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Abstract: Visible and near-infrared diffuse reflectance spectroscopy has been demonstrated to be a fast
and cheap tool for estimating a large number of chemical and physical soil properties, and effective
features extracted from spectra are crucial to correlating with these properties. We adopt a novel
methodology for feature extraction of soil spectroscopy based on fractal geometry. The spectrum can
be divided into multiple segments with different step–window pairs. For each segmented spectral
curve, the fractal dimension value was calculated using variation estimators with power indices 0.5,
1.0 and 2.0. Thus, the fractal feature can be generated by multiplying the fractal dimension value
with spectral energy. To assess and compare the performance of new generated features, we took
advantage of organic soil samples from the large-scale European Land Use/Land Cover Area Frame
Survey (LUCAS). Gradient-boosting regression models built using XGBoost library with soil spectral
library were developed to estimate N, pH and soil organic carbon (SOC) contents. Features generated
by a variogram estimator performed better than two other estimators and the principal component
analysis (PCA). The estimation results for SOC were coefficient of determination (R2) = 0.85, root
mean square error (RMSE) = 56.7 g/kg, the ratio of percent deviation (RPD) = 2.59; for pH: R2 = 0.82,
RMSE = 0.49 g/kg, RPD = 2.31; and for N: R2 = 0.77, RMSE = 3.01 g/kg, RPD = 2.09. Even better
results could be achieved when fractal features were combined with PCA components. Fractal
features generated by the proposed method can improve estimation accuracies of soil properties and
simultaneously maintain the original spectral curve shape.

Keywords: fractal dimension; feature extraction; gradient-boosting regression model; LUCAS;
soil spectroscopy

1. Introduction

Quantitative assessment of soil properties using visible near-infrared shortwave infrared
(Vis-NIR-SWIR) spectroscopy has been demonstrated as a fast and non-destructive method [1–6]. Over
the past 30 years, numerous soil physical and chemical properties, such as soil texture, soil organic
carbon (SOC), cationic exchange capacity (CEC), total nitrogen (N) and exchangeable potassium (K),
have been investigated using the spectroscopic approach based on various multivariate statistics
and machine learning approaches [7–11], and outcomes were applied in soil contamination, soil
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degradation, environmental monitoring and precision agriculture [6,12–14]. As one of the attractive
advantages, soil spectra can be recorded at points or by imaging from different platforms [1,15].
The technique is mainly used in the laboratory, where soil samples are prepared and measured
under controlled conditions, and it can be considered as an alternative to traditional analytical
techniques. Portable Vis-NIR-SWIR spectrometers allow measurements operated directly in situ.
Although the estimation accuracy is lower when compared to results achieved in the laboratory due to
uncontrollable environmental factors in the field, in situ proximal sensing improves the efficiency of
soil data collection by avoiding tedious sampling and preparation procedures [16]. Sensors can also
operate from high above, termed as air- or spaceborne imaging spectroscopy [17–19]. However, there
are still some limitations with respect to the application of imaging spectroscopy to the field of soil
analysis, especially when vegetation is present. They have already shown the potential to map and
quantify soil properties [20,21]. With upcoming spaceborne sensors, like the Environmental Mapping
and Analysis Program (EnMAP) from Germany and the Hyperspectral Infrared Imager (HyspIRI)
from the USA, imaging spectroscopy provides the opportunity to map soil properties at regional and
global scales at comparatively low costs.

Reflectance spectra of soil can be viewed as cumulative properties that reflect inherent spectral
behaviour of soil components, and can be used to quantify these components simultaneously [5].
However, due to the complexity of scattering effects caused by soil structure and/or specific
constituents, the absorption wavelengths are largely overlapping and result in complex absorption
patterns [4]. Besides, soil spectra often tend to have a very high dimensionality. For example, each
spectrum in the Land Use/Land Cover Area Frame Survey (LUCAS) [22] soil spectral library has
4200 Vis-NIR-SWIR absorbance measurements, while the Africa Soil Information Service (AfSIS) [23]
soil spectra has more than 3000 mid-infrared absorbance measurements. The LUCAS Project aims
to sample and analyse the main properties of topsoils across Europe, and the AfSIS Project aims to
narrow the sub-Saharan soil information gap and to provide a consistent baseline for monitoring soil
ecosystem services. Laboratory spectroscopy was used in both projects. High-dimensional data often
contain redundant information and increase computation complexity. In high-dimensional space,
spectral similarities are diminished. It has been proven that most of the data are concentrated in
the corners of a high dimensional space and the model’s accuracy tends to firstly improve and then
decline with an increase of features, which is also known as the curse of dimensionality or Hughes
phenomenon [24–26]. Therefore, simply relying on different multivariate statistics in raw feature space
is not enough, and methods to reduce the dimensionality and extract information from the spectra that
can be better correlated with soil properties of interest should be investigated.

