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Abstract: Early warning systems for food security require accurate and up-to-date information on the
location of major crops in order to prevent hazards. A recent systematic analysis of existing cropland
maps identified priority areas for cropland mapping and highlighted a major need for the Sahelian
and Sudanian agrosystems. This paper proposes a knowledge-based approach to map cropland in
the Sahelian and Sudanian agrosystems that benefits from the 100-m spatial resolution of the recent
PROBA-V sensor. The methodology uses five temporal features characterizing crop development
throughout the vegetative season to optimize cropland discrimination. A feature importance analysis
validates the efficiency of using a diversity of temporal features. The fully-automated method offers
the first cropland map at 100-m using the PROBA-V sensor with an overall accuracy of 84% and an
F-score for the cropland class of 74%. The improvements observed compared to existing cropland
products are related to the hectometric resolution, to the methodology and to the quality of the
labeling layer from which reliable training samples were automatically extracted. Classification errors
are mainly explained by data availability and landscape fragmentation. Further improvements are
expected with the upcoming enhanced cloud screening of the PROBA-V sensor.
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1. Introduction

In West Africa, about 70% of the population depends on cropping systems to meet their basic
needs [1]. Rainfed and smallholder agriculture are the two major components of the food production
system [2–4]. Nevertheless, inter-annual crop production variability, mainly due to the variability of
the rainfall distribution and poor soil fertility, has led to chronic food insecurity [5]. Recurrent severe
regional droughts occurred in 1972–1973 and 1983–1984 and led to famines that affected millions of
people [6]. Even though no regional drought has occurred since 1984, localized famines recently hit
some Sahelian countries [7]. In addition to natural variability, socio-economic and political factors,
such as population growth, social conflict and low economic development, put pressure on cropping
systems [8,9]. It is of primary importance to monitor land use change [10–12] and to develop an
in-depth understanding of the detailed spatial patterns and the temporal dynamics of cropland [13].
Early warning systems e.g., the Famine Early Warning Systems Network (FEWS-NET) and the Global
Information and Early Warning System (GIEWS), for food security require accurate and up-to-date
spatial information about the cropland to monitor food production [7]. Nevertheless, mapping
cropland remains challenging in this region, especially because of the agricultural landscape
fragmentation, the spatial heterogeneity of the cropland, the diversity of the cropping systems and the
mosaic of cropland, fallow and natural grassland [14,15].
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Many global land cover products delivered at different resolutions ranging from 30-m to 10-km
contain cropland classes. High resolution Landsat-based (30-m) cropland maps, such as Cropland-Use
Intensity (CUI), Africover and GlobeLand 30, are consistent, but the methodology prevents regular
updates [16,17]. Medium resolution land cover maps, such as MODIS product, ESA Climate
Change Initiative (CCI) Land cover, GlobCover, Global Land Cover 2000 (GLC 2000), Global Land
Cover by National Mapping Organizations (GLCnmo), Global Food Security Analysis-support Data
(GFSAD), International Institute for Applied Systems Analysis (IIASA) cropland, EcoClimap II and
GLC-Share [15,18–25], offer current cropland information. Yet, most of these global land cover maps
do not focus on agriculture and tend to neglect the regional specificities of Western Africa. Specific
cropland maps do exist, such as the global map of rainfed cropland (GMRCA) and the global irrigated
area map (GIAM), but their resolutions of 10-km are not suitable for regional applications [26,27] and
are too coarse for monitoring and planning purposes.

Several studies have highlighted discrepancies in the extent and the spatial distribution of
cropland within global products [16,28,29]. For Africa, the MODIS product contains 30% more
crop area than the GlobCover product [30]. The global cropland extent fluctuates between 1.11 and
3.62 billion hectares according to different global products [26]. The complexity of the Sahelian and
Sudanian agrosystems increases the inconsistencies between global croplands (Figure 1). Some of the
differences are explained by the spatial resolution, the year of production, as well as differences in the
thematic legend classes and the cropland definition (Table 1).

Figure 1. Cropland over Sahelian and Sudanian agrosystems on ten global products showing the high
variability of cropland extent.
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Table 1. Diversity of agriculture-related classes for the 10 previous global land cover maps.
GlobeLand 30 is based on Landsat images (30-m); GlobCover and CCI are based on MERIS images
(300-m); MODIS and GLCnmo are based on MODIS images (500-m); GLC 2000 is based on
SPOT-Vegetation images (1 km); the JRC MARS map hybrid product at 250-m; and IIASA cropland,
GLC Share and Global GFSAD hybrid products at 1-km.

