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Abstract: Detailed land cover information is valuable for mapping complex urban environments.
Recent enhancements to satellite sensor technology promise fit-for-purpose data, particularly when
processed using contemporary classification approaches. We evaluate this promise by comparing
the influence of spatial resolution, spectral band set and classification approach for mapping
detailed urban land cover in Nottingham, UK. A WorldView-2 image provides the basis for a
set of 12 images with varying spatial and spectral characteristics, and these are classified using three
different approaches (maximum likelihood (ML), support vector machine (SVM) and object-based
image analysis (OBIA)) to yield 36 output land cover maps. Classification accuracy is evaluated
independently and McNemar tests are conducted between all paired outputs (630 pairs in total) to
determine which classifications are significantly different. Overall accuracy varied between 35%
for ML classification of 30 m spatial resolution, 4-band imagery and 91% for OBIA classification of
2 m spatial resolution, 8-band imagery. The results demonstrate that spatial resolution is clearly
the most influential factor when mapping complex urban environments, and modern “very high
resolution” or VHR sensors offer great advantage here. However, the advanced spectral capabilities
provided by some recent sensors, coupled with contemporary classification approaches (especially
SVMs and OBIA), can also lead to significant gains in mapping accuracy. Ongoing development
in instrumentation and methodology offer huge potential here and imply that urban mapping
opportunities will continue to grow.

Keywords: urban; land cover; classification; World View-2; spatial resolution; spectral band; SVM;
OBIA; accuracy; McNemar test

1. Introduction

Detailed land cover information is crucial for mapping and managing complex urban
environments across local and regional scales [1,2], and remote sensing is the only practical and
cost-effective means of generating such information over large areas [3]. However, mapping urban
land poses a significant challenge for remote sensing due to the high spatial frequency of surface
features [4-6]; urban land is highly heterogeneous, involving a mosaic of both human-made materials
(such as asphalt, concrete, roof tiles and other impervious surfaces) and semi-natural surfaces (for
instance grass, trees, bare soil, water efc.). Therefore, although spaceborne remote sensing has been
employed for urban land cover classification over several decades, early work was limited by the
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relatively coarse spatial resolution of available sensors, perhaps most commonly Landsat Thematic
Mapper (TM) and its 30 m resolution multispectral imagery [7,8]. In urban environments, this level
of spatial detail leads inevitably to mixed pixels, whereby each pixel exhibits some spectral average
representing multiple surface features [9-11].

1.1. VHR Sensors

A breakthrough for urban mapping came around the turn of the millennium with the advent of
so-called “very high resolution” (VHR) satellite sensors, led by the 4 m spatial resolution (multispectral)
IKONOS mission in 1999, but followed by a series of other instruments including OrbView-3 (also
4 m resolution), QuickBird (2.4 m) and GeoEye-1 (1.6 m) [12]. The advantage of these image sources
for classifying urban land cover is obvious; the fine spatial resolution enables relatively accurate
identification of small urban features [13-15]. Nonetheless, despite their benefit of fine spatial
resolution, these VHR instruments tended to have rather limited spectral capabilities. For instance,
compared with Landsat TM’s seven spectral bands (three visible, near infrared, two shortwave infrared
and thermal infrared), IKONOS, OrbView-3, QuickBird and GeoEye-1 each has only four (visible
and near infrared) spectral bands. Such a limited spectral band set potentially constrains the ability
of remotely sensed imagery to distinguish between urban surfaces, given their often subtly varying
spectral properties [4,16]. This is perhaps especially a problem where detailed thematic classification is
attempted (i.e., where many specific land cover classes are mapped rather than few broad categories).
For instance, a planning agency official conducting a land use inventory may wish to map several
different types of roofing materials rather than a single “buildings” class [17].

1.2. Enhanced Spectral Capabilities

Now, a latest generation of satellite sensors is emerging with enhanced spectral, as well
as advanced spatial, properties. Notably, two new VHR instruments, WorldView-2 (WV2) and
WorldView-3 (WV3), acquire multispectral imagery with eight spectral bands: coastal, blue, green,
yellow, red, red-edge, near infrared 1 (NIR1) and near infrared 2 (NIR2). In particular, the coastal,
yellow and red-edge bands, as well as NIR2, represent “new” spectral bands, not routinely found on
multispectral sensors. (Indeed, these advancements in spectral capability are not restricted to VHR
instruments; the most recent Landsat sensor, Operational Land Imager (OLI), has ten multispectral
bands, including new coastal, cirrus and thermal infrared 2 bands.) These enhanced spectral
properties may prove especially valuable for urban mapping, enabling subtly varying spectral classes
to be identified [18]. This advantage is likely to be most pertinent where detailed classification
schema are involved, for instance when identifying many different land cover classes in complex
urban environments.

1.3. Pixel-Based versus Object-Based Classification

Notwithstanding these spectrally and spatially advanced satellite sensors, difficulties remain for
urban mapping. Traditionally, urban classification has been conducted using pixel-based approaches,
whereby land cover classes are allocated to each individual pixel [18,19]; and historically most
such analysis has employed statistical parametric classifiers such as the maximum likelihood (ML)
algorithm [15,20,21]. Though ML classification is a perfectly valid method, it makes certain statistical
assumptions about the data, and the nature of VHR imagery can mean that it is difficult to honour
these assumptions. Specifically, ML classification tends to work well where training data are relatively
“clean”, such as where coarse spatial resolution imagery is used to classify general land cover classes.
Where training data are rather noisier, such as where fine resolution imagery is used to map complex,
e.g., urban, environments, the ML classifier can be considerably less accurate [9,21]. More generally,
pixel-based approaches as a whole have limitations when it comes to urban analysis using VHR
imagery [21,22]. Contrary to the problem of mixed pixels which occurs where image spatial resolution
is too coarse, VHR imagery can effectively “over-sample” the scene whereby within-feature variation
(occurring where image resolution is too fine) reduces pixel-based classification accuracy [5,23-25].
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Recent years have seen significant development with classification methodologies, and some of
these have particular relevance for urban mapping. Non-parametric pixel-based classifiers such as
support vector machines (SVMs) seem well-suited to VHR urban classification since they are better able
to handle noisy training data, compared to for instance the ML classifier [18,26]. Moreover, object-based
classification has grown in popularity, whereby land cover classes are allocated to objects representing
real-world features instead of somewhat arbitrary pixel structures [23]. Other practitioners have tested
spatial indices and wavelet-based approaches to enhance classification performance [27].