Feature extraction has been proved to be successful in imaging-spectroscopy classification [24,27–30].
The high-dimensional spectral data can be projected to a lower dimensional space with feature
extraction methods, without actually losing significant information. Reduced features may increase
the separation between spectrally similar classes and the classification model can perform well with a
reduced number of features. In soil spectroscopy, a common approach is principal component analysis
(PCA). In [31], PCA was used to reduce the Vis-NIR-SWIR data with more than 2000 wavelengths
to a few components, the first component of which accounting for the largest variance. Also, soil
information contents of the spectra consisted of PCA components, and a predictive spatial model was
developed across Australia. Effective information can also be extracted with wavelet analysis [32].
It can substantially reduce the factors outside the parameters to the spectrum directly or indirectly. PCA
and local linear embedding (LLE) have, in a comparative way, been exploited for soil spectral distance
and similarity in projected space [33]. LLE is a nonlinear dimensionality reduction method [34,35].
It can identify the underlying structure of a manifold, while PCA maps faraway data points to
nearby points in the plane. The results indicate that the distances computed in the raw space have
comparatively lower performance than the ones computed in low reduced spaces. Methods using PCA
and LLE with Mahalanobis distance outperformed other approaches. It can be seen that an effective
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feature extraction method has the potential to explore the intrinsic structure of spectra, and does not
only reduce the data redundancy but also improves estimation accuracy [36].

Knowing how to effectively extract features from the spectra is crucial for a successful soil-spectral
quantitative model. Studies focused on feature extraction from soil Vis-NIR-SWIR spectra are still
limited. In this paper, we adopt a novel approach of fractal features based on fractal geometry
using variation estimators with the different power indices 0.5, 1.0 and 2.0, which can be termed as
rodogram, madogram and variogram, respectively. The concept of fractal dimension was introduced
by [37,38] to reduce the dimensionality of imaging spectroscopy data. Kriti Mukherjee [24,39] proposed
a method to generate multiple fractal-based features from imaging spectroscopy data and then
further compared the performance of fractal-based dimensionality reduction using Sevcik’s, power
spectrum and variogram methods with conventional methods like PCA, minimum noise fraction
(MNF), independent component analysis (ICA) and decision boundary feature extraction (DBFE)
methods. They concluded that the classification accuracy is similar but the computational complexity
is reduced. The aims of the present study are to explore fractal-based feature extraction from soil
spectra and to examine its performance on the estimation of SOC, N and pH contents with soil
Vis-NIR-SWIR diffuse reflectance spectra. Features generated by the fractal method were compared to
PCA-transformed components, and then these two kinds of features were combined to quantify soil
properties using a gradient-boosting regression method. The proposed method is further compared
with partial least squares (PLS) regression, which is a frequently adopted method for the quantification
of soil properties.

