and the estimated range slope.
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Figure 16. Estimated underlying topography: (a) Range slope of 0◦; (b) Range slope of 10◦; (c) Range
slope of 20◦; (d) Range slope of 30◦.

Table 4 calculates the absolute biases between the estimated range slopes and the real ones to
evaluate the accuracy of reconstructed underlying topographies.

Table 4. Analysis of estimated range slopes.

Range Slope Estimated Range Slope Absolute Biases

0◦ 2.2341◦ 2.2341◦

10◦ 12.2707◦ 2.2707◦

20◦ 22.4373◦ 2.4373◦

30◦ 32.9703◦ 2.9703◦

The conclusion can be made from above analysis that the R-RVoG model not only can prevent
three-stage algorithm from the influence of range slope variation but also has the ability to improve
the reconstructed precision of underlying topography.

5. Three-Stage Processing of Real Data Based on R-RVoG Model

In this section, the parameter estimation behavior of three-stage algorithm based on R-RVoG
model is evaluated from the aspect of real space-borne L-band SAR data in Tianshan forest test site,
acquired by SIR-C sensors in 1994.

The Tianshan test area is located in Hotan, Sinkiang Province, mainly covered by deserts.
The primary tree species in that area is Populus Euphratica which generally grows in dry environment
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at altitudes of up to 4000 m above sea level with average height between 15 m and 25 m. Figure 17
shows the location of the test area and the distribution of Populus diversifolia in China [31].Remote Sens. 2016, 8, 861  13 of 17 
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According to [32], the Space-borne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C
and X-SAR) sensors are recruited to obtain Digital Elevation Models (DEMs) on a near-global scale
from 56◦S to 60◦N for the Shuttle Radar Topography Mission (SRTM) research. The data sets utilized in
our research are acquired by SIR-C sensor in repeat-pass configuration. Relevant parameters of SIR-C
sensor are provided in Table 5 and the fully polarimetric SAR images of the first orbit are displayed in
Figure 18.

Table 5. Sensor parameters.

Sensor Scene

Semi-major Axis 6583 km Central Longtitude 79.4871979◦

Angle of Inclination 57◦ Central Latitude 37.0295486◦

Eccentricity 0.00168 Size of Scene 18.79 km × 3.735 km
Wavelength 0.24 m Range Resolution 18.79 m

Incident Angle 24.373◦ Azimuth Resolution 7.47 m
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As an evaluation criteria, the forest height and underlying ground phase used as true value are
separately acquired by PolSARpro software and DEM difference [33,34].

For the purpose of comparison, the same data set is respectively processed by three-stage
algorithm based on traditional RVoG model and modified R-RVoG model. Corresponding inversion
results are demonstrated in the following figures where Figure 19 demonstrates the inversion
results of forest height, Figures 20 and 21 depicts the estimated ground phase before and after the
operation of phase unwrapping. The effectiveness of the inversion results can be easily recognized
through comparison.
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Figure 19. Estimated forest height of SIR-C real data: (a) True value; (b) Traditional RVOG model;
(c) R-RVOG model.

Intuitively, it can be seen from the estimated forest heights in Figure 19 that in comparison
with traditional three-stage algorithm based on RVoG model, the improved algorithm can better
reconstruct the basic profile of forest area. Quantitatively, in Table 6, the AVG bias, SDEV and RMSE
of the estimated forest heights are respectively calculated as above to evaluate the performance of
different algorithms.

Table 6. Analysis of inversed forest heights.

Model AVG AVG Bias SDEV RMSE

True Value 19.3987 m 0 m 2.5564 m 0 m
RVoG 23.2689 m 3.8702 m 2.0548 m 8.2556 m

R-RVoG 21.5804 m 2.1817 m 2.1953 m 7.2663 m

Comparing with traditional estimation scheme based on RVoG model, the AVG bias, SDEV
and RMSE of R-RVoG inversion are correspondingly 1.6885 m, 0.1405 m and 0.9893 m closer to the
true value. Therefore, the estimated forest heights based on the modified algorithm validate the
improvement of height inversion precision.