The object-based approach directly addresses, and to an extent overcomes, the
problem of within-feature variation and its attendant (pixel-based) misclassification [1,28,29].
Consequently, object-based classification, which exploits spatial, textural and topological (as well as
spectral) information [30-32] may facilitate highly accurate mapping of complex urban environments
using VHR imagery.

1.4. Mapping Complex Urban Land Cover

Theory underpinning spectral and spatial image properties and their influence on land cover
classification accuracy is fairly well-established, and different image sources and classifiers have been
tested quite widely on urban environments. However, such experiments have often tended to be
limited in scope, perhaps comparing only one or two variables (e.g., spatial resolution or classification
approach); and/or adopting general and unambitious thematic classification schema; and /or working
with small image data sets. For instance, many studies have conducted fairly basic, procedural
comparisons between pixel- and object-based classification [21,33,34], but these have not necessarily
considered other influential variables such as input spatial resolution or spectral bands, or classification
algorithm. Some practitioners have (sensibly) adopted VHR imagery, including WV2 data with its
enhanced spectral properties, for mapping urban environments, but commonly these attempt only
broad differentiation between a few general land cover classes [34-36] rather than detailed distinction
of many specific classes. In effect, these studies seem content to replicate the sort of classification
schema used for decades with medium spatial resolution imagery, rather than attempting to exploit
the full information content of WV2 imagery and create very thematically-detailed urban land cover
maps. Also, most test WV2 data sets tend to be very small, often only a few hectares [37], and this
can limit the strength of the scientific findings since there is no consideration of spatial extrapolation
or transferability of the approach. That is, the results may be very parochial and depend strongly on
local context.

This paper builds on our theoretical understanding of how image and classifier characteristics
influence land cover accuracy by presenting an exhaustive and rigorous practical experiment to
compare the influence of spatial resolution, spectral band set and classification approach for mapping
complex urban environments. Uniquely this study provides a full test of the latest VHR imagery for
urban classification, demonstrating how its component (spatial and spectral) parts contribute to output
mapping accuracy. Analysis is iterated using a series of different spatial resolutions and spectral band
sets to simulate imagery ranging from traditional medium spatial resolution satellite sensors such
as Landsat TM to state-of-the-art VHR sensors like WV2, adapting an approach developed by [38].
Moreover, given the influential role that classification approach plays on output accuracy, and how
this is linked intrinsically with image specifications, all image data sets are classified using parametric
and non-parametric pixel-based, and object-based, classifiers. Unlike earlier work, this study adopts
a detailed classification system, including many specific land cover classes rather than few general
categories. This enables a fuller and more robust assessment of the WV2 data, but also delivers helpful
practical information for urban planners and other user communities on the level of thematic detail
that can be achieved when mapping complex urban environments. Finally, analysis is conducted
using a relatively large image covering approximately 121 km? of the city of Nottingham, UK and
its environs. This means that urban land cover information is generated at a scale of practical value
and relevance (the whole city-scale), unlike earlier experiments that have been limited to very small,
local areas.



Remote Sens. 2016, 8, 88 4 0f 23

2. Research Materials

2.1. Study Area and Classification Schema

The study area is the city of Nottingham, UK and its environs (Figure 1), located at 52°57'N
latitude, 1°08'W longitude. Nottingham has a population of slightly more than 300,000 [39] and covers
an area of approximately 121 km?. The climate is cool, moist temperate, with average high summer
temperatures around 20 °C, and average monthly precipitation around 50 mm throughout the year.
The topography is fairly flat, with altitude generally around 100 m. Nottingham is a relatively typical
UK city, in that it comprises a mixture of residential, industrial and commercial land use, and therefore
represents a good test for urban mapping methodologies. Land cover can be broadly categorised into
various types of anthropogenic features (e.g., asphalt, concrete, roof materials) intersecting with the
semi-natural environment (e.g., vegetation (grass, trees), bare soil and water). The central urban core
is generally more built-up and less vegetated than the outlying residential areas, though this varies
considerably across the city and its districts. A classification schema was developed that captured the
detailed spatial heterogeneity of the urban land cover throughout Nottingham. In total, eleven classes
were identified: asphalt, concrete roofs, clay roofs, slate roofs, metal roofs, grass, broadleaved trees,
needle-leaved trees, bare soil, water and shadow (Table 1).

kilometres

Figure 1. Nottingham, UK study area location and WorldView-2 image (© DigitalGlobe, Inc. All

Rights Reserved).
Table 1. Nottingham urban land cover classification schema.
Class Description
Asphalt Urban ground surfaces covered in asphalt such as roads and car parks
Concrete roofs Predominantly residential buildings covered in dark grey concrete tiles
Clay roofs Predominantly residential buildings covered in red clay tiles
Slate roofs Predominantly residential buildings covered in light grey slate tiles
Metal roofs Predominantly industrial buildings covered in white metal panels
Grass Areas of grassland such as urban parks and lawns, plus surrounding rural agriculture
Broad-leaved trees Patches of deciduous broad-leaved trees
Needle-leaved trees Patches of evergreen needle-leaved trees
Bare soil Open areas covered by bare soil
Water Water bodies including lakes, rivers, ponds and canals

Shadow Areas of shadow cast from tall structures such as buildings and trees
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2.2. Image and Reference Data

A WorldView-2 (WV2) image of Nottingham was acquired on 26 May 2012. The multispectral
imagery was supplied in 11 bit data format, at a spatial resolution of 2 m and with eight spectral
wavebands: coastal, blue, green, yellow, red, red edge, NIR1 and NIR2 (Figure 2, top line). Image
preprocessing requirements were minimal for two reasons. First, a single source data set was used
whereby all comparative outputs were derived from the original WV2 image, and this meant that
geometric distortion was of relatively little consequence. Nonetheless, the image’s geometric fidelity
was examined manually by cross-referencing the image with ancillary map data; geometric accuracy
proved relatively high in general. Second, analysis involved thematic classification and the accuracy of
output land cover maps was assessed independently (of the original spectral imagery). This meant that
external factors such as atmospheric distortion that influence original (input) pixel digital numbers
were of little consequence.
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Figure 2. WorldView-2 spectral wavebands (top line) and spectral band subsets used for
comparative analysis.