2. Materials and Methods

2.1. The LUCAS Topsoil Database

As part of Land Use/Land Cover Area Frame Survey, approximately 20,000 geo-referenced topsoil
samples were collected and analysed for the 25 European Union member states [22,40]. Stratified
random sampling was applied to collect around 0.5 kg of topsoil (0–20 cm) [41]. The collected
samples can be classified as mineral and organic soils based on the extremely diverse spectral response.
The LUCAS topsoil dataset is obtained from the Joint Research Centre (JRC) and can be used for
non-commercial purposes [22]. In this paper, the proposed feature extraction method was tested using
the LUCAS organic soil samples, the distribution of which was explored in ArcGIS 10.4 and can be
seen in Figure 1.
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The Vis-NIR-SWIR soil spectra were measured using a FOSS XDS Rapid Content Analyser (FOSS
NIRSystems Inc., Denmark) [22], operating in the 400–2500 nm wavelength range, with 0.5 nm spectral
resolution. Organic soil spectra were pre-processed by removing the data at wavelengths of 400–500 nm
that showed instrumental artefacts, transformation of absorbance (A) spectra into reflectance (1/10A)
spectra, continuum removal, Savitzky-Golay filter with a window size of 50, second order polynomial
and first derivative. Thirteen soil properties have been analysed in a central laboratory [22], including
the percentage of coarse fragments, particle size distribution (% clay, silt and sand content), pH (in
CaCl2 and H2O), soil organic carbon (g/kg), carbonate content (g/kg), phosphorous content (mg/kg),
total nitrogen content (g/kg), extractable potassium content (mg/kg), and cation exchange capacity
(cmol(+)/kg). Three key soil fertility properties, soil organic carbon (SOC), total nitrogen content (N)
and pH in CaCl2 (pH), were selected as our studied properties.

2.2. Fractal Feature Extraction Method

2.2.1. Concept of Fractal Dimension

Fractal dimension is a robust method for describing natural or man-made fractals having the
fundamental feature known and referred to as self-similarity [42]. Within the fractal lies another
copy of the same fractal, smaller but complete. If we have a strictly self-similar fractal which can be
decomposed into N pieces, each of which is a copy of the original fractal scaled by a factor of S, then,

SD = N (1)

where D is the Hausdorff Dimension. D is a non-integer number, describing how the irregular structure
of objects and/or phenomena is replicated in an iterative way from small to large scales. Anything that
appears random and irregular can be a fractal, strictly or statistically, including the soil Vis-NIR-SWIR
spectrum, which cannot be defined by any mathematical equation and is therefore considered as
an irregular curve. There are numerous methods which have been developed for fractal dimension
estimation, including box-count [43], variogram [44], power spectrum [24] and spectral [45] methods.

2.2.2. Variation Method for Fractal Dimension

The variogram estimator is widely used in the determination of the fractal dimension and it is
known for its ease of use [46]. By sampling a large number of pairs of points along the spectral curve
and computing the differences in their reflectance values, the fractal dimension is easily derived from
the log–log plot of variogram and lags. Xu and Xt+u are two reflectance values located at points u and
t+u, and these two points are separated by the lag of t. The variogram can be calculated as the mean
sum of squares of all differences between pairs of values with a given distance divided by two.

γ(t) =
1
2

E(Xu − Xt+u)
2 (2)

The variogram estimator is a stochastic process with stationary increments as half times the
expectation of the square of an increment at lag t, and a generalisation of the variation estimator can be
obtained with different order p of a stochastic process [47]:

γp(t) =
1
2

E|Xu − Xt+u|p (3)

where p = 1.0, it represents the madogram, which instead of calculating squares of the differences takes
the absolute values. Where p = 1/2, the rodogram is derived by calculating the square root of absolute
differences. Fractal dimension is estimated using the slope (θ) of the corresponding log–log regression
plot of γp(t) and t, as shown in Figure 2.

D = 2− θ

2
(4)
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2.2.3. Fractal Feature Generation

Fractal features are generated by multiplying spectral energy with the corresponding fractal
dimension. As the fractal dimension can be calculated using the whole curve or only part of the curve,
the spectrum can be segmented into several parts and each part corresponds to a new fractal feature.
For a soil spectral curve, a common approach is to evenly divide the whole curve into a desired number
of segments [48], which means the step and window size are the same. In this study, we explored
the effect of different combinations of step and window sizes on generated fractal features. The final
feature number Nf can be calculated as:

N f =
Nr −W

P
+ 1 (5)

Nr is the number of raw spectral measurements, P is the value of step size and W is the value of
moving window size. W is obtained by multiplying scale and step value. It should be pointed out
that the scale here is not the scaling factor for fractal dimension. When the window size is equal to the
scale size, the fractal dimension of the spectral segment is calculated using reflectance values within
the same wavelength window. The window size is often defined as larger than the step size, which
means segments of the same spectral curve are overlapping. Step size is defined as 100.0 nm and
moving window size as 200.0 nm, as shown in Figure 3, which means P = 200 and w = 400 (the spectral
resolution is 0.5 nm in our case). New fractal features can be generated when the wavelength window
moves along the spectral curve at step 100.0 nm. With the increase of the step size, the final fractal
feature number (Nf) correspondingly decreases, which can be used as a means of dimension reduction.

