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Abstract: Wadis, ephemeral dry rivers in arid desert regions that contain water in the rainy
season, are often manifested as braided linear channels and are of vital importance for local
hydrological environments and regional hydrological management. Conventional methods for
effectively delineating wadis from heterogeneous backgrounds are limited for the following reasons:
(1) the occurrence of numerous morphological irregularities which disqualify methods based on
physical shape; (2) inconspicuous spectral contrast with backgrounds, resulting in frequent false
alarms; and (3) the extreme complexity of wadi systems, with numerous tiny tributaries characterized
by spectral anisotropy, resulting in a conflict between global and local accuracy. To overcome
these difficulties, an automated method for extracting wadis (AMEW) from Landsat-8 Operational
Land Imagery (OLI) was developed in order to take advantage of the complementarity between
Water Indices (WIs), which is a technique of mathematically combining different bands to enhance
water bodies and suppress backgrounds, and image processing technologies in the morphological
field involving multi-scale Gaussian matched filtering and a local adaptive threshold segmentation.
Evaluation of the AMEW was carried out in representative areas deliberately selected from Jordan,
SW Arabian Peninsula in order to ensure a rigorous assessment. Experimental results indicate that
the AMEW achieved considerably higher accuracy than other effective extraction methods in terms
of visual inspection and statistical comparison, with an overall accuracy of up to 95.05% for the entire
area. In addition, the AMEW (based on the New Water Index (NWI)) achieved higher accuracy than
other methods (the maximum likelihood classifier and the support vector machine classifier) used for
bulk wadi extraction.

Keywords: wadi extraction; water index; Gaussian matched filtering; local adaptive
threshold segmentation

1. Introduction

Arid regions are crucial areas for the study of global environmental change and sustainable
development, and contain environment-specific habitats for both humans and natural species [1–3].
However, desertification and water shortages caused by continuously decreasing precipitation in arid
regions are a serious problem leading to a cascade of ecological and environmental problems [4–7].
The term “wadi,” in Arabic, refers to a valley-like landscape, commonly found in and around desert
regions. They are ephemerally filled with water from heavy rainfall in the rainy season, resulting in a
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river that occurs intermittently in arid and semi-arid regions such as the Sahara Desert and the Arabian
Peninsula. As one of the main river types in arid regions, the distribution and variation of wadis in
these dry regions not only play a vital role in maintaining the health of the ecological environment
and biological diversity, but they also have a significant impact on the sustainable development of
human society and economy. In addition, considering the intermittently available sub-surface water
contained within them, wadis are to some extent associated with the centers of local population [8].
In addition, since the seasonal vegetation existing in wadis is regarded as a major food source in the
desert regions, nomads and pastoralists rely on the distribution of wadis to design and locate their
specific transhumance routes [9]. Owing to the valuable water resources, they provide to sustain
local human life, wadis therefore give rise to the distinctive scientific field of wadi hydrology, which
attempts to explore the maximum potential for the utilization and planning of wadi systems [10,11].
As a consequence, accurate wadi extraction is of great importance for the investigation of local water
resources, construction of irrigation facilities, evaluation of geological engineering locations, and
environmental protection.