Product Cropland Product Cropland

GlobeLand30 Cultivated land MODIS Cropland
GFSAD Cropland, irrigation major Mosaic cropland/natural vegetation

Cropland, irrigation minor IIASA >25% of probability of crop
Cropland, rainfed CCI Cropland rainfed
Cropland rainfed minor fragments Cropland irrigated or post flooding
Cropland rainfed very minor fragments Mosaic cropland (>50%)/natural vegetation

GLCnmo Cropland: herbaceous crop Mosaic natural vegetation (>50%) / cropland
Cropland/other vegetation mosaic GLC2000 Cultivated and managed areas
Paddy field: graminoid crops/non graminoid crop Mosaic cropland/shrubland or grass cover

GlobCover Rainfed cropland Mosaic cropland/tree cover/natural vegetation
Mosaic cropland (50%–70%)/vegetation (20%–50%) JRC MARS // GlobCover
Mosaic vegetation (50%–70%)/cropland (20%–50%)
Cultivated and managed areas
Post-flooding or irrigated croplands

GLC Share Cropland

In this comparison, the mosaic classes of cropland and natural vegetation are considered as
cropland. The GlobeLand 30 cropland class considers land used for agriculture, horticulture and
gardens, including paddy fields, irrigated and dry farmland, vegetation and fruit gardens [17], while
MODIS cropland is defined by land covered with temporary crops followed by harvest and a bare soil
period [18]. Bontemps et al. [31] highlighted high year-to-year instabilities in labels, especially between
cropland and natural vegetation for GlobCover and MODIS products.

Many classification algorithms have been developed to discriminate land cover from satellite
data. Parametric classifiers, such as the maximum likelihood classifier, and non-parametric classifiers,
such as the neural network classifier, decision tree classifiers and machine learning algorithms, are
among the most popular [32,33]. Due to their discriminating power, many types of neural networks
have been developed [34]. Decision tree classifiers transform very complex classification problems
into simpler decision making processes [35]. The use of machine learning algorithms is becoming
increasingly important, yielding high accuracies for land cover classification and often outperforming
other algorithms [36–40].

Taking advantage of the spatial resolution of PROBA-V, this research aims at developing a new
method to map cropland in the Sahelian and Sudanian agrosystems where global products remain
inconsistent and cropland mapping challenging [29]. The fully-automated methodology limits the use
of field data and could produce regional cropland on a regular basis for crop monitoring. The relative
importance of spectral-temporal features used in the method is studied. Then, the resulting 2014
Sudano-Sahelian Cropland map is validated with photo interpretation on very high resolution imagery
and compared to other global products. The spatial distribution of errors is assessed, and potential
explanatory variables are studied. Finally, an error analysis focuses on challenging areas where most
discrepancies between global products occurred.

2. Materials

2.1. Study Site

This research focuses on the Sahelian and Sudanian agrosystems in West Africa with the area
of interest ranging from 17°W–23°E to 9°N–18°N, comprising a region more than 4300-km long and
1000-km wide (Figure 2). This region is known for a strong north-south gradient linked with the
movements of the Intertropical Convergence Zone (ITCZ). Climatic conditions range from arid and
desert regions in the north to sub-humid areas in the south through semi-arid areas. The study area is
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characterized by two clearly distinct seasons: a rainy season and a dry season. A flat topography with
low plateaus and valleys characterizes the landscape.

Figure 2. Study site with the validation sample (blue points) and regional grid (in grey) with isohyets
of 250-mm, 500-mm and 1000-mm. The background image corresponds to the surface reflectances in
infrared, mid-infrared and red bands for the dates corresponding to the maximum of red reflectance
(maximum red feature).

The Sahelian region is the area between isohyets 250-mm and 500-mm. Sowing occurs at the
beginning of the rainy season. The growing period is short (60–90 days). The start and the length of
the growing period are positively correlated with the onset of precipitation, which is more variable
than the ending date of the rainy season [5,41]. The Sudanian region is considered in this study as
bounded by isohyets 500-mm and 1000-mm, although there is no broad agreement on its definition.
The length of the rainy season in the Sudanian region equals the length of the dry season, resulting
in growing period of more than 150 days between May and November [42] (Figure 3). The fields are
usually very small and of various shapes, with many fields with an area less than 1 ha.

Figure 3. Calendar of seasons and agricultural management. The study region contains two clearly
distinct seasons with crop cultivation during the rainy season and land preparation at the end of the
dry season.

2.2. Data

PROBA-V is the successor satellite of SPOT-Vegetation and was launched in May 2013 in
order to fill the gap between SPOT-Vegetation and Sentinel-3. While it was not in the initial
specification of the mission, this sensor currently offers global coverage every five days at a 100-m
spatial resolution in four wavebands, blue, red, near-infrared (NIR) and mid-infrared (SWIR),
thanks to its central camera. PROBA-V 100-m daily surface reflectance has been composited on
a weekly basis using a mean composite approach. The time series of eleven months (48 composites)
from 19 March 2014 to 12 February 2015 was prepared and includes the growing season. The data
availability mainly depends on cloud/shadow contamination and the non-five-day global coverage at
100-m in the lower latitudes due to the 517-km swath [43]. False cloud detections are systematically
observed over some high brightness areas, such as desert (Figure 4). However, these areas do
not contain crops and will not degrade the classification results. In the study area, 37 out of the
48 seven-day composites were on average usable (77%), making it possible to understand the temporal
behavior of the main crop types. However, clouds are more frequent in lower latitudes and during the
vegetation growth season,. These factors could limit classification quality in those regions (Figure 5).

A labeling layer map was built from GlobeLand 30 [17] with the specific contribution of ESA CCI
Land Cover [19] for the irrigated cropland. The labeling layer is the reference map from which the
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training dataset is extracted for the supervised cropland classification. GlobeLand 30 offers a global
land cover of 10 classes at 30-m based on Landsat images for 2010. The accuracy of this global dataset
was first computed with an independent validation dataset of Zhao et al. [44] and results in an OA
of 88%. GlobeLand 30 was then validated with a set of 7 high resolution images. A Pareto boundary
analysis showed the performance of the 30-m spatial resolution and the better balance between
omission errors and commission errors for GlobeLand 30. The area under the Pareto boundary defines
the performance of the spatial resolution, as the smaller the area, the more performant the resolution
(for more details, see [45]). This area is two-fold smaller for GlobeLand 30 than for the JRC product
and three-fold smaller than for the MODIS and the CCI products.

