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Abstract: PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of
2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal
resolution in the visible and near infrared (VNIR) bands. A major mission of the PROBA-V
satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role.
In countries such as China, crop fields are typically small, in assorted shapes and with various
management approaches, which deem traditional methods of crop identification ineffective, and
accuracy is highly dependent on image resolution and acquisition time. The five-day temporal and
100 m spatial resolution PROBA-V data make it possible to automatically identify crops using time
series phenological information. This paper takes advantage of the improved spatial and temporal
resolution of the PROBA-V data, to map crops at the Yucheng site in Shandong Province and the
Hongxing farm in Heilongjiang province of China. First, the Swets filter algorithm was employed
to eliminate noisy pixels and fill in data gaps on time series data during the growing season. Then,
the crops are classified based on the Iterative Self-Organizing Data Analysis Technique (ISODATA)
clustering, the maximum likelihood method (MLC) and similarity analysis. The mapping results were
validated using field-collected crop type polygons and high resolution crop maps based on GaoFen-1
satellite (GF-1) data in 16 m resolution. Our study showed that, for the Yucheng site, the cropping
system is simple, mainly dominated by winter wheat–maize rotation. The overall accuracy of crop
identification was 73.39% which was slightly better than the result derived from MODIS data. For the
Hongxing farm, the cropping system is more complex (i.e., more than three types of crops were
planted). The overall accuracy of the crop mapping by PROBA-V was 73.29% which was significantly
higher than the MODIS product (46.81%). This study demonstrates that time series PROBA-V data
can serve as a useful source for reliable crop identification and area estimation. The high revisiting
frequency and global coverage of the PROBA-V data show good potential for future global crop
mapping and agricultural monitoring.
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1. Introduction

The demand for accurate and reliable satellite-derived estimations and predictions of crop features
and output keeps increasing [1–3]. During the last several decades, crop monitoring models and
applications using satellite images have been developed [4,5] and improved in five main areas: biomass
and yields estimation, vegetation and water stress monitoring, crop acreage estimation, crop type
proportion mapping and crop phenological development [6,7]. The accurate cropland mapping
and identification of crop types can provide basically essential information for all crop monitoring
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applications [8,9]. Crop phenology monitoring can provide the timing and duration of the cropping
cycle, which is essential for yield and biomass estimation [10,11].

The normalized difference vegetation index (NDVI) has commonly been used to detect vegetation
features [12] by taking advantage of the reflective and absorptive characteristics of vegetation in the
red and near-infrared portions of the electromagnetic spectrum [13,14]. In general, NDVI with finer
spatial resolution results in better vegetation classification [15–17]. However, due to the similarity
in the spectra of different crops and the diversity in growing stages of one crop type, it is difficult
to identify types by improving spatial resolution only. In addition, the existing crop classification
methods based on high spatial resolution image often requires image acquisition from a certain stage
during the growing season [18], which makes it difficult to automate crop identification in a complex
cropping system.

To overcome the shortage of crop classification based on single/multiple high spatial resolution
data, time series images have been introduced. Time series analysis of remote sensing data typically
provides a feasible tool for detecting phenology on a per pixel basis [19,20], and the phenological
information can aid crop identification [21–23]. Using a crop’s phenological information on a pixel
scale, the crop type can be identified automatically by using time series data [24,25]. However,
time series images with high temporal resolution are typically noisy, affected by cloud cover,
atmospheric perturbations, variable illumination and sensor system error. Such effects are increased
when the temporal resolution increases [26,27]. Previous studies have described the noise effect on
time series data, and several smoothing methods have been presented [28–32].

The reliance of phenology-based methods on time serious images determines the selection of the
medium spatial and high temporal resolution data [33]. Initially, NDVI time series data were obtained
from the Advanced Very High-Resolution Radiometer (AVHRR) at 1.09 km resolution [34,35]. Then,
the Moderate Resolution Imaging Spectro-radiometer (MODIS) sensors offer time series products with
a higher spatial resolution of 250 m [36–38]. In Europe, the SPOT (Système Pour l’Observation de la
Terre) VEGETATION products also provide data with a 1 km resolution [39,40].