Conventional in situ measurements are capable of providing an accurate mapping of wadis
by means of field data; however, the method is limited to local coverage, and it does not provide
timely, consistent, and systematic knowledge of wadis due to their short and erratic occurrence.
The advent of remote sensing techniques has proved to be a useful solution for providing dynamic
and synoptic monitoring of various landscapes by means of satellite imagery [12,13]. Numerous
research studies have attempted to extract various channel landscape features, e.g., river networks,
which are morphologically similar to wadis, from satellite images [14,15]. Common techniques for
extraction of channel features can be primarily categorized into three main types: (i) a direct visual
interpretation from original images by humans, a precise but time- and labor-consuming strategy
which is restricted in terms of repetitive monitoring, large-scale wadi detection, as well as ongoing
observation; (ii) a single threshold applied to spectral bands through spectral density-slicing on a
single band or a synthesized band, i.e., the mathematical combination of several bands (despite its ease
of implementation and extensive application [16,17], it is frequently constrained from a stable/optimal
threshold perspective with respect to regionally diverse environments, which significantly limits a
high level of automation in large regions [18]); and (iii) the same dilemma also occurs in the case
of a classical remotely sensed method, i.e., the supervised classification method, a strategy in which
relevant expert knowledge of satellite image characteristics is a prerequisite for further improving
classification accuracy. In order to increase the level of automation and the extraction accuracy of
channel-like features, further studies [19] have been carried out, and satisfactory results have been
obtained. For example, an automatic method which used supervised classification based on vector
data for creating training areas has been presented [20]. Despite an acceptable degree of success, the
poor availability of ancillary vector data limited its practical application. Other improvements [21–23]
have focused on the combination of the classical classification and processing methods, represented
by object-oriented analysis (OOA). The abundant spectral characteristics of landscapes provide a
large amount of functional spectral indicators in the application of this type of method. Based on the
guidance of image segmentation ideology, a classical supervised classification method, i.e., Support
Vector Machine (SVM), was applied [21] in order to extract river features after preliminary enhancement
of linear features by morphological processing. In addition, the OOA technique has recently been used
extensively in the application of the gray-level co-occurrence matrix (GLCM) method [24]. However,
it is difficult to obtain satisfactory results in wadi regions using the aforementioned methods for the
following reasons. First, because of the intermittent nature of seasonal flow activity, the wadis often
exhibit morphological irregularities [11], leading to the failure of an OOA which is based on consistent
morphological characteristics of a landscape feature. Subsequently, due to the absence of frequent
inundation and the abundance of sediments derived from a large area, wadis are usually characterized
by various braided stream patterns with a dense, crisscrossing drainage network, resulting in a more
problematic extraction in comparison with regularly distributed channel-like features, such as rivers
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and tidal creeks [25,26]. Furthermore, wadis, as seasonal rivers, appear erratically and their spectral
characteristics are weakly developed and inconspicuous, especially in the dry season. In addition,
since most rivers in wadi systems are very narrow (widths of less than 5 pixels) and shallow, the use of
optical images to extract these tiny objects is likely to be affected by the problem of mixed pixels and
adjacent pixels, resulting in inconsistent spectral discrimination between wadis and heterogeneous
backgrounds. As a result, the successful extraction and mapping of wadis and sequential analyses
associated with them necessitates a novel strategy which not only takes full advantage of the wadis’
morphological features, but which also improves the spectral separability of the water in wadis and
the adjacent pixels.

To overcome the aforementioned difficulties, we developed an automated method for extracting
wadis (AMEW) (Table A1) from Landsat imagery, a series of freely available medium spatial resolution
satellite images, which is capable of performing observation and monitoring of long time series. By
systematically synthesizing several common and effective Water Indices (WIs), we developed a novel
water index to effectively suppress the spectral mixing issue and to maximize the spectral separability
between the water in wadis and the adjacent pixels. Subsequently, a multi-scale Gaussian matched
filtering and local adaptive threshold segmentation strategy was constructed to automatically extract
and map the wadi river distribution with satisfactory accuracy, with which the generalizability and
transferability of the proposed method was also considered.

2. Materials

2.1. Study Area

Jordan is located in the northwestern part of the Arabian Peninsula. Much of the country has a
sub-tropical desert climate with an average temperature of 30 ˝C in summer and 13 ˝C in winter. The
annual rainfall is approximately 100 mm, most of which occurs in winter [27]. Due to the extreme
shortage of water resources and serious desertification, the desert area of Jordan exceeds 80% of the
national territorial area. The abrupt but infrequent heavy rainfall events in the desert environment
result in a well-developed system of wadi landforms. The drainage patterns in the study area are
extremely complex, and the river networks are fairly dense, making it highly suited for extraction and
mapping; moreover, the products of the research are potentially of significant value for local decision
makers in performing hydrological constructions and planning. In order to validate the effectiveness
and robustness of the proposed AMEW, we carefully selected three regions from the southeastern part
of Jordan as the test sites, with each study site covering an area of 3600 km2, in order to ensure the
stability of the AMEW. Study Area 1 is located in the middle of Ma’am Governorate; Study Area 2 is in
the south of Ma’am Governorate; and Study Area 3 is located in center of Jordan, crossed by Azraq,
Jizeh, and Ma’am Governorates (Figure 1). Given that the geomorphological features of these complex
landscapes are spatially diverse, the three test sites were selected in accordance with the variation of
latitude and location-specific characteristics of wadis in order to ensure both a comprehensive and
systematic analysis.