Figure 4. Percentage of PROBA-V valid cloud-free observation for the study area during the whole time
series. False detection of clouds is systematically observed over the desert area. The valid cloud-free
observation percentage decreases with latitude.

Figure 5. Percentage of data available for each degree of latitude ranging from 9°to 18°. Low data
availability is observed in low latitudes and during vegetation growth (from July to October).

The CCI Land Cover project delivers three global land cover products, the most recent relating to
the 2008–2012 period. In the study area, agriculture is mainly rainfed, while irrigation occurs at specific
locations, e.g., the Niger basin. The semi-arid conditions lead to strong spectral contrast between
rainfed cropland and irrigated cropland. Therefore, a separate class for irrigated cropland has been
created with all single pixels belonging to the crop class in GlobeLand 30 and irrigated crop in the ESA
CCI Land Cover Map. The final labeling layer contains eleven classes: the ten of GlobeLand 30 plus
the irrigated crop class from the CCI Land Cover.

3. Methodology

The challenge of cropland mapping in West Africa is dealing with the very strong latitudinal
gradient in terms of seasonal dynamics, as well as land cover. A knowledge-based approach identifies
relevant temporal features throughout the growing period to optimize cropland capture. A support
vector machine (SVM) classifier was selected for its good performances compared to other classification
algorithms’ classifiers [36,38]. First, the 2014 Sudano-Sahelian Cropland map was compared to existing
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global products to study discrepancies. Then, classification errors were related to potential explanatory
variables, such as location, valid cloud-free observation and landscape characteristics. Finally,
classification errors were also studied in regions where global products disagreed on cropland. The
method developed is fully automated, i.e., meaning no human action during the whole processing
from images to cropland map.

3.1. Cropland Classification

The development of cropland mapping in Sahelian and Sudanian regions proceeds in a three-step
method: (i) extraction of the temporal features from filtered PROBA-V time series; (ii) efficient local
training based on trimmed data; and (iii) classification using SVM (Figure 6).

Figure 6. Three-step methodology for cropland classification: (i) extraction of the temporal features;
(ii) local training based on trimmed data; (iii) classification using SVM.

3.1.1. Extracting Temporal Features from PROBA-V

A knowledge-based approach permits a better classification of cropland based on relevant
temporal and spectral features. The features were surface reflectance composited at specific events of
the growing season when crops are expected to behave differently than other land covers do. Among
the cropland discrimination studies [46–49], five temporal features were selected: the maximum of
the red band (max red), the minimum and maximum of the Normalized Difference Vegetation Index
(NDVI) and the increasing and decreasing slopes of the NDVI profile (Figure 7b). Soil preparation
practices, such as tillage and sowing, clear the land surface contrasting with naturally-vegetated
areas and resulting in higher reflectance in the red band. This timing corresponds to the maximum
of red reflectance. During the rainy season, the vegetation development and the growth rate are
expected to be superior in cropland than in non-cropland areas. This was captured by the NDVI
maximum and minimum and the increasing slope of the NDVI. At the end of the season, crops are
harvested, leading to a sharp decrease in vegetation, which is captured by the decreasing slope of
NDVI. These features are specific to the vegetation cycle and do not relate to a specific time, thus
making it possible to take into account the high latitudinal gradient and the diversity of agriculture
practices (crop type, management). PROBA-V reflectances were smoothed with a Whittaker filter to fill
the gaps and remove the residual noise [50]. Some studies confirmed the adequacy of this smoother
for time series filtering [51,52]. These smoothed reflectance values were extracted at a specific stage of
temporal features for each pixel of the study area. The max red feature for instance was derived from
the reflectances (4 bands) of the date at which the red reflectance reached a maximum for each pixel.
Hence, neighboring pixels can belong to different dates, but correspond to the same phenological
event. This led to twenty inputs for classification (five temporal features and four spectral bands)
called spectral-temporal features (Figure 7).
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(a) (b)

Figure 7. (a) Spectral response of the four bands (blue, red, NIR, SWIR) of the PROBA-Vegetation
instrument; (b) Representation of the five temporal features (minimum NDVI, maximum NDVI,
increasing slope, decreasing slope and maximum red).

3.1.2. Trimming and Local Training

Due to the ability of SVM to handle small training sets [53], a trimming procedure was performed
to remove misleading data due to the absence of an error-free and up-to-date labeling layer and recent
land cover change. The trimming used spectral values of all classes to identify mislabeled pixels
in a specific class. This was done by clustering so as to select pixels with the highest probability of
belonging to a specific cluster. A random sample was used to select pixels from two sets of pixels:
(i) pixels of class i; (ii) pixels from all classes except i. The clustering classification identified clusters of
class i that belonged to a different class. Following the clustering, the probability of each cluster to
be of class i was assessed. The probability of each cluster to be of class i corresponds to the purity of
the cluster, i.e., the number of pixels of class i divided by the total number of pixels for a given cluster.
Samples of group i belonging to the cluster with higher than a 75% probability of being classified as i
were selected as the training dataset for this specific class i. This approach was repeated for each class.
The class proportion in the training set was maintained similar to that initially found in the labeling
layer. Additional cleaning was applied to discard pixels belonging to a class that deviated strongly
from the distribution (95% of the confidence interval) of that class in at least one of the four bands of
the five features.