The original 2 m spatial resolution, 8 spectral band WV2 image was modified to create a series
of spatial/spectral data sets for comparative classification analysis. First, the imagery was degraded
successively to a series of coarser spatial resolutions: 4 m, 10 m and 30 m. These particular values
were chosen to approximate the spatial properties of commonly used satellite sensors, ranging from
state-of-the-art VHR imagery to traditional medium resolution imagery. For instance, while 2 m
represents WV2, 4 m matches earlier VHR imagery from IKONOS, 10 m matches the new Sentinel-2
MultiSpectral Instrument (MSI), and 30 m matches Landsat TM or OLI.

Second, two additional spectral band subsets were created from the 8 band original. This was a
simple process that just involved deselecting spectral bands as required; a 4 band subset was created
using the blue, green, red and NIR1 bands, and a 6 band subset was created using these four plus
the red edge and NIR2 bands (Figure 2). Again, the aim here was to compare a range of spectral
band sets, and where possible approximate the spectral properties of commonly used satellite sensors.
The original 8 band WV2 image represents state-of-the-art VHR remote sensing, but also shares some
spectral innovations with other recently developed sensors. For instance, Landsat OLI, Sentinel-2
MSI and RapidEye use certain novel bands, including, in common with WV2, coastal (OLI) and
red edge (RapidEye). The 4 band subset represents a conventional and widely used visible/near
infrared band set. For instance, other VHR sensors such as IKONOS and GeoEye-1 use these four
bands; and many medium resolution sensors, including some early Landsat instruments, typically use
three or four visible and near infrared bands. The 6 band subset is less direct in matching real-world
sensors, but represents an intermediate step between the 4 and 8 band data sets, and also specifically
targets spectral bands of value for characterising terrestrial features. In total, 12 spatial/spectral image
combinations (4 spatial resolutions, 3 spectral band sets) were used for comparative classification
analysis (see Figure 3).
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Figure 3. The 36 image data set/classifier combinations (4 spatial resolutions x 3 spectral band sets x
3 classifiers) used for comparative classification analysis.

Before proceeding to classification analysis, the (4, 6 and 8) spectral band sets were supplemented
with certain spectral indices, with the underlying intention to increase the accuracy of the resultant

classifications. Specifically, the 4 and 6 band sets were supplemented with a normalized difference
vegetation index (NDVI, M) [40] layer (so they in effect became 5 and 7 band data sets,

respectively). The 8 band set was supplemented with NDVI, Normalized Difference Bare Soil Index
(NDBg], (87eer — yellow) (yellow — green)

(green — yellow) (yellow + green)
layers [41] (so this in effect became an 11 band data set). Note, NDBSI and NDBRI could be calculated

for the 8 band set, but not the 4 or 6 band sets, because only the full 8 band set included a yellow
band. These particular spectral indices were added through trial-and-error whereby many indices
were tested and these three proved useful to aid identification of vegetation, soil and roof classes.
The indices were added initially at the object-based classification stage (described below), but to ensure

a fair comparison between all classification analysis, the same input data layers (i.e., spectral bands
plus indices) were used for all classifiers.

) and Normalized Difference Brick Roof Index (NDBRI,

Reference data were collected from a range of sources to create an independent data set for
training and testing the classification analysis. Field land cover survey was conducted at locations
throughout the study area in May 2013, matching the anniversary date of original image acquisition.
Free online spatial data resources such as Google Street View and Bing Maps were used to supplement
field survey [42,43], whereby secondary ground photos and images were browsed to identify the land
cover classes present at sample locations. Detailed vector map data—specifically MasterMap data [44]
created by Ordnance Survey—were also consulted and cross-referenced with the imagery to gain a
fuller appreciation of the land cover and land use present throughout the study area. Reference data
sources were compiled and triangulated to create a comprehensive reference data set of land cover at
locations throughout the study area. This data set was split into two parts, one used to create training

class samples for classification analysis, and the other used to test the accuracy of the output land
cover maps.
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3. Research Methods
Three different classification approaches were tested:

1. Maximum likelihood classification: a parametric pixel-based approach;
Support vector machine classification: a non-parametric pixel-based approach; and
3. Object-based classification.

In total, land cover classification was conducted using 36 different data set/classifier combinations
(4 spatial resolutions x 3 spectral band sets x 3 classifiers; Figure 3).

3.1. Pixel-Based Class Training

The first step in supervised land cover classification is generally class training. Indeed, choosing
appropriate training samples is one of the most critical aspects of classification methodologies,
and can be very significant in determining the final success (or otherwise) of the classification
process. Here, training was first conducted for pixel-based classification, and this involved laborious
trial-and-error, iterating training samples to optimise classification performance. Initially, some
theoretical considerations influenced training data selection. The author of [45] recommends a
minimum of 10p to 30p training samples per class, where p = number of spectral bands. In this
study, with eight spectral bands, the minimum requirement is therefore between 80 and 240 samples
per class, and, with 11 classes, between 880 and 2640 for the whole classification. Also, training samples
were selected randomly from locations throughout the study area, thereby avoiding any spatial bias
that can be caused where training samples are spatially clustered.

Training was first carried out using the 2 m spatial resolution imagery. Because of the great
spatial complexity of this VHR data, and drawing on contemporary research practice (e.g., [46]), it
was decided that 3 x 3 blocks of pixels would be used for training here, rather than individual pixels.
Blocks or groups of pixels provide some representation of the natural variation present within land
cover structures at this scale of observation and, as [47] notes, this approach can avoid the selection
of potentially noisy and unrepresentative individual pixels. In total, for the 2 m resolution image,
479 training samples were selected, each representing a block of nine (3 x 3) pixels, so 4311 pixels
overall. This is well above the minimum requirement specified by [45].

Once class training was complete for the 2 m spatial resolution imagery, the process was repeated
successively on the 4, 10 and 30 m imagery. Every attempt was made to use the same or similar
training points at the different resolutions to ensure direct comparability between results, but some
slight modifications were necessary. First, because of the spatial averaging implicit to coarsening
resolution, it was neither desirable nor possible to maintain 3 x 3 blocks of pixels as training samples,
so individual pixels were used instead. As spatial resolution becomes coarser, pixels cover larger areas
on the Earth’s surface, so individual pixels are less likely to represent very small, unrepresentative
features. Also, as resolution coarsens, it becomes harder to identify homogenous training samples that
extend over 3 x 3 pixels; for a 30 m spatial resolution image, training samples would need to cover
almost a hectare in size, and this is unlikely and uncommon in an urban environment.