These data usually comes with coarse spatial resolution, which is less capable of identifying
crops in small to medium fields [41–43] because the mixed-pixel effect may seriously affect the
classification accuracy [44,45]. In China, this limitation is more problematic due to the complexity
of small-scale farmlands [27]. Obtaining data with suitable spatial and temporal resolution is still
limited by the current state of satellite sensor technology [46,47]. PROBA-V (Project for On-Board
Autonomy-Vegetation) is a “gap-filler mission” between SPOT-VGT and Sentinel-3 in the European
COPERNICUS program, which was launched in the second quarter of 2013 [48,49]. PROBA-V provides
100 m resolution with global observation capability with a 2–3 days’ repetition cycle and a daily global
data at resolution of 300 m, in the Visible and Near-infrared (VNIR) bands [50]. A spatial resolution
of 100 m with high temporal resolution may enhance crop monitoring programs with respect to the
previously available time series data [51].

In this study, we tested the hypothesis that with higher spatial and temporal resolution time
series NDVI [52], PROBA-V can be used to improve crop mapping accuracy, especially for complex
and small scale farmlands. The Yucheng site with very small scale farmlands and the Hongxing farm
with a complex cropping system were chosen as study areas which represent two typical crop areas in
China. The study design included data pre-processing, classification and extraction of the phenological
parameters [53–55]. Field data and 16 m high resolution images from GaoFen-1 (GF-1) satellite were
used to validate the mapping accuracy. In addition, we also derive crop phenology from the daily
PROBA-V data with 300 m resolution and crop mapping, using TIMESAT software. (Lund University,
Lund, Sweden, 22 April 2015, v3.2) [56].
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2. Materials

2.1. Study Area

Two typical study areas in China belonging to the Joint Experiment of Crop Assessment and
Monitoring (JECAM) were selected [57] (Figure 1). The Yucheng site in northwestern Shandong
in eastern China extends from 36.69◦N to 37.20◦N and from 116.37◦E to 116.75◦E. Yucheng is
a predominantly agricultural area that is representative of farming practices in the North China Plain.
According to the meteorological station data provided by the Climate Database of China Meteorological
Administration (CMA), Yucheng has a temperate, semi-arid monsoon climate, with a mean annual
temperature of 13.1 ◦C and a precipitation of 582 mm, concentrated from late June to September. Crops
are typically winter wheat followed by summer maize. The crop calendar for winter wheat is from
mid-October to early June of the next year, and for maize it is from mid-June to end of September [58].
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Figure 1. The Yucheng site in Shandong province and the Hongxing farm in Heilongjiang Province
were selected as study areas. Green shading indicates croplands. The red boxes and solid squares
indicate the places where ground measurement was carried out.

The other study area is the Hongxing farm, which is located in the north of Heilongjiang province
in the northeast of China (48.15◦N, 127.01◦E). CMA data indicates an average temperature of 22.5 ◦C
and a mean annual precipitation of 555 mm, concentrated from July to September. The dominant
land uses are cropping, forests and residential areas, with few roads, and little water or grasslands.
Th major crops are soybean, maize and spring wheat. The crop calendar for major crops spans from
May to November [59].

2.2. Satellite Data

PROBA-V provides global coverage with spatial resolutions from 100 m to 1 km. The sensor has
three cameras that provide a 2250 km swath image. The S1TOC (Top of Canopy) products provide
daily surface reflectance and NDVI corrected for atmospheric effects at 300 m resolution by combining
the strips from the three cameras. The central camera covers a swath of approximately 517 km at
100 m resolution, which ensures global land coverage every 5 days (Figure 2). Synthetic 5 day 100 m
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resolution data (S5TOC) are derived from best-quality daily synthesis surface reflectance and NDVI
after atmosphere correction [49,60]. To cover the whole study area, both S1TOC and S5TOC products
were selected for this study.Remote Sens. 2016, 8, 915  4 of 18 
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Figure 2. Overview of the 100 m coverage after 5 days. The brighter white areas indicate overlapping
observations [60].

To cover all crop growing stages in both areas, we collected images at the times shown in Table 1.
Additionally, the MODIS 16-day NDVI products (MOD13Q1) at 250 m resolution were downloaded
for comparison.