For a certain scale value, s, Nf numbers of fractal dimension values can be obtained by moving
along the spectral curve at step size p. For each segment, the number of points are marked as n and
can be calculated by Equation (5). The reflectance value as Zj (j = 1, 2, . . . , n) and the corresponding
fractal dimension value can be calculated according to Equation (4) as Dm (m = 1, 2, . . . , Nf), and
fractal features at scale s by:

Fm = Dm × Em (6)

where Em is the spectral energy and can be derived from the following equation:

Em =
n

∑
j=1

Z2
m,j (7)
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2.3. Gradient-Boosting Regression Model

Soil spectroscopy quantitatively correlates with soil properties, which supposes that fitting a
regression model with features extracted from spectra will have good predictive accuracies with respect
to soil continuous properties. Gradient-boosting is a highly effective and widely used machine-learning
approach [49]. Gradient-boosting develops an ensemble of tree-based models by training each of the
trees in the ensemble on different labels and then combining the trees. It can produce robust and
interpretable procedures for both regression and classification. For a regression problem where the
objective is to maximize the coefficient of determination (R2) or to minimize the root mean square
error (RMSE), each successive tree is trained on the errors left over by the collection of earlier trees.
XGBoost is a scalable and flexible gradient-boosting library [50–52], which is adopted to build the
soil spectral quantitative model in our study. XGBoost uses more regularised model formalisation to
control over-fitting, which gives it better performance. Mathematically, the model can be viewed as:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (8)

where K is the number of trees, f is a function in the functional space F, and F is the set of all possible
regression trees. Therefore, the objective of optimization can be written as:

obj(θ) =
n

∑
i

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (9)

where l(yi, ŷi) is the training loss function, and Ω( fk) is the regularization term. The goal of XGBoost
model is to minimize obj(θ).

2.4. Evaluation

For each soil property, the soil spectral quantitative model was developed on a random sample of
two-thirds of the selected soil samples using the gradient-boosting regression method. The calibrations
were tested by predicting the soil properties on validation data sets composed of the remaining
one-third of the organic soil samples. No samples were omitted from the analysis, nor the calibration
or validation data sets. The model accuracies were evaluated on estimated and measured soil SOC,
N and pH values using RMSE, R2 and the ratio of percent deviation (RPD).
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R2 =
∑n

i=1(ŷi − y)2

∑n
i=1
(
Yi −Y

)2 (10)

RMSE =

√
1
n ∑ n

i=1(ŷi − yi)
2 (11)

RPD =
SD

RMSE
(12)

where n is the number of validation samples, y is the measured values, y is the mean of the measured
values, and ŷ is the estimated values. RPD is the ratio of the standard deviation (SD) of the calibration
data to the RMSE of the validation data [53]. An RPD <1.0 indicates a very poor model and its use
is not recommended; an RPD between 1.0 and 1.4 indicates a poor model where only high and low
values are distinguishable; an RPD between 1.4 and 1.8 indicates a fair model which may be used for
assessment and correlation; RPD values between 1.8 and 2.0 indicate a good model where quantitative
predictions are possible; an RPD between 2.0 and 2.5 indicates a very good, quantitative model, and an
RPD >2.5 indicates an excellent model.

3. Results

3.1. Fractal Features for Soil Spectroscopy

For a single soil Vis-NIR-SWIR spectrum, the fractal dimension can be calculated by Equation (4).
Before extracting fractal features from soil spectra, we first examined the relationship between soil
properties and the corresponding fractal dimension. Spectral values of soil are relatively low and
the curve appears smoother compared with other objects like vegetation. Thus, the resulting fractal
dimension values are comparatively low. Since the fractal dimension is derived from the slope of
the regression line obtained from the log–log plot of γp(t) and lag t, one problem is how many lag
increments are necessary to produce reliable results. Theoretically only a minimum of two points is
necessary to make such a plot [46]. However, the results of such an analysis tend to not be reliable or
representative. In this study, the value of lag increments was set as 5, and the Pearson correlations of
soil properties and fractal dimensions are shown in Table 1. The Pearson is a standardized covariance
and ranges from −1 to +1, which indicates a perfect negative (−1) or positive (+1) linear relationship
respectively. A value of zero is not related to the independency between the two variables, it only
suggests no linear association. It can be seen that SOC, N and pH have negative relationships with
fractal dimension. SOC and N have similar correlations with fractal dimension. Among these three
estimators, the variogram-based fractal dimension calculation method achieved the best correlation
between fractal dimension values and soil properties SOC (correlation coefficient (r) = −0.54), N
(r = −0.50) and pH (r = −0.12).