2.2. Data Sources

2.2.1. Satellite Data

Satellite images of varying spatial and temporal resolution have proven their outstanding
effectiveness in the detection and mapping of changes in land cover [28]. High temporal resolution
datasets (e.g., moderate-resolution imaging spectroradiometer (MODIS) data) have been extensively
applied to land cover mapping and change detection in a short repetition cycle [29]. However, the
coarse spatial resolution (generally larger than 500 m) has limited their practical application at a
regional scale for tiny objects such as wadis. Conversely, a widespread application of high-resolution
images for monitoring is restricted due to their limited spatial coverage and high expense. Landsat
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satellite series data, with its free accessibility, appropriate spatial resolution (30 m for optical bands),
global data coverage, and long temporal continuity (over 40 years), is an ideal data resource for
delineating the distribution and analyzing the spatial variation of wadi rivers [30,31]. The Landsat-8
Operational Land Imager (OLI) launched recently has already provided data free to users, with
increased spatial coverage and improvements with respect to signal-to-noise ratio and radiometric
performance. Thus, the Landsat-8 OLI imagery was chosen in the present study to conduct the
relevant experiments and to extend the application of Landsat series images in the features extraction
field. Related Landsat 8 OLI images processed by Level 1T Product Generation System (LPGS) were
downloaded from USGS EarthExplorer [32].

Figure 1. (a) Locations of the three study areas in Jordan; (b) true-color image (432 band for OLI) of
Study Area 1; (c) true-color image of Study Area 2; and (d) true-color image of Study Area 3.

In order to avoid the influence of prevalent clouds, we selected two images, obtained in September
2014, as the experimental data (path/row: 173/38 and 173/39). The two selected images, stored as
GeoTIFF format and Universal Transverse Mercator (UTM) map projections, were all geo-referenced
within a precision of 0.4 pixels. Necessary prerequisite processing was carried out via ENVI 5.1 [33] to
determine the real reflectance of ground objects and to maintain the transferability of the methodology
to other images [18]. Radiometric calibration consisted of two major steps: (i) Top of the atmosphere
(TOA) radiances Rλ (W/(m2¨ sr¨µm)) were derived from a linear transformation process (Equation (1)).
Corresponding calibration coefficients (i.e., the gain factor Gλ and the offset Oλ) were provided in the
LPGS metadata file; (ii) Subsequently, TOA reflectance ρTOA was calculated from available provided
calibration coefficients (Equation (2)).

Rλ “ Gλ ˆDN `Oλ (1)

ρTOA “
π ¨ Rλ ¨ d2

E0 ¨ cosθs
(2)

where ρTOA = Planetary TOA reflectance (unitless); d = Earth-to-Sun distance (astronomical units);
E0 = Mean exo-atmospheric solar irradiance (W/(m2¨µm)) derived by normalizing Rλ

(Equation (1)) to band average solar irradiance; θs = Solar zenith angle (degree); π = 3.1415926
(a mathematical constant).
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Subsequently, the atmospheric correction was conducted on the obtained ρTOA via the FLAASH
(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module in ENVI v.5.1 [34], the
coefficients of which were obtained from a look-up table on the official website.

2.2.2. Reference Data

The reference maps, i.e., the “true value” in accuracy evaluation, were manually digitized onscreen
from the original Landsat images based on visual interpretation by three experts. Final reference maps
were synthesized from the three digitization results, and the high-resolution Google Earth images were
used as an additional reference to help distinguish inconspicuous wadis from the background. Given
the inevitable time span between Landsat OLI data with Google Earth data, human expertise was
necessarily involved to prevent false judgments and unqualified reference maps. However, given the
fact that there were too many branches to be extracted manually, errors may be inevitable. Therefore,
different experienced interpreters were employed as a cross validation to delineate the outlines of
wadis to minimize the omission of small channels. Note that images from Google Earth were only
used as a reference for ambiguous regions.