2.3. Validation Data

Field crop type data were used to validate the classification. At the Yucheng site, field data were
acquired in 2015 from April 10 to 2 for wheat and from August 10 to 20 for maize. A handheld global
positioning system (GPS) with a positional accuracy of <5 m was used to record the location [61,62].
We collected 146 points including 37 for wheat and 109 for maize. Comprehensive crop mapping at
a high resolution (16 m) by visual interpretation and supervised classification based on GF-1 images
was also used to validate the classification. At the Hongxing farm, the detailed crop type proportion in
571 fields in 2014 was retrieved from the local planting scheme.

We also collected the phenology information of wheat, maize and soybean in both study areas.
The observed phenological times for each crop are shown in Table 4.

3. Methods

Three main steps were performed with MODIS and PROBA-V images at the Yucheng site and
Hongxing farm: Data pre-processing; Classification and Extraction of the phenological parameters
(Figure 3). In this study, the PROBA-V S5TOC 100 m NDVI and MOD13Q1 250 m NDVI data are
used for crop mapping. The crop mapping result and PROBA-V S1TOC 300 m NDVI data are used to
monitor crop phenology.
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Figure 3. Flowchart of the crop map and crop calendar processing.

3.1. Data Pre-Processing

3.1.1. Filtering Data

Due to the cloud and snow or other weather conditions and the physical limitations of the sensor,
high temporal time series images often appear as invalid pixels, which affects the smoothing results
(Figure 4). The pixels where the quality flag indicated missing, cloud, snow, sea and background were
designated as invalid pixels. A simple filter was used to reduce data deficiencies prior to smoothing.
The images for which the invalid pixel percentage is greater than 60% were designated as invalid.
During the whole growing season, the S5TOC 100 m data availability percentages are 72% and 95%,
and the S1TOC 300 m data availability percentages are 67% and 87%, in Yucheng and Hongxing,
respectively. Results are shown in Table 1. The availability percentage in Hongxing is significantly
higher than that in Yucheng due to the better coverage of polar-orbiting satellite in high latitudes:
twice coverage in Hongxing and once in most of Yucheng (Figure 2).
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Figure 4. The PROVBA-V data at the Yucheng site and Hongxing farm. The images with more than
60% invalid pixels are designated as invalid data (26 June 2015–16 July 2015 at the Yucheng site and
1 August 2014–21 September 2014 at the Hongxing farm).

Table 1. The percentage of the images with less than 60% invalid pixels from PROBA-V in Yucheng
and Hongxing during growing season. Invalid pixels indicate that values are missing, cloud, snow,
sea and background. Images in which invalid pixels account for more than 60% are not used because it
would adversely affect the smoothing result.

Location Data Time Number of
Images

Invalid
Images

Percentage of Images
Used for Smoothing

Yucheng S5 100 m 1 October 2014–26 September 2015 72 20 72%
S1 300 m 1 October 2014–30 September 2015 365 120 67%

Hongxing S5 100 m 1 May 2014–26 November 2014 42 2 95%
S1 300 m 1 May 2014–30 November 2014 213 28 87%

3.1.2. Smoothing

An efficient smoothing method can remove noise in NDVI time series. SPIRITS (Software for the
Processing and Interpretation of Remotely Sensed Image Time Series [55]) which was developed by
PROBA-V data provider gives four smoothing options, including MEAN (Interpolate missing values
& apply Running Mean Filter RMF), BISE (Best Index Slope Extraction), Swets and Whittaker [63].
We chose the Swets method [64] which uses a weighted least-squares linear regression and moving
window to reduce contamination and provide a continuous temporal NDVI signal. This approach
generates a smoothed NDVI profile by filling missing data. The resulting relationship between the
smoothed curve and the original data is statistically based.

3.2. Classification

We applied an unsupervised classification based on the Iterative Self-Organizing Data Analysis
Technique (ISODATA) clustering and maximum likelihood method (MLC) analysis implemented
by SPIRITS, to S5TOC 100 m PROBA-V NDVI images during the growing season after filtering and
smoothing. We tried from five to 10 categories for classification to ensure the best results, and found
five and six categories to be the best choices for the Yucheng site and the Hongxing farm, respectively,
because adding more categories to the classification did not significantly change the results. Then,
using the spectral-temporal information of each crop collected in the field, we used a similarity analysis
to ensure the crop type of the ISODATA clustering results. Procedures were repeated for the MODIS
16-day NDVI 250 m resolution images for comparison.
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3.3. Extraction of Phenological Parameters