Table 1. Pearson correlation coefficients between soil properties and fractal dimensions calculated by
rodogram, madogram and variogram estimators.

Rodogram Madogram Variogram

SOC −0.40 −0.47 −0.54
N −0.38 −0.43 −0.50

pH −0.12 −0.13 −0.12

An intact spectrum can be divided into multiple segments, overlapping or non-overlapping. Each
segment is corresponding to a fractal feature. When step size and window size are respectively set to
2.5 nm and 50.0 nm, a total number of 791 fractal features can be derived by rodogram, madogram or
variogram methods, resulting the original spectral dimension reduced from 4000 to 791. In order to
make a proper comparison between the generated fractal feature-based curve and the raw spectral
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curve, the centre wavelength value of the spectral segment is assigned to the fractal feature as the
corresponding “wavelength number”.

A great advantage of fractal-based feature extraction is that the curve shape of fractal features
is similar to the shape of raw spectrum, which makes it possible to apply methods like continuum
removal (CR) not only to the raw spectrum but also to the fractal-based “spectrum”. The organic soil
samples can be divided into four groups according to the content of SOC. Average spectral reflectance
and continuum removal reflectance of LUCAS organic soil samples were computed by SOC classes
(Figure 4A). For fractal features, average fractal energy and continuum removal responses of organic
soil samples were also computed and shown in Figure 4B–D. The highest SOC class that was above
480 g/kg showed the highest mean reflectance in wavelength range from 1000.0 nm to 2000.0 nm,
which is consistent with observations in the literature [4]. The continuum removal reflectance showed
a strong correlation with SOC content at a wavelength of near 600.0 nm. The difference between raw
spectral curve and fractal feature curve was not obvious from the view of shape. Fractal features
showed shallow absorption peak in proportion for SOC classes at a wavelength of 600.0 nm. The fractal
energy values were larger than reflectance values, as the former were multiplied by spectral energy
and fractal dimension, which was supposed to be larger than 1.0.
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samples computed by SOC classes. (B–D) Average fractal energy and continuum removal responses of
organic soil samples computed by SOC classes using rodogram, madogram and variogram estimators
respectively. The central wavelength number of the corresponding spectral segment is assigned to the
fractal feature.

To demonstrate the effects of step and window size on extracted fractal features, the combinations
of the two parameters were tested. When the step size was fixed at 2.5 nm, a series of fractal feature
curves were derived by defining window sizes as 15.0 nm, 35.0 nm, 55.0 nm, 75.0 nm and 95.0 nm.
With the increase of window size, fractal energies correspondingly increased and the shapes of fractal
features were also gradually exaggerated, as shown in Figure 5A. The number for fractal features
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derived at different window sizes were equal but less than raw spectral features. When the window
size was fixed at 50.0 nm and step size increased from 10.0 to 50.0 nm at an interval of 7.5 nm,
the number of fractal features was non-linearly decreased from 196 to 40 as shown in Figure 5B.Remote Sens. 2016, 8, 1035 9 of 19 
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Figure 5. The effect of step and window size on generated fractal features. (A)are fractal feature curves
when window sizes were at 15.0–95.0 nm (step size fixed at 2.5 nm); (B) is the number of fractal features
when step sizes were increased from 10.0 to 50.0 nm (window size fixed at 50.0 nm).