Second, for accurate classification results (where hard training as opposed to soft or fuzzy
training is used), training classes should be pure, or as pure as possible. That is, each training
sample should represent only its designated land cover class, not a mixture of classes. Clearly, as
spatial resolution coarsens, it becomes harder to identify pure pixels as training samples since there
is more pixel mixing in general. Here, to ensure training samples were as pure as possible, each
original (2 m imagery) training point was inspected to determine whether or not it represented a pure
land cover class at the coarser spatial resolution. Only those samples that were deemed pure were
retained for classification; others were discarded. This had the effect that the total number of training
samples reduced successively at each coarser spatial resolution (4 m resolution = 412 training samples,
10 m = 299, 30 m = 254), meaning it was not always possible to achieve the recommended number.
Nonetheless, relatively large samples were maintained for all classifications, and this approach enabled
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direct comparability between results. Further, to ensure the suitability of training classes, various
statistical tests were conducted.

While conducting class training, care was taken to investigate and ensure the spectral separability
of classes. In particular, class spectral graphs were examined and transformed divergence (TD)
measures were calculated to enable a statistical assessment of class separability. Where initial TD values
were relatively low, e.g., below 1.3 on the scale of 0-2 (where 0 = not separable and 2 = completely
separate) as recommended by [48], training classes were inspected and refined, with the removal and
addition of points as necessary. Eventually, through repeated evaluation of TD values and refinement
of training classes, all training class sets achieved satisfactory spectral separability.

3.2. Pixel-Based Classification

Initially, maximum likelihood (ML) classification was performed on the 12 image data sets, using
the training data as described above. The ML algorithm is perhaps the most commonly used image
classification approach [49,50] and is now widely-known and well-understood (e.g., see [51] for a full
description), so only brief detail is provided. The main intention of using ML classification here was
to demonstrate the performance of a conventional parametric pixel-based classifier as a benchmark
against which other, newer classification approaches could be compared. Though ML classification
is generally effective where its assumptions of data normality are met, it may be that the inherent
“noisiness” (i.e., spatial heterogeneity) of VHR image pixels renders this form of data unsuitable for
parametric classification.

Next, a support vector machine (SVM) classification was performed on the 12 image data sets.
The SVM is a non-probabilistic binary linear classifier which, through the operation of the kernel
trick, determines the radial position of decision boundaries (support vectors) that yield the optimal
separation of classes [52,53]. SVMs are increasingly used in image classification, often increasing
classification accuracy over traditional approaches [37,54,55]. In locating the support vectors, SVMs
tend to use only a subset of the training data and so they are particularly advocated for use with
high-dimensional data sets primarily because it is believed that the decision making is not constrained
by the Hughes effect [16,56,57]. Although others dispute this somewhat [58], use of the SVM as a
classifier should benefit complex classification problems—e.g., where fine spatial resolution imagery
is used to map detailed classification schema in heterogeneous environments—and can perform
better than ML classification for urban environments using VHR imagery [59,60]. However, as a
pixel-based approach, it may still suffer from within-feature variation leading to some degree of
misclassification [1,23].

Parameter settings for the SVM classifier were chosen through consideration of prevailing theory
and literature where available, plus trial-and-error testing, ultimately leading to optimum classification
outputs. (SVM classification was conducted using ENVI image processing software [61]). A radial
basis function nonlinear (Gaussian) kernel method was used [34,37,62] because it deals with non-linear
problems [63] and can be used for various applications [34,64]. This kernel requires two main
parameters to be determined: gamma and penalty. Gamma expresses the degree of influence of training
samples on the classification process (as gamma increases, influence decreases), and penalty controls
the trade-off between misclassification of training samples and simplicity of the decision surface [65].
After extensive trial-and-error testing, gamma and penalty were set at 0.5 and 500 respectively.

3.3. Object-Based Classification

Following pixel-based classification, object-based classification was performed on the 12 image
data sets. Object-based classification operates at the scale of identifiable objects or patches in the
landscape, rather than pixels. Usually these objects are derived directly from remotely sensed imagery,
whereby spectrally similar neighbouring pixels are grouped together to form objects [32,51]. This is
the main focus of the now established field of object-based image analysis (OBIA) or geographic
object-based image analysis (GEOBIA). The development of OBIA has been linked closely with
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the emergence of VHR imagery since fine spatial resolution imagery is especially susceptible to
within-feature (or within-object) variation and resultant pixel-based misclassification [1,19].

Object-based classification generally involves two main steps, segmentation and classification.
Segmentation is conducted first, and this process can be influenced by various spatial parameters.
For instance, in the case of eCognition [66] (the OBIA software package used here), the three main
parameters of interest are scale, shape and compactness. These three parameters determine segmented
objects on the basis of, respectively, the object’s size (determined by spatial heterogeneity), its regularity
of form (i.e., the complexity of an object’s boundary configuration) and how closely packed the object’s
pixels are (through comparison of the object to a circle). Following segmentation, classification is
conducted on the segmented objects. Each object is classified on the basis of its pixels’ spectral
information, but this can also be supplemented by additional discriminating variables such as object
size and shape.

Here, considerable experimentation was conducted to determine the optimum OBIA approach,
and ultimately a multi-stage (sometimes referred to as multi-scale) object-based classification procedure
was developed (Figure 4). Initially, vegetation and non-vegetation features were distinguished (stage
1). Then, vegetation features were divided into their constituent classes (stage 2a), and separately
non-vegetation features were divided into their constituent classes (stage 2b). Multi-stage OBIA
approaches have been used widely in recent times to classify complex environments [24,67] since
single-stage procedures cannot always achieve balanced segmentation outcomes for all classes of
interest. That is, specific segmentation parameters may be suitable for certain classes (e.g., large
areas of grassland), but lead to considerable under- (or over-) segmentation of other classes (e.g.,
buildings). Since multi-stage OBIA allows different parameter settings for different classes, this can
achieve optimum classification outcomes for all classes [68].
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Figure 4. Multi-stage object-based classification procedure.