Crop maps were derived and validated in the last working step based on the PROBA-V S5 100 m
NDVI data. Using the crop map, the NDVI profile for each crop during the growing season was
generated by averaging PROBA-V S1 300 m NDVI daily data for each crop type mask. TIMESAT is the
most commonly used software for extracting phenological variables based on thresholds, assuming
that a specific phenology is present when the NDVI exceeds a set threshold [65,66]. In this study, we
used the amplitude method in TIMESAT to delineate the beginning and end of the season by setting the
proportion of the seasonal amplitude measured from the left and right minimum values, respectively.

To obtain the seasonal parameters with TIMESAT from only one year of data (At least 3-year data
is required in TIMESAT), we constructed an artificial time-series spanning three years by duplicating
the one-year time-series data. Then, the phenology for each crop was extracted including the beginning
of the season, the end of the season and the time of seasonal peak. In this study, we assumed that the
start of the season, the peak time and the end of the season were the same as the emergence, flowering
and harvest stages in the crop calendar [21,45].

4. Results

4.1. Crop Mapping

The crops are typically winter wheat followed by summer maize at the Yucheng site. To obtain the
best classification result, five cluster types were selected by the ISODATA/MLC clustering of the NDVI
time series data. Based on the crop type proportion in the study area, only one type of crop can be
identified. We combined the clusters identified as having similar time series profiles, and designated
two types by similarity analysis: Wheat-maize double cropping and other. A high resolution crop map
retrieved through visual interpretation and supervised classification with the field measurement points
based on a GF-1 16 m resolution image was used as the field survey for validation. Figure 5 displays
the classification results which are, in order, the PROBA-V result, the MODIS result and the field
survey, with the measured points attached. As shown in Figure 5a,b, the wheat-maize in the PROBA-V
result and the MODIS result were divided into two areas on the map (Blue and Red color). Yucheng is
in a scan-to-scan overlapping observation area of PROBA-V and MODIS satellites. The bowtie effect
between two strips on the overlap led to an apparent stripping effect on the classification results [67].

The confusion matrix method was used to verify the classification accuracy, the overall accuracies,
and kappa for the classification results from PROBA-V images and MODIS images are 73.39%,
70.62% and 0.44, 0.38, respectively (Table 2). For the result based on PROBA-V images, 84.38%
of all of wheat-maize pixels in Yucheng were identified correctly, and 73.69% of the pixels classified as
wheat-maize were indeed crops. Likewise, 83.36% of all wheat-maize pixels were identified, and 70.98%
of the pixels classified as wheat-maize were indeed crops, as per the MODIS images. A validation
using 146 ground measured points indicated that the PROBA-V results succeeded in assigning 143 out
of 146 points correctly, compared with 132 points recognized from the MODIS results.

The Hongxing farm employs a much more complex cropping system. Soybean (281), wheat (26),
maize (256), vegetables (3) and potatoes (5) are growing in 571 fields, and the growing seasons of
different crops are all concentrated in the second half of the year, which makes crop classification
difficult. To identify more crops, we tried out 5–10 clusters in the unsupervised cluster analysis, and
6 clusters were selected as the parameter for this process (Having more than 6 clusters did not yield
more crop types). Due to the limitation of current image quality and technology, 8 vegetables and
potato fields were still not identifiable. The crop map produced using the PROBA-V images and
MODIS images are shown in Figure 6. Figure 6c shows the planting schedule in 2014. The PROBA-V
results clearly indicated three crops, including soybean, wheat and maize. Due to the closed growing
seasons and NDVI values for soybean and maize (Figure 7), we could not identify these two crops
from the MODIS images, no matter how the parameters of the ISODATA/MLC clustering analysis
were adjusted. The classification accuracies of the images from the two sensors are shown in Table 3.
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Figure 5. (a,b) Classification results based on PROBA-V and MODIS data in Yucheng. (c) Validation
data is generated from 16m high resolution data and field measurements. In (a,b), the crop (wheat
followed maize) are classified into two parts (red and blue) due to the sensor overlapping characteristic.

Table 2. The classification accuracies of the images from PROBA-V and MODIS at Yucheng site.