3. Methods

As mentioned in the Introduction, the extraction of wadis in the current study required a
systematic improvement in both spectral separability and morphological utility. Therefore, the AMEW
proposed in this study involves three main steps (Figure 2): (i) calculation of various general WIs
and construction of a new WI (i.e., various WIs originally proposed to enhance water features from
heterogeneous backgrounds were synthesized to improve the separation of the spectral features
of wadis); (ii) Gaussian matched filtering to enhance the channel-like wadis; (iii) local adaptive
threshold segmentation to minimize the manual interventions and to maximize the automation of the
proposed method.
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3.1. Water Index Technique to Enhance the Spectral Separability of Wadi Water Bodies

The WI techniques were originally designed to enhance the discrimination between water bodies
and land. The WI was derived from a mathematical calculation between several optical bands of optical
satellite images, which was aimed to enhance the distinction of the spectral signals for targeted water
bodies. However, the different mathematical formulations make them inherently sensitive to certain
types of noise [35]. This study investigated four commonly utilized WIs, including the Normalized
Difference Water Index (NDWI) [36], the Modified Normalized Difference Water Index (MNDWI) [37],
and the Automated Water Extraction Index (AWEIsh and AWEInsh) [38]. Calculated by the normalized
ratio of green and near infrared (NIR) bands, the NDWI can effectively remove vegetation and soil
information, but it may be unsuitable for use in certain environments such as built-up areas, deserts,
and ice sheet surfaces [39]. The MNDWI, refined from the NDWI, can be better adjusted to various
landscapes by substituting the mid-infrared band (SWIR1 of OLI images) for the near-infrared band.
The AWEIsh (with shadow) and the AWEInsh (no shadow), derived from a band combination of blue,
green, NIR, and short-wave infrared (SWIR) bands, can not only enhance water information, but it can
also reduce errors caused by shadows and dark regions. These four WIs have been extensively applied
in recent years to address the water extraction problem (Table 1).

Table 1. Mathematical formulations of four common WIs.

WI Expressions

NDWI NDWI = (Green *-NIR *)/(Green + NIR)
MNDWI NDWI = (Green-SWIR1 *)/(Green + SWIR1)
AWEIsh AWEIsh = Blue * + 2.5 ˆ Green ´ 1.5 ˆ (NIR + SWIR1) ´ 0.25 ˆ SWIR2 *
AWEInsh AWEInsh = 4 ˆ (Green – SWIR1) ´ (0.25 ˆ NIR + 2.75 ˆ SWIR2)

* For Landsat-8 OLI imager, the blue, green, red, NIR, SWIR1, and SWIR2 correspond to bands 2–7, respectively.

Because the WIs have dissimilar enhancement effects in different regions due to the
aforementioned intrinsic water characteristics and land cover complexity, we calculated the four
WIs (Figure 3a–e) in order to comprehensively assess their reflectance separability and practical
performance for the test sites. For convenient inspection and comparison, the pixel value of WI images
was normalized to a range from ´1 and 1. Wadis represented low values while the backgrounds were
characterized by higher values. In addition, 800 samples, representing wadis, bare land, vegetation, and
built-up land, were carefully selected from the four WI images of three study areas to systematically
compare the discrimination between wadis and their heterogeneous environmental backgrounds
(Figure 3a–d). The more the value in the box plots deviates from the center (middle line), the less
the reflectance is concentrated. In reality, the first and third quartile of reflectance can be used to
demonstrate the most concentrated reflectance of wadis with the other three landscapes. The box
plots enable us to visually assess how the degree of overlapping reflectance varies between the four
landscape types. To quantify the spectral separability between the wadis and the other three types, we
have calculated the Jeffries–Matusita distance (JMD) which quantifies the average distance between
the density functions of two compared land cover types i and j in the multidimensional spectral feature
space (Equation (3)) [40].