A key factor for segmentation is how well segmented outputs correspond to real-world features.
While the optimum shape and compactness settings remained consistent between input data sets (see
Table 2 below), the scale setting had a significant impact on segmentation outcome [29]. Some recent
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work has promoted the use of built-in segmentation assessment, where appropriate segmentation
scales are determined during the OBIA process (e.g., [69,70]). Here, we conducted sensitivity testing
to compare a range of scale parameter settings and assessed their accuracy using a combination of
objective metrics, as described by [71], and human assessment. 40 objects were selected randomly
and compared against reference data acquired from the MasterMap vector coverage and field
survey. In line with the recommendation in [72] to use multiple metrics to test the full range of
segmentation characteristics, here we used five different metrics from [71] to check segmentation
accuracy. The metrics employed were the Area Fit Index (AFI) which shows how closely segments
overlap reference objects; two Relative Area (RA) measures, RAsub and RAsuper, which indicate
over- and under-segmentation respectively; the Quality Rate (QR) which is an area-based measure
that includes consideration of false positives when determining segmentation success; and the D
index which is a combined metric that considers both over- and under-segmentation to indicate
how closely objects produced match ideal segmentation output. See [71] for further detail on
these. Collectively, the five metrics provided a strong and varied test of segmentation accuracy.
Nonetheless, the somewhat arbitrary nature of accuracy metrics” units and their sometimes conflicting
outcomes [72] means that a visual check can also be useful [73-75]. The authors of [76] claimed that
human interpretation represents the most effective means of assessing segmentation output, supported
later by [77]. Therefore, ultimately, both quantitative metrics and qualitative assessment were used in
combination to determine final scale settings.

Table 2. Segmentation parameter settings for multi-stage object-based classification.

Stage 2b. Identification of

Stage 1. Separation of Stage 2a. Identification of Individual Non-Vegetation

Vegetation and Non-Vegetation = Individual Vegetation Classes

Classes
Input Image
Spa?lal Segmentation Spectral Segmentation Spectral Segmentation Spectral
Resolution (m) Parameters Merging Parameters Merging Parameters Merging
(Scale, Shape, Threshold (Scale, Shape, Threshold (Scale, Shape, Threshold
Compactness) Compactness) Compactness)
30 6,0.3,0.8 NA 7,0.3,0.8 NA 5,0.3,0.8 NA
10 10,0.3,0.8 NA 12,0.3,0.8 NA 6,0.3,0.8 NA
4 20,0.3,0.8 NA 30,0.3,0.8 NA 12,0.3,0.8 NA
2 25,0.3,0.8 20 35,0.3,0.8 35 17,0.3,0.8 10

Following segmentation, standard nearest neighbour classification was conducted to label objects
to the most appropriate class. To ensure a fair comparison between pixel-based and object-based
classification, the same training samples were used in all cases. As well as the straightforward spectral
information provided by the different band sets, classification performance was enhanced (determined
through trial-and-error) with additional discriminatory variables. Certain spatial object characteristics
were incorporated, including area, shape and length/width ratio; and various spectral indices
(described above) were also used: NDVI for all spectral band sets, plus NSDBI and NSDBRI for the
8 band set only. Finally, because of shadow effects with certain roof classes when using the 2 m spatial
resolution imagery, individual buildings often tended to be classified as two objects, one representing
the non-shaded side of the roof and the other representing the shaded side. Here, therefore, the concrete
and clay roof classes were each first classified as two separate sub-classes (e.g., non-shadowed clay
roofs, shadowed clay roofs) and then later combined to form a single (e.g., clay roofs) class (Figure 4,
stage 3).

In the past, considerable attention has focused on specific OBIA parameter settings, especially for
the widely used eCognition [29], though this has created some difficulties for transferability since the
OBIA process can be highly idiosyncratic to each particular study or image data set. As such, there
is only limited benefit in reporting parameter settings, since these may not be directly transferable
to another context. However, here, for completeness, but especially since this study is principally
concerned with comparison between spatial, spectral and classifier characteristics using a common
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study area and data set, parameter settings are presented in Table 2. Notably, it is interesting to
compare settings between the different spatial resolution inputs (30 m, 10 m, 4 m, 2 m), bearing in mind
that in each case sensitivity testing was used to optimize classification outcome. It can be seen that the
shape and compactness settings are consistent throughout all 12 classifications, whereas the optimum
scale setting increased consistently from 30 m to 2 m resolution. Broadly speaking, increasing the
scale parameter increases average segment size, and this makes sense in the current context whereby
the higher scale settings at finer resolutions offset smaller pixel sizes, leading to consistently sized
objects (i.e., consistent between varying input spatial resolution). Also, the optimum scale setting
was consistently larger for vegetation classes (e.g., large parcels of grassland and woodland) than
non-vegetation classes (e.g., small urban features such as buildings and roads). Finally, following
segmentation, a merging procedure can be used to combine spectrally similar objects thus refining the
final segmented output. Here, this proved helpful only in the case of the input 2 m spatial resolution
data, since the complexity of this imagery led inevitably to some degree of over-segmentation.

3.4. Accuracy Assessment and Statistical Testing

Following classification, the 36 output land cover maps were tested against reference data
to calculate their accuracy. To enable direct comparison between the three different classification
approaches, it was necessary to adopt a common means of accuracy assessment, so point-based
checking was conducted. It is important to note that alternative object-based approaches are now
available for use with OBIA outputs [78-81], and these can have the benefit of providing an exact
match between analysis data (i.e., classified objects) and reference data (e.g., vector map features).
In total, 438 sample points were checked, with between 30 and 43 points used for each individual class.
The same points were used for all classification outputs, ensuring direct comparability between results.
Confusion or error matrices were generated to show correspondence between predicted (classified)
and reference class labels, indicating class-level accuracies (including users and producers accuracy),
inter-class confusion or error, and overall classification accuracy.