Figures 20 and 21 respectively demonstrate the estimated ground phase before and after
phase unwrapping. Here, Least Square Phase Unwrapping algorithm based on Discrete Cosine
Transformation (DCT) is employed to accomplish the phase unwrapping operation [35].

The inversion results in Figures 20 and 21 can draw to the conclusion that the modified
algorithm effectively prevents the interferometric fringes of the ground phase from the destruction
of range slope variation and thus provides a vital premise for the further phase unwrapping and
elevation reconstruction.

Despite that the inversion precision of three-stage algorithm is enhanced with the introduction
of R-RVoG model, there are still differences between the true value and the estimated result. This is
mainly caused by the small error imported during the estimation of range slope and the unexecuted
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pre-compensation of azimuth slope. Further works will concentrate on the improvements of these
two aspects.
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Figure 20. Estimated ground phase of SIR-C real data (before phase unwrapping): (a) True value;
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mainly caused by the small error imported during the estimation of range slope and the unexecuted 
pre-compensation of azimuth slope. Further works will concentrate on the improvements of these 
two aspects. 

6. Conclusions 

This paper proposes a modified three-stage algorithm based on R-RVoG model to extract forest 
parameters from Pol-InSAR data. Similarly to traditional RVoG model, R-RVoG model is 
contributed by both of the volume and ground layers. Differences are that in R-RVoG model the 
ground component is amended as a range-sloped plane and the volume part is characterized as an 
inclined cloud of discrete particles. After detailed deduction, a new range slope parameter is 
introduced into the complex correlation of this modified model and the three-stage procedure is 
further rebuilt to develop the estimation operation where the SA optimization algorithm is 
employed to ensure the calculation efficiency and accuracy. The performance of this modified 
algorithm is further evaluated on both of the simulated data and SIR-C real data. Estimation results 
indicates that in comparison with the traditional RVoG model, the retrieved forest heights based on 
R-RVoG model are less affected by the range slope variation in terms of AVG bias, RMSE, and SDEV. 
Furthermore, from the perspective of ground phase, the reconstruction precision of underlying 
topography is also improved. 

The modified three-stage algorithm based on R-RVoG model is quite applicable for the 
processing of Pol-InSAR data. However, further theoretical and experimental researches need to be 
conducted when both of the range and azimuth slope are under consideration so that the 
possibilities and limits of Pol-InSAR system can be better investigated. 
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(b) Traditional RVoG model; (c) R-RVoG model.

6. Conclusions

This paper proposes a modified three-stage algorithm based on R-RVoG model to extract forest
parameters from Pol-InSAR data. Similarly to traditional RVoG model, R-RVoG model is contributed by
both of the volume and ground layers. Differences are that in R-RVoG model the ground component is
amended as a range-sloped plane and the volume part is characterized as an inclined cloud of discrete
particles. After detailed deduction, a new range slope parameter is introduced into the complex
correlation of this modified model and the three-stage procedure is further rebuilt to develop the
estimation operation where the SA optimization algorithm is employed to ensure the calculation
efficiency and accuracy. The performance of this modified algorithm is further evaluated on both
of the simulated data and SIR-C real data. Estimation results indicates that in comparison with the
traditional RVoG model, the retrieved forest heights based on R-RVoG model are less affected by the
range slope variation in terms of AVG bias, RMSE, and SDEV. Furthermore, from the perspective of
ground phase, the reconstruction precision of underlying topography is also improved.

The modified three-stage algorithm based on R-RVoG model is quite applicable for the processing
of Pol-InSAR data. However, further theoretical and experimental researches need to be conducted
when both of the range and azimuth slope are under consideration so that the possibilities and limits
of Pol-InSAR system can be better investigated.
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