Proba-V Classification

Reference Data

Wheat-Maize Other Total User Acc. Commission

Wheat-Maize 48,592 17,351 65,943 73.69% 26.31%
Other 9052 24,245 33,297 72.81% 27.19%
Total 57,644 41,596 99,240

Prod. Acc. 84.30% 58.29%
Omission 15.70% 41.71%

Overall Accuracy = 73.39%, Kappa Coefficient = 0.44
Field Accuracy = 143/146 (97.85%)

MODIS Classification

Reference Data

Wheat-Maize Other Total User Acc. Commission

Wheat-Maize 7270 2973 10,243 70.98% 29.02%
Other 1451 3366 4817 69.88% 30.12%
Total 8721 6339 15,060

Prod. Acc. 83.36% 53.10%
Omission 16.64% 46.90%

Overall Accuracy = 70.62%, Kappa Coefficient = 0.38
Field Accuracy = 132/146 (90.41%)
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Table 3. Classification accuracies of the images from PROBA-V and MODIS at the Hongxing farm.

Proba-V Classification

Reference Data

Maize Soybean Wheat Total User Acc. Commission

Maize 6581 1322 33 7936 82.93% 17.07%
Soybean 4104 8862 82 13,048 67.92% 32.08%

Wheat 225 362 1372 1959 70.04% 29.96%
Total 10,910 10,546 1487 22,943

Prod. Acc. 60.32% 84.03% 92.27%
Omission 39.68% 15.97% 7.73%

Overall Accuracy = 73.29%, Kappa Coefficient = 0.53

MODIS Classification

Reference Data

Maize Soybean Wheat Total User Acc. Commission

Maize 142 214 5 361 39.34% 60.66%
Soybean 1164 1036 7 2207 46.94% 53.06%

Wheat 10 9 62 81 76.54% 23.46%
Total 1316 1259 74 2649

Prod. Acc. 10.84% 82.42% 83.78%
Omission 89.16% 17.58% 16.22%

Overall Accuracy = 46.81%, Kappa Coefficient = 0.01

The overall accuracies and kappa for the classification results based on PROBA-V images and
MODIS images were 73.29%, 46.81% and 0.53, 0.01, respectively. For the PROBA-V-based result,
60.32% of maize, 84.03% of soybean and 92.27% of Wheat at Hongxing farm were identified correctly.
Only 10.84% of maize, 82.42% of soybean and 83.78% of wheat were correctly classified from the
MODIS-based result. For wheat, due to the significantly different NDVI growth curve, the accuracy
was close for PROBA-V and MODIS based results. However, the MODIS images at 250 m resolution
could not differentiate soybean from maize correctly. Out of the 256 maize fields at the Hongxing farm,
only 18 fields were successfully recognized by MODIS, and the product accuracy and user accuracy
for maize were only 10.84% and 39.34%.

4.2. Crop Phenology

At the Yucheng site, according to the local crop characteristics (typically winter wheat followed by
summer maize.), we set the number of seasons to 2 and the amplitude threshold for the beginning and
end of the season as 0.1 in the TIMESAT software. The TIMESAT results and observed crop seasonal
parameters are shown in Figure 8. The gaps between TIMESAT results and observed results for winter
wheat and summer maize at the Yucheng site are less than 10 days (Table 4).

The Hongxing farm has a complex cropping system, with more than 5 crop types planted at one
time. The PROBA-V and MODIS images identified only three types: soybean, maize and wheat. At the
Hongxing farm, the crops are harvested soon after maturation for achieving the best economic value.
Therefore, we assigned one growing season and the amplitude threshold was set differently for each
crop in the TIMESAT software [59]. In this work, the amplitude thresholds for the beginning and
the end of the season were set to 0.2 and 0.4 for maize, 0.2 and 0.8 for soybean and 0.1 and 0.5 for
wheat, respectively.

Maize and soybean have similar phenological characteristics in that the emergency and flowering
date are closed, however, the major difference is that maize has a longer growing season and is
harvested later. The phenology monitoring result between observed and TIMESAT are shown in
Figure 9. With the precise amplitude thresholds, the gaps between the observed phenology and the
TIMESAT result for the three phenology stage were less than 10 days.
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Figure 9. Maize, soybean and wheat NDVI curves at the Hongxing farm during the growing season.
The colored squares and circles are the phenology date obtained by ground measurements and
TIMESAT, respectively.