JMD “ 2 p1´ e´Bq (3)

B “
1
8
ˆ
`

mi ´mj
˘t
"ř

i´
ř

j
2

*´1
`

mi ´mj
˘

`
1
2
ˆ ln

#

|p
ř

i`
ř

jq {2|

|
ř

i|1{2 |
ř

j|1{2

+

(4)

where B is the Bhattacharyya distance (Equation (4)) between landscape i and j, mi and mj are their
average reflectance, and

ř

i and
ř

j are corresponding covariance matrices, respectively.
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In reality, the JMD ranges from 0 to 2, the value of which corresponds to spectrally identical
classes and perfect spectrally separable classes. Separability was considered to be excellent for JMD
values were larger than 1.9, favorable when JMD values were between 1.4 and 1.9, and poor when
they were lower than 1.4. From both visual inspection and the quantified results (Figure 3), we could
determine that the New Water Index (NWI) improves the reflectance separability between wadis and
the others, followed by the MNDWI and the AWEI combined with two efficient indexes with respect
to different situations.Remote Sens. 2016, 8, 246 7 of 23 
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Figure 3. (a–e) WI value distributions for wadi, bare land, vegetation, and built-up land. In the box
plots, the top and bottom of the vertical lines represent the maximum and minimum; the top and
bottom of the boxes represent the first quartile and the third quartile; the lines in the boxes represent
the median. The red line shows the reflectance separability of the third quartile of wadis reflectance
with other landscapes, indicating possible reflectance confusion. The JMD is the average value for
wadis and other three types.

Due to the severe desertification, sparseness of vegetation, and general absence of buildings in the
study areas, the fundamental issue for wadi extraction is to distinguish water from bare land. Figure 4a
illustrates the fact that wadis in NDWI images are often indistinct from bare land. Wadi mainstreams
can be significantly enhanced by the MNDWI, whereas the AWEIsh and the AWEInsh images are better
able to distinguish several small branches missed by the MNDWI. Figure 4a,d demonstrates that
wadis in the AWEIsh and the AWEInsh images are more clearly distinguished from bare land. The
MNDWI was less effective and the NDWI performed the worst. To find an optimum WI which can
effectively enhance both main streams and tributaries, we developed an NWI using a compound
procedure. Firstly, we produced a new composite color image with the four WI images, where the
MNDWI was applied as the red band, the AWEIsh as the green band, and the AWEInsh as the blue band.
Subsequently, we applied the HIS (Hue, Intensity, and Saturation combination) transformation [41] to
the new color image and then used the I component as the NWI (Figure 4f). After a careful sampling
process (Figure 4g), we found that the NWI, taking advantage of the merits of all the three WIs, not
only enhanced the main streams and branches at the same time, but it also enhanced the discrimination
between wadis and adjacent objects. To further determine the optimal WI for wadi extraction, we
also used the MNDWI, the AWEIsh, the AWEInsh, and the NWI for extraction. From preliminary
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experiments and previous relevant research [18,38], the performance of the NDWI, which is capable
of discriminating water from vegetation, was found to be inconsistent when applied to complex and
heterogeneous aquatic environments. In order to enhance the transferability and generalizability of
the proposed method under other circumstances, the NDWI was previously excluded.Remote Sens. 2016, 8, 246 8 of 23 
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3.2. Wadi Enhancement Based on Gaussian Matched Filtering

Rivers of sufficient width, specifically the main streams, can be successfully delineated from
satellite imagery using a simple threshold method with satisfactory accuracy, after improvement of
their spectral contrast with backgrounds by means of the WI technique. However, most of the rivers
in wadi systems are narrow and in the form of tiny linear features with strong anisotropy. Moreover,
the morphological features of river tributaries, such as orientation and concavities, vary continuously
along the mainstreams, while their widths also vary at the same time. These characteristics mean that
further enhancement and subsequent extraction of these tiny irregular features should be based on
their specific physical morphologies rather than on inconspicuous spectral features alone. Matched
filtering technology in image processing fields is commonly used to enhance linear features such as
retinal blood vessels, road networks, and gullies and fissures, given that their cross-sections generally
appear as Gaussian-shaped curves [42,43]. In many cases, the successful application of this image
processing approach to extracting terrestrial targets is hindered by massive noise and false alarms
in the background. Spectral representation of much noise can be improved with enhancements of
the targeted objects, and noise can be compensated for by the pre-processing of the WI technique
(Figure 5a). Considering the aforementioned similarity in morphological characteristics between
wadis and linear features, and the complementarity of the method with the WI technique, we adopted
the use of Gaussian matched filtering for identifying wadis. In addition, after the neighborhood
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analysis processed in the original NWI, different wadis were found to be more similar in terms of
morphological characteristics, which facilitated the subsequent parameter tuning process for the
Gaussian matched filtering.Remote Sens. 2016, 8, 246 9 of 23 

 

 

Figure 5. (a) WI value profiles of the cross sections of several wadis in a WI image; (b) pixel value 
profiles of the cross-sections of several wadis in neighborhood analysis results. 