3.2. Effects of Different Step and Window Size on Extracted Fractal Features

For further analysis about effects of step and window size on the relationship between fractal
features and soil properties, a matrix of step–window pairs was generated by defining step size ranging
from 2.5 nm to 50.0 nm at an interval of 2.5 nm and window size ranging from 10.0 nm to 100.0 nm at
an interval of 5.0 nm. For each pair of these two parameters, fractal features were derived according to
Equation (6). A gradient-boosting regression model using the XGBoost tool was built on a random
sample of two-thirds of organic soil samples, and then applied to the estimation of each sample from
the validation dataset. Pre-processing methods for soil spectra could also be applied to new fractal
features because of the shape similarity between fractal features and the raw spectral curve. For
example, fractal features were smoothed by use of Savitzky-Golay filter. R2 derived by step–window
pairs for SOC using rodogram, madogram and variogram methods are shown in Figure 6(A2–A4)
respectively, as is the case for N and pH in Figure 6B,C. For a comparable study, the regression model
was also applied to raw spectral values and PCA-transformed data.

Taking advantage of fractal features, models developed for SOC estimation achieved comparably
good results, R2 varies from 0.64 to 0.83 (rodogram), 0.70 to 0.84 (madogram) and 0.72 to 0.84
(variogram). For pH, R2 varies from 0.61 to 0.80 (rodogram), 0.63 to 0.80 (madogram) and 0.63
to 0.82 (variogram. However, for N there is comparatively less accuracy. R2 varies from 0.52 to 0.74
(rodogram), 0.53 to 0.75 (madogram) and 0.55 to 0.76 (variogram). Models with raw spectra were
developed by evenly selecting desired number of spectral measurements. The Hughes phenomenon
can be seen well in models built with raw spectra. R2 increased first and then declined with the
increase of feature numbers. It can be seen that models with raw spectra had the poorest performance.
For SOC and N, fractal features outperformed PCA-transformed features and raw spectra. Fractal
features for pH achieved similar accuracies compared to PCA-transformed features.
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Figure 6. Gradient-boosting regression modelling accuracies for SOC, N and pH. (A1), (B1) and (C1)
were with principal component analysis (PCA)-transformed features and raw spectra; (A2), (B2) and
(C2) were with fractal features derived by the rodogram method with various step-scale pairs. (A3),
(B3) and (C3) were with fractal features derived by the madogram method with various step-window
pairs. (A4), (B4) and (C4) were with fractal features derived by the variogram method with various
step-scale pairs.

3.3. Modelling Soil Properties with Fractal Features

Window sizes and step sizes adopted to optimize the gradient-boosting regression model can
be seen in Section 3.2. Fractal feature numbers approximately ranged from 40 to 800. The optimal
pairs of step–window sizes for SOC, N and pH can be seen in Table 2. For each gradient-boosting
regression model built with XGBoost library, the maximum tree depth was 4 and maximum number of
trees was 100. R2 was used as the evaluation metric for validation data.

The best trade-off between step and window size for SOC (R2 = 0.851, RMSE = 56.7 g/kg,
RPD = 2.59) was 2.5 nm for the former and 105.0 nm for the latter with variogram estimator. The best
performance step–window sizes for N (R2 = 0.776, RMSE = 3.01 g/kg, RPD = 2.09) were step size at
2.5 nm and window size at 65.0 nm with the variogram estimator. The best performance step–window
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size for N (R2 = 0.822, RMSE = 0.49, RPD = 2.31) were step size at 7.5 nm and window size at 45.0 nm
with the variogram estimator. From Table 2, it can be seen that fractal-based feature extraction methods
tend to keep a much larger number of features compared to PCA. To achieve similar performance
of PCA, fractal-based approaches need to retain ~200 features, such as 190 for SOC (R2 = 0.819,
RMSE = 62.49 g/kg, RPD = 2.34) where step size and window size were respectively 10.0 nm and
105.0 nm, 128 features for N (R2 = 0.736, RMSE = 3.26 g/kg, RPD = 1.92) where step size and window
size were respectively 15.0 nm and 135.0 nm, and 131 features for pH (R2 = 0.807, RMSE = 0.50,
RPD = 2.22) where step size and window size were respectively 15.0 nm and 50.0 nm.