For wheat, the gaps between the observed phenology and the TIMESAT result for the emergence
and flowering stages were less than 1 day. After harvest, the wheat straw was always left on the farm
as fertilizer and was shown on the NDVI time series curve as a flat line after the maturity stage, which
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made it difficult to identify the actual harvest time. The gap between observed and TIMESAT results
for harvest of wheat at the Hongxing farm is 44 days.

Table 4. The phenology date obtained from ground data and TIMESAT. The red number means the
gap between our results and observed date exceeded 10 days.

Location Crop Phenology/Farm Operation Observed TIMSAT Result Gap

Yu Cheng

Winter wheat

Emergence 8 October 10 October 2
Wintering 6 December
Tillering 4 March

Flowering 8 May 5 May 3
Harvest 5–15 June 14 June 0

Summer maize
Emergence 20 June 26 June 6
Flowering 6 September 30 August 7

Harvest 20–30 September 30 September 0

Hongxing

Maize
Emergence 15 May 17 May 2
Flowering 20 August 13 August 7

Harvest 8 October 3 October 5

Soybean
Emergence 15 May 19 May 4
Flowering 22 August 20 August 2
Harvesting 10 September 18 September 8

Wheat
Emergence 1 May 1 May 0
Flowering 21 June 20 June 1

Harvest 10 August 23 September 44

5. Discussion

The PROBA-V NDVI time series images provide an effective and accurate crop mapping in
comparison with existing crop identification studies. As a continuation of the SPOT-5 program,
PROBA-V was designed to offer a global coverage at spatial resolutions of 100 m, 300 m and 1 km [49].
It was used as the medium resolution remote sensing resource instead of SPOT-VEGETATION in the
European MARS crop yield forecasting system [68].

The overall accuracy of crop identification at a location with only one type of crop was 73.39%,
which was slightly better than the MODIS results. When the plant mix became complex (i.e., more
than three crop types within a study area, a very common situation in China), the overall accuracy of
crop mapping using PROBA-V was 73.29%, which was much better than the MODIS result of 46.81%.
Roumenina studied crop identification by PROBA-V 100 m and 300 m data at the Zlatia Test Site
in Bulgaria using the single and multiple time data [51]. The overall accuracy using single 100 m
PROBA-V data reached 72.4%–86.2%, and the multi time series data yielded an accuracy of 88.9%,
which was significantly better than the results using the MODIS 250 m data. Our results support
this conclusion.

A large proportion of China’s cropland is managed through complex cropping and the crop field
is usually small, which makes crop mapping difficult. Pittman generated a cropland map based on
MODIS 250 m resolution for global country crop analysis. Their accuracy of cropland identification
is 43% on a global scale and only 41% in China [69]. Fritz also validated the global cropland map
developed from MODIS by crowdsourced data points from Geo-Wiki, and the accuracy was only 65%
for China [70]. The cropland map by the International for Applied Systems Analysis—The International
Food Policy Research Institute (IIASA-IFPRI), which integrates several individual cropland maps at
a global, regional or national scale, produced an overall accuracy of 82.4%, according to the validation
with very high resolution data by Fritz [71]. It is even more challenging to identify different crop types
than cropland mapping. Our results for China show higher accuracy for crop mapping than the above
analysis did. Because our results were based on two diverse regions in China, we believe that the
PROBA-V data has the capacity to provide an alternative resource for global crop mapping.
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In fact, the crop field at Yucheng site is fragmented. The field size ranges from very small to
small [71], which makes it more difficult to map the crop. Usually, in areas with large field sizes,
medium resolution data can be used to monitor agriculture while small and very small field sizes
would require very high resolution imagery in order to achieve higher accuracy [72]. However, most of
the cultivated land in Yucheng is winter wheat followed by summer maize, which produces a unique
NDVI time serious profile during growing season and makes it more obvious when using the time
series data. In this study, 84.3% and 83.36% of crops were identified in Yucheng based on PROBA-V
and MODIS due to the unique growing curve. The PROBA-V result yielded better accuracy than
the MODIS result did, which confirms that the improved spatial resolution increased the quality of
classification in very small to small field cropping systems.