It is very difficult to generate satisfactory results based on original WI images due to the 
inconspicuous and weak spectral signals of wadis. Therefore, we first utilized a neighborhood 
analysis and median filtering prior to the Gaussian matched filtering in order to transform the 
absolute spectral difference to a relative one, thereby enhancing the contrast between wadis and their 
neighboring backgrounds. The response of neighborhood analysis is strongly affected by the size of 
the utilized windows. Narrow wadis can be effectively enhanced by small windows, while wide 
wadis may be omitted, and vice versa. Hence, a neighborhood analysis with progressively increasing 
window sizes was designed and utilized to achieve efficient enhancement of wadis with varying 
widths. Changing the size of windows is an important strategy for optimum matching of objects of 
different scale and has been used extensively in calculating linear object characteristics such as width 
and curvature [44,45]. Equation (4) is the expression for neighborhood analysis. F(x, y) is the WI 
image, Median (x, y) is the result of median filtering, and N(x, y) is the result of a neighborhood 
analysis. Figure 6 illustrates the results of multi-window neighborhood analysis, from which we were 
able to determine the effectiveness of the progressively increasing window sizes in relation to 
different wadis. 

N(x, y) = Median(x, y) – F(x, y) (5) 

 
Figure 6. Results of neighborhood analysis: (a) NWI image; (b) window size = 16 pixels; (c) window 
size = 48 pixels; (d) window size = 80 pixels. The window sizes shown here are only used to provide 
a conceptual illustration of the application of the technique. 

After the improvement provided by the neighborhood analysis, the wadi cross sections appear 
as more distinct Gaussian-shaped curves (Figure 5b); therefore, the use of Gaussian matched filtering 

Figure 5. (a) WI value profiles of the cross sections of several wadis in a WI image; (b) pixel value
profiles of the cross-sections of several wadis in neighborhood analysis results.

It is very difficult to generate satisfactory results based on original WI images due to the
inconspicuous and weak spectral signals of wadis. Therefore, we first utilized a neighborhood analysis
and median filtering prior to the Gaussian matched filtering in order to transform the absolute spectral
difference to a relative one, thereby enhancing the contrast between wadis and their neighboring
backgrounds. The response of neighborhood analysis is strongly affected by the size of the utilized
windows. Narrow wadis can be effectively enhanced by small windows, while wide wadis may
be omitted, and vice versa. Hence, a neighborhood analysis with progressively increasing window
sizes was designed and utilized to achieve efficient enhancement of wadis with varying widths.
Changing the size of windows is an important strategy for optimum matching of objects of different
scale and has been used extensively in calculating linear object characteristics such as width and
curvature [44,45]. Equation (4) is the expression for neighborhood analysis. F(x, y) is the WI image,
Median (x, y) is the result of median filtering, and N(x, y) is the result of a neighborhood analysis.
Figure 6 illustrates the results of multi-window neighborhood analysis, from which we were able to
determine the effectiveness of the progressively increasing window sizes in relation to different wadis.

Npx, yq “ Medianpx, yq ´ Fpx, yq (5)
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After the improvement provided by the neighborhood analysis, the wadi cross sections appear as
more distinct Gaussian-shaped curves (Figure 5b); therefore, the use of Gaussian matched filtering
to further enhance the wadis is effective and reliable. The 2-D Gaussian matched filtering function
(Equation (6)) used in this paper is generated by repeating the 1-D Gaussian function in a neighborhood
along the y–axis (Equation (5)), and the 1-D function is defined along the x-axis [46].

G pxq “
1

?
2πσ

e
´

x2

2σ2 (6)

M px, yq “ ´
x2 ´ σ2
?