3.1.3. SVM Classification

The trimmed data training set was used to calibrate the SVM classifier (for more details, see [54]).
SVM searches the optimal separating hyperplane in a multidimensional space that maximizes the
margin between the defined plan and the data. The one-against-one method was used to perform
multiclass-classification with i classes on the SVM. Therefore, i(i− 1)/2 binary classifiers were trained,
and the final class was obtained through a voting procedure. The SVM classifier identifies the
hyper-plan using support vectors and margins. The cost-support vector classification was trained with
a Gaussian radial basis kernel function to ensure a high level of automation. The γ parameter of the
SVM was set at ten to optimize performance and computation time [40,55].

3.2. Handling the Spatial Gradient and the Landscape Diversity

The combination trimming-training-classification was applied on a moving window of 1 × 3◦ to
handle the latitudinal gradient. In fact, the vegetation dynamic in cropland and natural vegetation can
fluctuate strongly with latitudes [56–59]. To limit the boundary effect between grid cells, the training
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was performed on a larger grid cell. A buffer of 1◦ in longitudinal direction and of 0.3◦ in latitudinal
direction was chosen as a compromise between processing time, high latitudinal gradient and recovery
rate (40%). To mosaic smoothly the moving window results, five staggered cropland classifications
were compiled by majority voting to obtain regional consistent cropland.

3.3. Relative Importance of Spectral-Temporal Features

A preliminary analysis of the respective spectral-temporal features’ contribution was completed to
identify the subset of the twenty spectral-temporal features that maximizes the classification accuracy.
Twenty spectral-temporal features could increase both noise and processing time. A random forest
algorithm was run to calculate the spectral-temporal feature importance by turning off one feature
(while others remained constant) and computing the resulting loss in accuracy through the mean
decrease in the Gini index (GI) [60]. This analysis carried out for four classes of crop proportions
calculated on quantiles: very low crop proportion (<1.4%), low crop proportion (1.4%–4.4%), medium
crop proportion (4.4%–17.8%) and high crop proportion (17.8%–72.2%) (Figure 8). The distribution
of crops varies across a latitudinal gradient with a higher proportion of crops between 10◦ and
13◦ of latitude.

Figure 8. Crop proportion of each grid cell and randomly-sampled grid cells for SVM classification
with the best selected features. A higher crop proportion is observed in lower latitudes.

The feature importance analysis was computed for each grid cell within a crop proportion class.
Then, a random sample of five grid cells per crop proportion class was used to perform the classification
with the best selected features (Figure 8). The best features were selected according to a decision rule;
the mean decrease in GI must exceed the mean of the mean GI decrease for a given grid cell. The
accuracy of SVM classification with the best selected features was compared to SVM classification with
all features using a Student test computed on the F-score.

3.4. Validation

A two-stage sampling was designed to collect the validation sample. The first sampling units
were 40 grid cells within the 126 grid cells of the study area. The second sampling unit was a stratified
random sampling, as recommended by Wagner and Stehman [61], within the selected grid cells.
The strata corresponded to the eleven land cover classes of the labeling layer. The sample size allocated
to each stratum was twenty pixels. All of the random 100-m by 100-m pixels automatically generated
were visually assessed with 2014 images in Google Earth. Each random pixel was labeled by visual
interpretation in one of the two classes: crop and non-crop, depending on whether more than 50% of
the pixel was covered by the specific class. The availability of 2014 images was the main limiting factor
in building this dataset. A set of 2315 points with 1616 non-crop and 699 crop validation samples had
finally been collected. In total, 30% of the validation points belong to the crop class. This proportion
(30%) matches the magnitude of the crop proportion in this region observed on the global product
(crop proportion ranging from 13% to 42%).
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Typically, the accuracy of a map is assessed by measuring the degree of agreement between
the classification output and the validation dataset. A confusion matrix was used to derive the
metrics of classification accuracy [62]. Liu et al. [63] recommended amongst fourteen category-level
and twenty map-level accuracy measures the user’s accuracy (UA), producer’s accuracy (PA) and
overall accuracy (OA) as primary accuracy indices. The OA was computed as the ratio of the sum
of all correctly-classified pixels on the sum of all validation pixels. The F-score was calculated as a
combination of PA and UA for a specific land cover class (Equation (1)). The UA for a specific class is
the ratio between correctly-classified pixels and all pixels classified as the specific class. The PA for
the specific class is the fraction of correctly-classified pixels and all ground truth-specific class pixels.
Because of this research focus on cropland, the F-score was only computed for crop class and is called
the F-score in the following sections.