At the Yucheng site, we identified two crop classes using both PROBA-V or MODIS time series
data (Figure 5a,b). Figure 2 shows the PROBA-V 100 m data coverage over 5 days. The brighter,
white areas are an overlap location where a bowtie effect appears due to the different scanning strips
at different times in the PROBA-V synthesis products [73]. This bowtie effect also appeared for MODIS
products and almost all of the cross-track-scanning imaging radiometers [74–76]. Many quick and
efficient algorithms have been developed to remove these effects on single data [67,77,78], but the
impact of the bowtie effect on the time series classification still exists. Although the error can be
easily removed by combining the two classes through visual interpretation, it still causes difficulty for
automatic batch processing. The issue will be reduced by a satellite with a global coverage capacity at
higher spatial and temporal resolution.

At the Hongxing farm, the field size ranges from small to medium. The difficulty of cropland
detection at the Hongxing farm is lower than in Yucheng. However, the Hongxing farm has
a more complex cropping system. Five crops’ growing seasons occur in the second half of the year,
which creates difficulties for crop mapping. The identification of maize and soybean is especially
difficult as the crop growing curves of these two crops are very similar (Figure 9). Two NDVI curves
peak only seven days apart (Table 4). In this study, the differentiation of maize and soybean with
16-day, 250 m MODIS NDVI failed at the Hongxing farm. Only 10.84% of maize was classified correctly.
With most of the maize pixels identified as soybean, the commission error of soybean was 53.06%.
The overall accuracy based on MODIS data was only 46.81% and the classification agreement was
poor (Kappa = 0.01). Due to the increased temporal resolution, 5-day PROBA-V NDVI product had
better accuracy. Overall, 60.32% of maize and 84.03% of soybean were identified correctly. The overall
accuracy is 73.29% with a moderate level of classification agreement (Kappa = 0.53). In addition,
Figure 7 shows the growing curves of three crops at the Hongxing farm with variance in 5-day
temporal resolution. It is hard to find a day or a few days to identity these three crops by using the
single- or multi-date crop mapping method.

By comparing the NDVI curve made by the time serious data with 5-day temporal resolution
and daily resolution (Figures 7 and 9), due to missing data or noise in the time series, the NDIV curve
from daily data was much closer to the actual growing curve than that from 5-day data, which also
affects the classification results. Fortunately, new satellites with 100 m resolution and daily coverage
have already been featured in ESA plans. We believe that this will greatly enhance the accuracy of
crop monitoring.

6. Conclusions

New satellite images from PROBA-V offer spatial resolutions of 100 m–300 m and a temporal
resolution of 1–10 days. Compared with traditional vegetation VI products derived from AVHRR,
MODIS, SPOT-Vegetation (250 m–1 km resolution), Landsat and HJ-1 A/B (30 m resolution), PROBA-V
provides an intermediate spatial resolution that can replace prior data in application of global crop
monitoring. In this study, we attempted using the PROBA-V time series images to identify crops by
an ISODATA/MLC unsupervised classification method at two locations with different but typical
farming systems. In Yucheng, where winter wheat is followed by summer maize planting, very small
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fields are typical, and, at the Hongxing farm, the crop composition is more complex and it is very
common that more than five crops are grown at the same time. In Yucheng, crops were easily identified
by both the PROBA-V and the MODIS data, and classification accuracy from PROBA-V data was 3%
better than that from MODIS, due to improved spatial resolution. At the Hongxing farm, where similar
crop phenology characteristics were found between two of the three identified major crops, successful
identification from MODIS data was not achieved, while PROBA-V performed better. Accordingly,
60.32% of maize, 84.03% of soybean and 92.27% of wheat were identified correctly due to its high
temporal and spatial resolution.

To our knowledge, this is the first study that used the new PROBA-V data to identify crops in
China. Our results proved that the PROBA-V products have the ability to replace the existing medium
resolution remote sensing data on crop mapping, especially in areas with fragmented fields and
complex cropping systems. We believe that the PROBA-V global data has broader prospects in other
agriculture applications, such as crop condition monitoring and crop yield estimation. Additional
work is needed to remove the “bowtie effect” in the time series analysis, and we look forward to the
introduction of new satellites with a shorter repeat cycle and higher spatial resolution.
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