In real-world examples, there are many ways to extract features from a dataset. Often it is
beneficial to combine several methods to obtain good performance. To assess whether predictive
accuracy could be enhanced by integrating multiple features, the first 30 PCA components were
combined with fractal features and then ingested into the gradient-boosting regression model.
Combined features showed better performance when applied for the estimation of all three soil
properties, SOC (R2 = 0.86, RMSE = 55.16 g/kg, RPD = 2.7), N (R2 = 0.78, RMSE = 2.96 g/kg, RPD = 2.19)
and pH (R2 = 0.85, RMSE = 0.44, RPD = 2.59), as shown in Figure 7.
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Figure 7. Best performance of gradient-boosting regression modelling accuracies for SOC, N and pH.
(A1), (A2) and (A3) were with PCA-transformed features. (B1), (B2) and (B3) were with fractal features.
(C1), (C2) and (C3) were with features combined by PCA-transformed features and fractal features.
R2: coefficient of determination; RMSE: root mean square error; RPD: the ratio of percent deviation.
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Table 2. Best Performance step–window pairs for soil properties estimation using fractal-based feature
extraction and comparison with PCA. R2: coefficient of determination.

Method Step Size/nm Window Size/nm Dimension R2

SOC

PCA - - 28 0.813
Rodogram 2.5 80 769 0.847
Madogram 2.5 90 765 0.847
Variogram 2.5 105 759 0.851

N

PCA - - 34 0.735
Rodogram 2.5 50 781 0.756
Madogram 2.5 90 765 0.767
Variogram 2.5 65 775 0.776

pH

PCA - - 34 0.814
Rodogram 5 55 390 0.806
Madogram 2.5 100 761 0.818
Variogram 7.5 45 261 0.821

3.4. Comparison with PLS Regression

PLS regression is frequently used to calibrate soil properties with soil spectra, and it can maximize
the covariance between the spectra and a measured soil property [7]. To make a comparison, PLS
regression, named as method A for the sake of convenience, was applied to the raw spectra of the
LUCAS organic soil to estimate organic carbon (OC) contents, and the best performance (R2 = 0.834)
was achieved when the number of components was 60 (Figure 8).
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PLS regression integrates the compression and regression steps, and it can be viewed as a
combination of PLS components and linear regression [54]. Therefore, it is also possible to transform
the raw spectra into PLS components and then ingest them into the gradient-boosting regression
model (method B). The same gradient-boosting model parameters were adopted. When the number
of retained PLS components was 60, the achieved R2 for the estimation of OC contents was 0.846
(Figure 9).
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The quantitative method proposed in the paper can be viewed as a combination of fractal features
and gradient-boosting regression (method C), and it achieved the best performance (R2 = 0.851) for
the estimation of SOC contents of these three methods. We also applied methods A and B to the
estimation of N and pH contents. For N, the same case applied; method C showed the highest R2.
Although method A (PLS regression) achieved the best performance for the estimation of pH contents,
when focusing on extracted features, fractal features had similar performance compared with PLS
components, the R2 for method C being 0.821 and for method B, 0.823. The only difference between
these two methods was the ingested features. The results are summarised in Table 3, and it can be seen
that fractal features can achieve similar or even better results compared with PLS components.

Table 3. Comparison of three methods for the quantitative retrieval of soil properties.

Features Modelling OC (R2) N (R2) pH (R2)

Method A PLS components Linear regression 0.834 0.743 0.87
Method B PLS components Gradient-boosting regression 0.846 0.759 0.823
Method C Fractal features Gradient-boosting regression 0.851 0.776 0.821

4. Discussion

4.1. The Importance of Fractal Dimension for Soil Spectra

The correlations between fractal dimension and soil properties were assessed by means of Pearson
correlation analysis when the fractal dimension calculation was applied to the whole spectrum.
Significant negative correlations for SOC (r = −0.54) and N (r = −0.50) with the fractal dimension
were found, which means that values of SOC and N could have effects on the shape of soil spectra
and therefore diagnostic wavelengths exist for SOC and N. In [55] an absorption peak centred at
600 nm was observed, which seems to be related to SOC content. At 2100 nm, there was an absorption
determined by N content. In [4] the authors also highlighted that wavelengths of around 1100, 1600,
1700–1800, 2000, and 2200–2400 nm have been identified as being particularly important for SOC and
N estimation.

The pH showed a very weak correlation with the fractal dimension (r = −0.12), which could
be caused by a lower direct spectral response to soil pH [4]. It has to be pointed out that the weak
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correlation between pH and fractal dimension does not mean that soil spectra cannot be used to
quantify soil pH values, but means that the variation of soil pH values does not significantly contribute
to the smoothness or roughness of the spectral curve. Soil pH value can still be well estimated in the
laboratory or in the field [55,56] using raw spectral data, which might be due to the mutual effect of
spectrally active soil constituents such as organic matter and clay [57]. It also can be seen that the
Pearson correlation between fractal dimension and soil properties has a positive relationship with the
performance of fractal features.