F-score =
2× PA×UA

PA + UA
(1)

3.5. Error Analysis

The accuracy assessment described in Section 3.4 provides a global performance evaluation,
although it is well established that classification accuracy varies across space and that errors are not
equally distributed spatially [59,64–66]. Eight potential explanatory variables were proposed to explain
the classification accuracy computed by OA and the F-score: latitude and longitude of the grid cell
center, availability of cloud-free data and five landscape metrics indices. Within the five landscape
metrics, some are specific to crops, such as crop proportion, Matheron index and crop fragmentation,
while others are related to the overall landscape, such as fragmentation and entropy. These landscape
features were measured on the labeling layer in order to explain the spatial distribution of errors. The
correlation and the importance rank computed with the random forest algorithm were calculated for
all of the potential explanatory variables.

The perimeter area ratio for all classes of land cover is used as a proxy of landscape fragmentation:

Perimeter Area Ratio =

n
∑

i=1
Perimeteri

n
∑

i=1
Areai

(2)

where i represents a specific class of land cover and n the total number of land cover classes.
The Shannon entropy index measures the diversity of the landscape due to the number of land

cover classes and the proportions of those classes (Equation (3)) [67]. In general, this index increases
when the number of classes is higher and when the proportions of all existing classes are equal.

Shannon Entropy Index =
n

∑
i=1

Pi × ln(Pi) (3)

where Pi is the proportion of a class i.
The Matheron index measures the ratio between the total outer perimeter of crop cells edges (sum

for all patches) and the product between the area of crop and the total area [68]:

Matheron Index =
Crop Perimeter√

Crop Area×
√

Total Area
(4)
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4. Results

4.1. Spectral-Temporal Feature Importance

First, the diversity of the features seems to complement them according to the cropland proportion.
The maximum in red reflectance and the minimum NDVI seem the two most discriminant features
in higher crop proportion regions (Figure 9). These features refer to the start of the growing period
when differences between cropland and natural vegetation are high due to land preparation. In fact,
high crop proportion areas correspond to regions with higher amounts of rainfall, which makes
natural vegetation greener at the beginning of the season when crops are considered as bare soils
due to land preparation. All temporal metrics seem important in one or another crop proportion
class without a specific distinction for any one of them. The mean decrease in GI was computed
for the 20 spectral-temporal features for each of the four crop proportion classes. When a given
spectral-temporal feature is left out, the higher mean decrease in GI compared to the GI obtaining
using all 20 features leads to the higher importance of this spectral-temporal feature. Regardless of the
crop proportion classes, as expected, the blue band contributes the least in cropland discrimination
due to the impacts of aerosols and atmospheric scattering [69] (Figure 9). The SWIR band is of higher
importance than the NIR band, while the red and the SWIR bands are the two most important bands
for the classification.

Figure 9. Respective contribution of each spectral-temporal feature for crop discrimination for the
different cropland density classes. The dotted red line corresponds to the decision rule for selecting the
best features.

Following the feature importance analysis, the best features were selected (SVM select) to compare
classification accuracy with regards to the classification using all of the features (SVM all). Due to the
absence of validation points in the very low crop proportion area, only three crop proportion classes
were considered, and five grid cells were randomly selected in each crop proportion stratum. OA
and F-score were computed for the two classifications: SVM select and SVM, both by crop proportion
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classes. SVM select classification slightly outperforms SVM for low and medium crop proportion
strata, while SVM excels in the high crop proportion landscape (Figure 10).

Figure 10. Comparison of the accuracy for SVM classification with all features (SVM) and selected
features (SVM select). The whiskers represent the standard deviation of the five selected grid cells for
each crop proportion class.

Standard deviations are rather larger for SVM select than for SVM. The two classifications were
compared using a Student test on the F-score. The assumptions of the test were verified: the normality
of the variable and the equality of the variances of both samples were confirmed by a Shapiro-Wilk test
(p-value = 0.735) and a Fisher test (p-value = 0.872), respectively. The two F-score values are considered
equal (p-value = 0.873), which avoids rejecting the null hypothesis of the equality of samples. Based on
these results and to make the method as generic as possible for all agricultural landscapes, the SVM
classification was applied at the regional scale using all twenty spectral-temporal features.

4.2. Qualitative Analysis of 2014 Sudano-Sahelian Cropland map

The visual comparison of the 2014 Sudano-Sahelian Cropland map and the labeling layer, mostly
derived from GlobeLand 30, highlights the actual contribution of the PROBA-V classification. The
images used for this analysis are a combination of Digital Globe images acquired during 2014, Spot 5
and RapidEye imagery for the years 2012 and 2013. Images 1 and 2 are respectively a World View 2 of
26 June 2014 and a GeoEye of 14 June 2014. Images 3–7 are Spot 5 of the 2013 season, while Image 8 is
a RapidEye image acquired on 29 January 2012 (Figure 11).

Cropland boundaries are more precise in the labeling layer, probably due to higher spatial
resolution, while the non-cultivated lithosols are better delineated by the 2014 Sudano-Sahelian Cropland
map (Image 1, in Figure 11). Roads are better defined by the labeling layer, which, however, includes
more noise and incorrect non-crop area. The village patches are larger in the 2014 Sudano-Sahelian
Cropland map, but unlike the labeling layer, it does display the full extent of the village (Image 2 in
Figure 11). The contrasted landscape shown in image 3 with cultivated valleys and rocky plateaus
yields an accurate classification in both cases. The labeling layer with the higher spatial resolution
even captures the forest in the very bottom of the valley as non-crop (Image 3 in Figure 11).
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Figure 11. Some examples of cropland in the 2014 Sudano-Sahelian Cropland map (at 100-m) and the
labeling layer (at 30-m). Background images are: (1) World View 2 of 26 June 2014; (2) GeoEye of 14
June 2014; (3–7) Spot 5 of the 2013 season; and (8) RapidEye of 29 January 2012.