2πσ5
e
´

x2

2σ2 |x| ď 3σ, |y| ď
L
2

(7)

In Equations (5) and (6), σ represents the scale of the filtering corresponding to the width of wadis;
L is the length of the neighborhood along the y-axis to smooth noise, and M(x, y) is the filtering result.

Since the orientations of wadis are unknown in advance, the kernel of Gaussian matched filtering
must cover every orientation in order to capture the wadis. Subsequently, the responses from every
orientation were comprehensively compared, and the orientation with the strongest response was
considered as the correct orientation of the wadis (Equation (7)) [25].

R px, yq “ max
`

N px, yq bM px, yqθ
˘

θ P p0, πq (8)

where b represents the filtering process and R(x, y) is the result of matched filtering. The kernel of
M (x, y) was rotated according to θ with an angle interval of 10˝ to construct 18 different kernels that
spanned all possible orientations.

In addition, only if σ matches the width of wadis can they provide the strongest response.
However, the entire wadi system is highly complex, and a single filtering scale can only enhance wadis
of the same width. In order to ensure that wadis of all widths were effectively enhanced, we utilized
multi-scale Gaussian matched filtering. As σ increases, all of the wadis are enhanced.

3.3. Local Adaptive Threshold Segmentation

Threshold segmentation is an essential final step in extracting wadis from the background
following the application of Gaussian matched filtering. According to the literature, there are a
large number of image threshold segmentation methods, typically including histogram shape-based
methods, clustering-based methods, and entropy-based methods [47–49]. All of these methods are
based on a global threshold in regard to the whole segmentation object. Since Gaussian matched
filtering clearly results in a unimodal distribution, a global optimum threshold cannot accommodate
both large rivers and very small rivers at a same time, since it would lead to many omissions of regional
tiny rivers, especially. Therefore, in the present study the local adaptive threshold segmentation method
was used to delineate wadis of widely varying size.

3.3.1. Narrow Wadi Extraction

Firstly, we built a window of wˆw pixels for the Gaussian matched filtering results derived from
the preceding step, i.e., R(x, y), and calculated the local threshold T(x, y) according to Equation (8). In
this equation, µ(x, y) is the local mean value for a specific analysis window while ε(x, y) is the local
standard deviation. During this process, pixels with values greater than a local threshold (defined
below) would be classified as wadis and others would be classified as backgrounds, and vice versa
(Equation (9)). Subsequently, the process was completed by sliding the window over the entire image
to ensure that each of the local narrow wadis could be extracted with an appropriate threshold.

T px, yq “ µ px, yq ` kˆ ε px, yq (9)
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W1 px, yq “ t1, Rpx,yq ą Tpx,yq
0, Rpx,yq ă Tpx,yq (10)

In principle, the aforementioned local threshold was determined by the local mean and standard
deviation values in a neighboring window; however, this threshold varied considerably and was likely
to be influenced by the local maximum and minimum values. Therefore, wadis with pixel values
close to the heterogeneous background were likely to be misclassified, producing incomplete and
discontinuous results. To suppress the local effect caused by an extremum value, we replaced the
wadi pixels detected in the first round of threshold segmentation with the local mean values, and then
repeated the threshold segmentation. Finally, we combined the first round results (w1) with the second
round results (w2) using a mathematical union (Equation (10)) process to yield the complete assembly
of narrow wadis.

w “ w1 Yw2 (11)

3.3.2. Wide Wadi Extraction

In the case of wide wadis, the 2-D Gaussian kernel could only provide peak responses close to
the edges, leaving the central parts unenhanced (Figure 7b) and resulting in further misclassifications.
However, applying local adaptive threshold segmentation directly to the neighborhood analysis
outcomes can achieve a satisfactory performance. Therefore, for wide wadis, the outcomes from a
large-window neighborhood analysis were used for local threshold segmentation instead of a second
round by mean value. Note that, in order to guarantee the completeness of the final results, we not
only fused the results of both wide and narrow wadis, but also merged the outcomes from different
window sizes.
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4. Results