While error matrices provide a useful means of comparing classification results, they can only
provide an “estimate” of classification accuracy (based on the sample of points used), and therefore
only tentative conclusions can be drawn [82]. This is especially the case where differences in accuracy
are marginal, for instance a few percentage points apart. For example, it may be unwise to assert that
a land cover map with an accuracy of, say, 93% is definitively more accurate than a map with 89%
accuracy. This 4% difference may in fact be a statistical artefact of the sample of test points. The authors
of [83] state that accuracy statements should be compared in a statistically rigorous manner and the
results expressed with confidence limits. Here, the McNemar test was used to compare classification
outputs and indicate the statistical significance of any difference in results [82]. That is, in the example
above, the McNemar test could indicate whether or not a difference of 4% is statistically significant.
As [82] notes this is a non-parametric test that is focused on the binary distinction between correct and
incorrect class allocations of two classification outputs (LC map 1 and LC map 2). The McNemar test
calculates the z value:

, — Ji2— fa 1)
V2t fa

where £, indicates the total number of paired class allocations correct in LC map 1 but incorrect in LC
map 2, and fp; indicates the total number of paired class allocations correct in LC map 2 but incorrect
in LC map 1. If z > 3.2, this demonstrates a significant difference between two LC maps at the 99%
confidence level [84]. Here, a fully rigorous and exhaustive approach was adopted for expressing the
statistical significance of classification output differences. The McNemar test was conducted on every
possible pair of classified land cover maps. With 36 original maps, this meant 630 paired combinations.
The results, expressed as a matrix, enable straightforward comparison between all classifications,
clearly identifying those classification pairs that are significantly different and those that are not.



Remote Sens. 2016, 8, 88 12 of 23

4. Results

In total, 36 land cover maps were produced, using a combination of four spatial resolutions (30 m,
10 m, 4 m, 2 m), three spectral band sets (4 bands, 6 bands, 8 bands) and three classifiers (ML, SVM,
OBIA). The main aim of this paper is to provide a comprehensive comparison between these variables,
so for completeness extracts of all 36 classified maps are provided in Figure 5. Note, this figure
should be interpeted with some caution since it shows only one small area and is not therefore fully
representative of land cover throughout the whole study extent. Nonetheless, the figure clearly shows
the most significant and consistent pattern evident throughout the results: classification improves as
spatial resolution becomes finer.
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While the full set of statistical classification results are summarized below, two full error matrices
are first presented to give some examples of class-level detail. To provide contrast and show the
full range of classification success, the most accurate classification overall (2 m, 8 bands, OBIA) and
least accurate classification overall (30 m, 4 bands, OBIA) are presented (Tables 3 and 4 respectively).
The highest overall classification accuracy (91%) was achieved by arguably the most sophisticated
data set/classifier combination, using the most advanced spatial and spectral characteristics of WV2
imagery and state-of-the-art OBIA (Table 3). This classification enabled relatively accurate mapping
of all classes, with only minor confusion between vegetation classes and between concrete and other
impervious classes. In contrast, it is clear that the less sophisticated data set/classifier combination
(using relatively coarse 30 m resolution and only four basic spectral bands) is wholly inadequate
in classifying such detailed urban land cover classes (Table 4). Few classes are mapped with any
success and overall classification accuracy is only 35%. Perhaps the most significant factor here, as will
be discussed below, is the coarse spatial resolution, which prevents accurate identification of small
urban features.

A summary of classification accuracies for all 36 land cover maps is provided in Figure 6.
This figure presents raw overall classification accuracies and enables direct assessment of the differences
between classifications. However, this does not indicate which of these differences are statistically
significant. Therefore, a full matrix of z values (calculated from the McNemar test of statistical
significance) between all 630 classification pairs is also presented, in Figure 7. Statistically significant
differences (i.e., z values > 3.2, at the 99% confidence level) are highlighted in grey. Note, the figure
clearly contains a large volume of information and requires careful interpretation, but it is included
here to enable comprehensive and unlimited comparison between data set/ classifier combinations.

100 -

90

80

70

60

50

40 m ML

30 mSVM

20 m OBIA

Overall classificatin accuracy (%)

10
0

Spatial/spectral image data set

Figure 6. Overall land cover classification accuracies for the 36 data set/classifier combinations
(ML = maximum likelihood, SVM = support vector machine, OBIA = object-based image analysis).
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Table 3. Error matrix for the OBIA classification using 2 m spatial resolution, 8 spectral band imagery.

Reference Class

Users
Concrete  Clay Metal Slate Broad-leaved Needle-leaved . A
Asphalt Roofs Roofs Roofs Roofs Grass Trees trees Bare Soil Water Shadow ceuracy
Asphalt 37 1 1 0 1 0 0 0 0 0 0 93%
Concrete roofs 4 38 4 0 3 0 0 0 0 0 0 78%
Clay roofs 0 1 34 0 1 0 0 0 0 0 0 94%
Metal roofs 0 0 0 39 0 0 0 0 0 0 0 100%
Predicted Slate roofs 1 1 0 0 35 0 0 0 0 0 0 95%
Class € Grass 1 0 0 0 0 36 0 0 1 0 1 92%
ass Broad-leaved trees 0 0 0 0 0 5 40 8 0 0 0 75%
Needle-leaved trees 0 0 0 0 0 0 2 30 0 0 0 94%
Bare soil 0 0 1 1 0 0 0 0 29 0 0 94%
Water 0 0 0 0 0 0 0 0 0 43 0 100%
Shadows 0 0 0 0 0 0 0 0 0 39 100%
Producers accuracy 86% 93% 85% 98% 88% 88% 95% 79% 97% 100% 98%
Opverall classification accuracy = 91%
Table 4. Error matrix for the OBIA classification using 30 m spatial resolution, 4 spectral band imagery.
Reference Class
Concrete  Cl Metal Slat Broad-leaved  Needle-leaved Users
oncrete ay eta ate road-leave eedle-leave . A
Asphalt Roofs Roofs Roofs Roofs Grass Trees Trees Bare Soil Water Shadow ceuracy
Asphalt 14 9 2 5 7 2 7 0 3 6 12 23%
Concrete roofs 16 18 15 1 11 0 4 1 2 3 7 33%
Clay roofs 6 6 18 2 6 5 4 3 0 0 5 71%
Metal roofs 0 0 0 25 2 0 0 0 2 0 6 57%
Predicted Slate roofs 3 3 1 0 12 0 0 0 0 0 2 44%
al Grass 0 1 0 0 0 12 7 5 2 0 0 26%
ass Broad-leaved trees 0 2 1 0 1 12 13 16 3 1 1 15%
Needle-leaved trees 0 0 0 0 0 1 4 2 0 5 1 32%
Bare soil 3 3 1 7 0 6 1 9 16 2 2 76%
Water 0 1 0 0 0 2 0 0 0 22 4 0%
Shadows 0 0 2 0 2 0 2 1 2 3 0 23%
Producers accuracy 33% 42% 45% 63% 29% 30% 31% 5% 53% 52% 0%