4.2. Modelling Soil Properties with Fractal Features

Three methods for the fractal dimension calculation and further feature extraction were studied in
this paper. The results demonstrate that the variogram estimator had slightly better performance than
the madogram estimator when applied to fractal feature generation for soil property estimation, and
methods using these two estimators achieved better R2 than the method using the rodogram estimator.
In [58] the classification achieved better results with texture layers derived from the madogram. Since
the madogram estimator calculates the sum of the absolute value of the semivariance for all observed
lags, it yields a softer effect on the presence of outliers compared to the variogram estimator. However,
in our study, soil spectra were well pre-processed by the Savitzky–Golay filter and generated fractal
features. Fractal features generated by these three estimators have a similar curve shape and achieved
very close estimation accuracies for tested soil properties.

Step–window pairs have significant impact on estimation accuracies of soil properties. When the
window size is fixed, accuracies are decreased with the increase of step size. However, when the step
size is fixed, accuracies are prone to ascend slightly and then clearly descend. A higher R2 was found
to be located at the bottom of the step–window matrix. However, there is no guarantee as to which
step–window pair is the best parameter for soil property estimation. Therefore, a hyper-parameter
optimisation method should be adopted for each of the soil properties.

In general, fractal features achieved better results compared to PCA-transformed features and raw
spectra. This demonstrates that by taking advantage of fractal information encoded in the soil spectral
shape, soil properties can be estimated in a better way. Besides, when raw data are transformed or
projected via PCA, measurement units and shape are lost. However, fractal-based feature extraction is
prone to retaining much larger number of features compared to PCA. To achieve similar performance,
the fractal-based approach needs ~200 feature numbers while PCA only needs ~30. When compared
with PLS components, fractal features also had better performance for the estimation of OC and N
contents. However, there is no conflict between common feature extraction practices with the proposed
fractal method. When integrating different kinds of features, like PCA-transformed features and fractal
features, the performance is expected to be improved for the retrieval of soil properties.

5. Conclusions

Data acquisition with Vis-NIR-SWIR spectroscopy is relatively easy, and a wide range of soil
properties can be analysed within a comparatively short time with relatively little effort for sample
preparation. Soil spectroscopy has recently been identified as a method that has the potential to rapidly
estimate soil properties. Many soil-spectral libraries are already built at regional, continental or even
global scales. Various multivariate statistics methods have been successfully adopted to explore the
relationship between soil spectra and soil physical/chemical properties. However, few studies are
focused on feature extraction from measured soil spectra, which is also crucial to correlating spectra
with soil properties.

The present study presents a novel methodology for feature extraction based on fractal geometry.
Each Vis-NIR-SWIR spectrum can be divided into multiple segments by defining the moving window
size and the step size. For each segmented spectral curve, the fractal dimension value was calculated
using variation estimators. Fractal features, generated by multiplying the fractal dimension value with
spectral energy, were further combined with PCA-transformed features, and the gradient-boosting
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regression model achieved good performance with respect to the retrieval of SOC (R2 = 0.86,
RMSE = 55.16 g/kg, RPD = 2.7), N (R2 = 0.78, RMSE = 2.96 g/kg, RPD = 2.19) and pH (R2 = 0.85,
RMSE = 0.44, RPD = 2.59). Fractal analysis can be functionalised as an approach to examine the
relationship between soil spectra and soil properties, which can characterise statistical self-similarity
and further quantify the irregularity of soil spectra [47]. Fractal features, by taking advantage of fractal
information encoded in the shape of soil spectral curve, can reflect the impact of various properties on
soil spectra except when the properties have less direct spectral response. In this case, fractal features
can still be functioned to quantify the corresponding soil property, however, they not perform as
well. Fractal features performed well when ingested into quantitative soil spectroscopic models, and
the proposed fractal method can not only reduce the dimensionality in the original space, but also
simultaneously maintain the spectral shape, which means that methods for raw spectra can also be
applied to extracted fractal features, for example, calibrating soil properties using PLS regression with
fractal features.
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