In a more complicated landscape, the 2014 Sudano-Sahelian Cropland map failed to discriminate
bare soil areas (in pink in Image 4) and dark surfaces (in black), while some of the cropland is mapped
as non-crop in the labeling layer (Image 4 in Figure 11). In arid areas, errors observed in both datasets
are probably due to the labeling layer, which drives the classification training. Crops in these arid
areas are very sparse, and discrimination between bare soil and crop is challenging (Image 5, in
Figure 11). This is confirmed by Image 7 in the north of Burkina Faso, where crops alternate with
bare soil. The labeling layer missed considerable cropland areas, while these are correctly mapped
by the 2014 Sudano-Sahelian Cropland map. Hence, in this area, spectral-temporal features allow the
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better capture of crop areas thanks to the temporal dimension of the PROBA-V time series (Image
7, in Figure 11). In irrigated regions, the labeling layer failed to capture all cropland areas. The 2014
Sudano-Sahelian Cropland map captures more crops, but also more noise (Image 6, in Figure 11). Finally,
Image 8 sums up what is often found in these illustrations. The 2014 Sudano-Sahelian Cropland map
seems to better capture all of the cropland areas, but has more difficulty in drawing exact boundaries
and in capturing small landscape features, such as forest in the bottom valley. Conversely, the labeling
layer is sometimes too restrictive and misses some of the cropland (Image 8, Figure 11). To conclude,
difficulties in differentiating between cropland and fallows, as well as misclassification of shrubland,
bare soil and desert area as cropland remain in the final product.

Supervised classification with visual determination of the region of interest (ROI) was performed
on each of these sites. Wall to wall validation between high resolution images and GlobeLand 30 or
2014 Sudano-Sahelian Cropland map was assessed. Proximity between the commission-omission point
of the 2014 Sudano-Sahelian Cropland map and the Pareto boundary implies a high performance of the
algorithm classification (Figure 12).

(a) (b)

(c)

Figure 12. Three examples of Pareto boundary, commission and omission errors for GlobeLand 30
and 2014 Sudano-Sahelian Cropland map. Pareto boundaries were also computed for a 10-m product
and a 300-m product. (a) Site in center Mali ; (b) Site in Sikasso region (Mali South East); (c) Site in
South Mali.
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To better quantify the visual interpretation of the 2014 Sudano-Sahelian Cropland map and the
labeling layer, quantitative analysis of the accuracy of the 2014 Sudano-Sahelian Cropland map map was
assessed. The produced cropland was also compared to other existing global products.

4.3. Accuracy of the Cropland Map and Comparison with Existing Global Products

The overall accuracy computed from the 2315 validation points reaches 84% and the F-score for
crop class 74%. The confusion matrix shows better PA and UA for the non-crop class: 89% compared
to 74% for crop classes. UA and PA are identical for both classes (Table 2). The same validation dataset
was applied on the crop/non-crop maps derived from the 10 previous global products. All products
were resampled to the 100-m resolution using the majority method. A high variability of accuracies
was observed regardless of the production year of the map (Figure 13).

Table 2. Confusion matrix for the regional cropland map using the 2315 validation points. Overall
accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA) are computed in percent.

Non Crop Crop UA [%]

Non crop 1431 180 89
Crop 185 519 74

PA [%] 89 74 OA[%] = 84

Figure 13. Comparison of the 2014 Sudano-Sahelian Cropland map with the ten previous global products
showing high variability in the accuracy indices and better performance for the 2014 Sudano-Sahelian
Cropland map and GlobeLand 30 used as the labeling layer.

The 2014 Sudano-Sahelian Cropland map and the GlobeLand 30 product almost reach the same
performance levels (OA: 84% vs. 86%; and F-score: 74% vs. 75%, respectively). Other products studied
show substantially lower accuracy indices. This confirms the adequacy of the labeling layer and the
efficiency of the methodology in exploiting recent annual remote sensing datasets. Similarities of the
accuracy indices of GlobeLand 30 and our cropland product must be balanced against disagreement
between those products (Figure 14). Eighty five percent of pixels are labeled identically by GlobeLand
30 and the 2014 Sudano-Sahelian Cropland map, while 41% of pixels classified as crops in one or another
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are mapped as crops in both products. As expected, because of the higher OA and F-score of GlobeLand
30 for the entire validation dataset (Figure 13), the OA in the conflict region (414 validation pixels)
reaches 54% for GlobeLand 30 and 46% for the 2014 Sudano-Sahelian Cropland map.

However, one might argue that these measures are excessively harsh, as the size of the validation
pixels for the >100-m products is smaller than the products’ pixel sizes. They might be revised when
considering a validation pixel size that matches the products. Nonetheless, the variation in OA when
validating a product at 300-m in place of one at 100-m with the 100 squared meter validation pixels is
only of 2%. This number rise to 6% when a 1-km product is used, which still cannot explain the total
discrepancies between global land cover products. It was computed by aggregating the labeling layer
at 100-m, 300-m and 1-km, defining the label of each pixel as crop or non-crop when more than 50% is
covered by the specific class and, finally, computing accuracy.