Opverall classification accuracy = 35%
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The most obvious finding is the clear correlation between spatial resolution and classification
accuracy. As spatial resolution becomes finer—from 30 m, through 10 m and 4 m, to 2 m—classification
accuracy increases consistently, with all spectral band sets and all classifiers (Figure 6). Moreover, these
differences across resolutions (i.e., comparing common spectral band sets and classifiers) are all
statistically significant (Figure 7). At the coarsest resolution (30 m), accuracy ranges between 30%
and 40%; while the finest (2 m) resolution imagery leads to accuracies routinely in the 80s%, and at
maximum in excess of 90% (Table 3). This finding reaffirms the contention that accurate and detailed
mapping of complex urban environments requires spatially detailed data, and here contemporary
VHR imagery holds considerable value for the mapping community.

The relationship between the number of spectral bands and classification accuracy is less marked
than that of spatial resolution. Nonetheless, overall, increasing the number of spectral bands—from 4,
through 6, to 8—does lead to modest increases in classification accuracy (Figure 6), though these are
not always statistically significant (Figure 7). This trend is consistent at all spatial resolutions, though
more pronounced at the finer (4 m and especially 2 m) resolutions than the coarser (30 m and 10 m)
resolutions. For instance, for the 2 m resolution imagery, average accuracy (i.e., the average of all three
classifiers) increases from 79.1% when using 4 bands, to 83.5% when using 6 bands and 86.9% when
using 8 bands. In contrast, for the 30 m imagery, average accuracy increases only very slightly from
32.9% for 4 bands, to 34.8% for 6 bands and 35.3% for 8 bands. (Note, the influence of the number
of spectral bands on classification accuracy also depends on the classifier used, as discussed below.)
This finding demonstrates that enhanced spectral information can aid distinction of detailed thematic
classes in complex environments. Notably, here, the additional bands offered by contemporary VHR
sensors suich as WV2 and WV3 may offer some advantage over early VHR sensors such as IKONOS.

The influence of choice of classifier on classification accuracy is more complex than that of spatial
resolution or spectral band set. The results show that the classifier can have a noticable effect on
accuracy, but only when considered in combination with spatial resolution and/or number of spectral
bands (Figure 6). At the coarsest spatial resolution (30 m), differences between classifiers are marginal,
and generally not statistically significant (Figure 7). However, it is interesting to note that the ML
classifier performs slightly better overall at this resolution (or at least no worse, when factoring
in statistical significance) than the more sophisticated SVM and OBIA approaches. This pattern
continues at the next finest resolution (10 m), and here both pixel-based classifiers (ML, SVM) also
prove significantly more accurate than OBIA.

At the finest spatial resolutions (4 m, 2 m), patterns related to choice of classifier change from
those observed at the coarser resolutions, and also become more defined (Figure 6). The SVM classifier
is now consistently (often significantly) more accurate than the ML classifer (Figure 7). For instance,
for the 4 m resolution imagery, average SVM accuracy (i.e., the average of all three spectral band sets)
is 75.7%, compared to an average ML accuracy of 73.9%. At 2 m resolution, the difference is even more
pronounced: average SVM accuracy = 84.6%, average ML accuracy = 82%.

The most distinct classifier/accuracy pattern, though, relates to OBIA accuracy and how this
increases as both spatial resolution becomes finer and the number of spectral bands increases. At the
smallest band set (four spectral bands), OBIA is consistently the least accurate of the three classifiers.
For instance, at 2 m resolution, 4 band OBIA accuracy is 74.1%, considerably lower than 4 band
ML (80.2%) and SVM (82.9%) accuracy. However, at the largest band set (eight spectral bands), this
relationship is reversed and OBIA is significantly more accurate (91.3%) than SVM (86.1%) or ML
(83.3%). These findings demonstrate that the choice of classifier can influence the accuracy with
which complex urban environments are mapped, but due consideration should also be given to image
characteristics. Contemporary classification approaches such as pixel-based SVM and OBIA perhaps
hold considerable potential here where state-of-the-art VHR imagery (i.e., with enhanced spectral
capabilities) are available.
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5. Discussion

5.1. The Key Role of Spatial Resolution

Spatial resolution is the most significant factor in determining the success or otherwise of mapping
complex urban land cover (Figure 6); this is clear, and indeed unsurprising [21]. VHR satellite sensor
imagery has proved a game-changer here, obviously increasing the spatial detail and spatial accuracy
of urban land cover maps as compared against medium resolution imagery, but also substantially
increasing the level of thematic detail. While Landsat-like image classifications were often limited to a
single general “urban” class [11,85], VHR imagery enables many constituent urban land cover types to
be discriminated [35,86].

5.2. Spectral Data Dimensionality

While the role of spatial resolution in urban mapping is fairly straightforward, the role of
image spectral characteristics is less clear. Recent VHR sensors such as WV2 and WV3 now have
enhanced spectral capabilities compared to early generation VHR instruments like IKONOS and
QuickBird. It should be noted the new bands provided by WV2 and WV3—coastal, yellow, red edge
and NIR2—were not necessarily developed with urban environments in mind. Instead, the main stated
intentions were to enhance capabilities for bathymetry (coastal) and vegetation (yellow, red edge,
NIR2) analysis. However, we show some evidence here that the greater spectral capability of WV2
can indeed increase urban mapping accuracy over old four-band, e.g., IKONOS, imagery (Figure 6).
This benefit is most pronounced, and only really statistically significant, at the finest spatial resolutions,
and especially using OBIA.