Figure 14. The 2014 Sudano-Sahelian Cropland map derived from PROBA-V at 100-m and the comparison
with GlobeLand 30 derived from Landsat imagery acquired around 2010.

4.4. Spatial Distribution of Errors

Grid cells including more than twenty validation points, i.e., 38 grid cells, were selected to estimate
locally the OA and the F-score. The eight possible explanatory variables were also computed for each
grid cell. In total, 41% of the variance of the OA is explained by the eight potential explanatory indices
for only 21% of the F-score (Table 3). OA and F-score are strongly linked to fragmentation; the lower
the fragmentation, the more accurate the classification. Entropy is negatively correlated with both
F-score and OA. This means that the lower the number of classes and the higher the proportion in
the classes, then the higher is the accuracy. As expected, the accuracy is highest when few classes
are present with small fragmentation and a high proportion in each class. Spatial heterogeneity is
confirmed as an important factor in driving land cover map accuracy [70,71].

Looking at the spatial distribution of latitude impacts both the F-score and the OA: it increases the
accuracy in northern regions where less clouds are present. Conversely, longitude is correlated with
OA, so that accuracy rises when going west (Table 3). This might be due to the fact that isohyets move
south when going east, resulting in greener and more vegetated areas in the west of the study area.
Hence, misclassification issues in less vegetated areas, such as desert or bare soil, could lead to lower
accuracy indices. Specific cropland characteristics do not affect the F-score more than OA in terms of
correlation, which was unexpected. Nevertheless, the importance rank computed by random forest
highlighted the relevance of crop-specific indices for cropland classification (Table 3). The Matheron
index and crop proportion are negatively related to accuracy because a higher fragmentation and a
higher number of crop patches make classification difficult due to the number of mixed pixels at the
edges [64]. Data availability affects OA and F-score. The encountered errors were partially explained
by the high fragmentation of the landscape, and the low latitude linked with lower data availability.
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Very few validation points were available in high latitudes due to the absence of high resolution
imagery in these regions.

Table 3. Correlation and importance rank for Overall accuracy (OA) and F-score computed on eight
potential explanatory variables.

OA F-score

Correlation Ranking Correlation Ranking

Location
Latitude 0.44 2 0.33 3
Longitude –0.28 5 –0.09 7

Time-series
Data availability 0.25 3 0.22 1

Landscape characteristics
Fragmentation –0.39 1 –0.2 6
Entropy –0.13 6 –0.1 8
Matheron Index –0.29 4 –0.05 5
Crop proportion –0.05 8 0.09 2
Crop fragmentation –0.24 7 0.01 4

Total variance explained [%] 41.24 21.05

4.5. Multiple Linear Regression to Explain OA and F-Score

A multiple linear regression based on eight explanatory variables explains 41.24% of OA variance
and 21.05% of F-score variance (Figure 15). This regression (R2 = 0.4124) was then applied to the entire
study area to predict the OA (Figure 16). According to the model, a degradation of OA is observed in
the southeast of the study region.

Figure 15. OA and F-score predicted by the multiple regression compared to the OA and
F-score observed.

Figure 16. Prediction of OA over the study area based on a multiple regression using eight explanatory
variables related to spatial localization, data availability and landscape characteristics.
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4.6. OA and F-Score in the Disagreement Region of Global Products

To further identify the accuracy of the products, it is of paramount interest to focus the analysis
on challenging areas where most discrepancies between maps are observed. A global agreement
map built from the global products (see Table 1) ranges from zero, where all products agree on the
non-crop class, to ten, where all products agree on the crop class. A value of five represents the highest
disagreement between products as five products classified the pixel as crop and five classified the pixel
as non-crop. OA and F-score were computed for each of the eleven classes of agreement using the
validation points belonging to that class. The OAs of all global products, except GlobeLand 30 and the
2014 Sudano-Sahelian Cropland map, have a similar behavior (Figure 17). The highest accuracy of the
majority of products is met in regions labeled as non-crop by all products, and accuracy then drops
until values around 0.45, when most products disagree. Finally, OA increases to yield an accuracy of
0.8 when all products agree on crop class. GlobeLand 30 and the cropland map produced in this study
have a nearly identical profile, which could be summarized as a slight decrease in accuracy when
agreement on crop arises. F-score increases when agreement on crop occurs. GlobeLand 30 and the
2014 Sudano-Sahelian Cropland map behave very differently to others. The F-score of the new product
and GlobeLand 30 starts with a higher value in regions where many products agree on non-crop.
This means that these two products correctly label crops in regions where almost all global products
mislabeled crop as non-crop.
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4.7. Fragmentation of the Landscape

The proportion error defined by [72] represents the proportion by which individual classes are
over- or under-estimated at a lower resolution than the initial one (Equation (5)):

Er = (pr − p0)/p0 (5)

where p0 is the original proportion of the crop class at 30-m and pr is the estimated crop proportion
at resolution r (90-m or 300-m in this study). The 90-m cropland map is obtained by aggregating the
30-m for three pixels and the 300-m for 10-pixels. The label of this obtained pixel is crop when more
than 50% of the area is classified as crop. The 90-m products are consider to be very close to the 100-m
resolution, as available for the PROBA-V sensor. In low and medium crop proportion classes, the
underestimation of crops is of 5% for the 90-m products and more than 25% for the 300-m products
(Table 4). The advantage of 100-m in a highly fragmented landscape is useful and can fill the gap
between high resolution at medium resolution.

Table 4. Proportion error for two cases (initial resolution = 30-m; and lower resolution = 90-m or 300-m)
within the four crop proportion classes.

Crop Proportion Very Low Low Medium High

Proportion error (30 m–90 m) (%) NA −5.2 −5.2 −0.6
Proportion error (30 m–300 m) (%) NA −29.8 −27.0 −5.7

5. Discussion

The proposed classification method of PROBA-V 100-m time series yields an overall accuracy of
84% similar to that of GlobeLand 30 from which training data were derived. Both products overpass
all other global products in terms of accuracy. The accuracy of GlobeLand 30 ought to be linked
to its spatial resolution of 30-m and a highly interactive verification procedure [17]. GlobeLand
30 is produced with a POK-based (pixel object knowledge) methodology, a pixel and object-based
method with knowledge. The knowledge-based interactive verification procedure of GlobeLand 30
was developed through a web service and relies on intensive manual corrections. The fully-automated
method presented aims at overcoming this limitation by enabling the production of cropland maps
on an annual basis. Three main factors can explain the accuracy of the 2014 Sudano-Sahelian Cropland
map: the 100-m spatial resolution of the time series, the methodology itself and the quality of the
labeling layer. The hectometric spatial resolution makes it possible to resolve fine landscape patterns,
especially in those regions where field size often does not exceed 1 ha. Similarly, a recent study has
highlighted significant better performance using 100-m PROBA-V data than 300-m data for crop type
classification [73].

Misclassifications are mainly explained by low data availability due to high cloud cover during
vegetation growth (25% of OA explained by data availability) and by landscape fragmentation
(39% of OA explained by fragmentation). Remaining errors in the training dataset are minimized
by the stringent trimming procedure limits, from which 30% of the best points were retained.
Highly fragmented landscape is better captured by high resolution images as demonstrated with
Pareto boundaries. The Sentinel 2, 5-day coverage at 10-m in 13 spectral bands, will probably offer a
good combination of spatial-spectral and temporal resolution. Landsat 8, 16-day coverage at 30-m in
11 spectral bands, offers a spatial resolution able to catch the landscape fragmentation of the study
region. Nevertheless, the temporal coverage might be too small to catch vegetation behavior during
the vegetation growth. Remaining errors in the training dataset are minimized by the strong trimming
procedure limits. Discrepancies between the GlobeLand 30 product and the 2014 Sudano-Sahelian
Cropland map can partly be linked to the time production of the map, the spatial resolution, the input
data and the interactive verification for GlobeLand 30.
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Spectral-temporal features were used to fully exploit the PROBA-V time series. Nevertheless,
remaining noise in the PROBA-V surface reflectance image could partly explain some misclassification.
The noise might be related to undetected clouds and shadows. PROBA-V cloud screening uses both
blue and SWIR bands. Due to the time lag between bands (12 s between NIR and SWIR), two separate
masks are built and then merged [74]. Threshold rules are applied on the SWIR (blue) band to detect
cloud with an additional check on the blue (SWIR) band. These threshold values are static and applied
globally, leading to misclassifications of bright surfaces as clouds [43]. Furthermore, borders of large
clouds are poorly detected, and the remaining haze effect affects the reflectances. Some cases of cloud
omission, others of cloud commission, are also present. In addition, part of the noise is related to the
spectral temporal features themselves. Spectral-temporal features are based on extreme values and are
thus more sensitive to noise, as noise itself is characterized by extreme values [66]. Region-dependent
and dynamic cloud screening are currently being invested by the PROBA-Vegetation team and could
significantly improve the cloud mask [75]. This could improve feature extraction and thus classification
by significantly decreasing noise in the time series. If no significant improvements are made to the cloud
product delivered, we believe that a stronger temporal filter should be applied prior to performing the
Whittaker filter in order to identify undetected clouds.

6. Conclusions

This fully-automated method has delivered the first cropland at 100-m for the Sahelian and
Sudanian region using the PROBA-V sensor. The product reaches an overall accuracy of 84% and
an F-score of 74% for the crop class. This accuracy indices are significantly larger than major global
products (except GlobeLand 30 which was used as labeling layer) thanks to the spatial resolution of
100-m, the crop-specific knowledge-based methodology and the adequate choice of the labeling layer.
The diversity of the spectral-temporal features chosen to take advantage of the entire PROBA-V time
series and its full spectrum seems to adequately complement each others for cropland discrimination
in heterogeneous crop proportion landscapes. Misclassifications observed in the 2014 Sudano-Sahelian
Cropland map are partially explained by undetected clouds, haze and shadows, data availability and
fragmentation of the landscape.

Further improvements are expected with the upcoming enhanced cloud screening. The recent
launch of the European Sentinel-2 sensor offers new possibilities for monitoring land and vegetation
with its spatial resolution of 10-m and its 13 spectral bands. The methodology is scale independent
and could be applied on Sentinel-2 time series to better capture the landscape specificities in the
Sudano-Sahelian regions. Annual cropland maps could be updated on a regular basis using this fully
automated method in order to monitor cultivated area extension and abandonment over a large area.
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