When designing this experiment, we did wonder whether the Hughes effect would play any
obvious role in influencing classification accuracy. This effect refers to the “curse of dimensionality”
where adding spectral bands can in fact reduce classification accuracy, essentially since more statistical
demands are being made of (inherently limited or sparse) training data. Clearly, any such effect
would counteract the intuitive expectation, as here, that added spectral detail should increase class
separation. Overall, there was no noticable Hughes effect. Generally classification accuracy stayed
static or increased modestly as the number of spectral bands increased; there were certainly no obvious
cases where accuracy decreased (Figure 6). This outcome seems satisactory. The Hughes effect is
perhaps more of a concern with higher dimension, e.g., hyperspectral, data, where it may be necessary
to perform data reduction on a data set with 10s or 100s of spectral bands [87]. It seems WV2’s
eight-band data set is sufficiently small not to invoke any Hughes effect. This is useful since it means
there would be no particular need to consider data reduction at the outset of any project, at least from
an accuracy perspective (there may be other, e.g., computer processing time, considerations).

5.3. Classifier Choice

Choice of classifier is important in determining the success of classifying complex urban
environments and the optimum choice will vary depending on image data characterstics. First, we
consider the comparison between parametric (ML) and non-parametric (SVM) pixel-based approaches.
An interesting pattern emerged here: ML was generally more accurate at the coarser spatial
resolutions, but this trend was reversed at the finer resolutions with SVM becoming superior (Figure 6).
This outcome is likely explained by the quality of the training data at the different resolutions and
the fact that SVMs are better able than ML to handle complex, noisy data (i.e., as may occur at finer
resolutions) [18]. As might be expected, this finding was most pronounced at the finest, 2 m, resolution,
where differences between SVM and ML were generally statistically significant (Figure 7).

Next, we consider the comparison between pixel- and object-based approaches. Here, somewhat
surprisingly, at the coarser spatial resolutions, pixel-based approaches tended to be more accurate
than OBIA (Figure 6). In fact, even at the finer resolutions, for small spectral band sets (4 bands, and
sometimes even 6 bands), ML and SVM outperformed OBIA. However, for the most sophisticated



Remote Sens. 2016, 8, 88 18 of 23

and complex data sets (2 m/8 bands; also 4 m/8 bands), OBIA was markedly (and significantly,
Figure 7) more accurate. Indeed the OBIA classification of the 2 m resolution, 8 band data set was
comfortably the most accurate result overall (Table 3). This finding reinforces the contention that OBIA
is particularly well suited for VHR imagery [88-90]. At this fine scale of observation, within-feature
variation is likely which may well lead to pixel-based misclassification, but may be mitigated by
aggregation at the scale of the object. It is interesting, though, that the number of spectral bands has
a noticable influence on OBIA classification accuracy, and the results imply that contemporary VHR
instruments with enhanced spectral capabilities have particular potential for urban mapping, holding
a considerable advantage over early VHR sensors.

When considering pixel- and object-based classification accuracy, it should be noted that a
point-based assessment procedure was adopted since this enabled direct comparison between the
different classification approaches. However, some practitioners have recently promoted the uptake of
object-based assessment procedures, suggesting they may provide a more appropriate test of OBIA
outputs [78-81].

5.4. Project Requirements versus Project Resources

This research presents various data and analysis considerations for urban mapping projects.
The other essential consideration relates to project resourcing, since this will have a bearing on both
the imagery acquired and the methodology employed. The results here show that VHR imagery is
essential for accurate, detailed thematic mapping of urban land cover. Unfortunately this imagery
can be costly, unlike the free provision of all Landsat data. Moreover, the more advanced image
products (e.g., 2 m, 8 band WV3 imagery) tend to be considerably more expensive than basic (e.g.,
4 m, 2 band) products. Also important here are computer, software and operator resources, and in
general OBIA approaches tend to require more resource than pixel-based classification approaches.
For instance, OBIA generally involves considerably more operator input than ML or SVM analysis,
some OBIA operations require substantial computer processing resources, and OBIA packages can be
relatively costly. This experiment found OBIA classification of 2 m spatial resolution, 8 spectral band
imagery most accurate, though this combination is perhaps the most expensive in terms of resourcing.
Satisfactory, cheaper alternatives may exist, depending on user requirements. Here, for instance, SVM
classification of 2 m, 4 band data resulted in only a fairly modest decrease in accuracy against the
maximum, and this approach would incur considerable savings in terms of data costs (4 band WV2 or
WV3 imagery), software requirements (no OBIA purchase) and manpower (reduced operator time).

6. Conclusions

This paper presents an exhaustive practical experiment to demonstrate the success of
contemporary spaceborne imagery and classification methodologies for mapping complex urban
environments. This is a unique investigation to provide a full test of the latest VHR imagery for
detailed urban classification, examining the influence of spatial resolution and spectral band set, as
well as comparing traditional and modern classification approaches. In contrast, previous studies have
generally tended to conduct limited comparisons between, for instance, coarse and fine resolution or
pixel- and object-based classification. A detailed, 11 class classification schema is used here to identify
the maximum level of thematic information that can be achieved using VHR imagery. Again, this
contrasts with earlier work that has usually opted for few, broad land cover classes. Finally, our work is
conducted on a relatively large image area, the city of Nottingham, UK and its environs, ensuring that
urban land cover information is generated at a scale of practical value. In contrast, earlier experiments
have often been limited to very small, local areas.

Overall, it is clear that spatial resolution is the most influential factor in enabling accurate mapping
of complex urban environments: the finer the resolution, the higher the accuracy. New VHR sensors
offer huge potential here, and ongoing technological advancement (and accompanying changes
in legislation) implies that opportunities will continue to grow. WV3 was launched in 2014 with
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the potential for acquiring multispectral (8 band) imagery at a resolution of 1.2 m. Crucially, in
2015 new U.S. governmental legislation was passed that then allowed this image resolution to
be made available to commercial users. While not as influential as spatial resolution, the new
spectral capabilities provided by, for instance, WV3 can also lead to modest increases in urban
mapping accuracy. This advantage is maximized through the use of contemporary, e.g., SVM and
especially OBIA, classification approaches, when compared against traditional ML classification.
Overall, state-of-the-art VHR imagery (2 m resolution, 8 bands) and OBIA classification provides
the most accurate combination for mapping complex urban land cover, but this is perhaps also the
most costly and resource-hungry approach. Where resources are limited, requiring some compromise
between imagery and methodology, the recommended order of priority is, first, spatial resolution (as
fine as possible); second, classifier (first choice OBIA, second choice SVM); and, third, spectral band set
(8 bands if possible).
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