The automated method for extracting wadis (AMEW) used in this study was implemented under
Matlab (R2012b 8.0.0783). The window size of neighborhood analysis varied from 8 to 80 pixels
with an interval of 10 pixels. This window size interval was decided by a balance between accuracy
and computing time and by the specific extent of the test sites, which could be changed manually
according to the practical situation. The scales of Gaussian matched filtering varied from 1.0 to 1.4 in
0.2 intervals. There were three parameters in the local adaptive threshold segmentation procedure:
w was the window size of local calculation, which varied according to the neighborhood analysis;
k1 was the parameter for narrow wadi threshold segmentation; and k2 was the parameter for wide
wadi threshold segmentation. For all three regions with four different WIs, k1 was set to a value range
between 0.05 to 0.1 in terms of diverse aquatic environments, with a mean value of 0.07 and a subtle
standard deviation of 0.02; and k2 was set to a value range between 0.10 to 0.35, with a mean value
of 0.18 and a standard deviation of 0.08. To evaluate the results of each wadi extraction method, we
superimposed the extraction results upon the reference map, pixel by pixel, and made a comparison
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with the reference map, which was achieved by a laborious manual digitization procedure discussed
in Section 2.2 in order to determine the omissions and commission errors. There were four possibilities
in the comparison results: true positive (TP), true negative (TN), false negative (FN), and false positive
(FN) [50]. Five metrics were used to quantitatively assess the extraction results: TPR (the ratio of
correct wadi results to all true wadis: TPR = TP/(TP + FN)); FPR (the ratio of erroneous wadi results to
the background of the reference map: FPR = FP/(FP + TN)); EC (the ratio of erroneous wadi results to
all true wadis: EC = FP/(TP + FN)); EO (the ratio of omissions to all true wadis: EO = FN/(TP + FN));
and OA (the ratio of correctly classified pixels to the total number of pixels: OA = (TP +TN)/N). The
TPR represents the pixels correctly classified as wadi pixels, while the FPR is the fraction of pixels
incorrectly identified as wadi. EO shows how many wadi pixels were omitted by the methodology,
and the EC indicates the misclassified backgrounds. In fact, the overall accuracy represents the entire
extraction results and should be regarded as a generalized standard to evaluate the methodology; the
TPR represents the reliability of the extracted wadis; and the FPR demonstrates the performance of a
method to suppress the influence from backgrounds. The OA reflects the global performance of the
method, with high OA indicating high accuracy. The practical significance of the TPR and FPR should
be assessed according to the specific water environments.

4.1. Comparison of Various WIs and the Newly Synthesized WI

As discussed in Section 3.1, a comprehensive comparison of different original WIs was first carried
out to explore the practical effect accomplished with respect to the complex wadi system. Preliminary
results obtained by four water indexes, i.e., the MNDWI, the AWEIsh, the AWEInsh, and the NWI, are
illustrated in Figure 8 for three representative areas. Each study area covered a vast area (over than
2000ˆ 2000 pixels) to ensure the comprehensiveness of the method assessment. Thresholds in this step
were determined by an iterative experiment to find the optimal threshold for each WI. Due to the high
degree of complexity and high density of the entire wadi system, six blocks with typical morphological
features were selected to illustrate the performance as well as the robustness of different WIs with clear
perspectives. Note that for clarity only the results for two blocks are illustrated in Figure 8; further
illustrations of the remaining four blocks with the same expression are given in Figures S1 and S2 in
the supplementary online materials.

Figure 8 reveals that the extraction effects of four WIs are visually dissimilar. From visual
inspection, we found that both the false negative rate and the false positive rate of the proposed NWI
were significantly less than the other three, demonstrating the considerable improvement provided
by the NWI. The AWEInsh achieved poorer results compared to the NWI, followed by the AWEIsh
and the MNDWI, the errors for which were located in tiny wadi tributaries as expected. For wadi
extraction in these two blocks, the false positive rate of the AWEInsh was relatively low, benefiting
from the intrinsic robust performance of this AWEI with regard to aquatic environments without a
significant amount of shadow. The enhancement of main streams by the AWEInsh and the AWEIsh
were relatively poor, which resulted in many omissions (refer to Block 4, Block 5 in the supplementary
online materials). With regard to the MNDWI, the main streams were well enhanced, whereas many
narrow wadis were ignored, resulting in many omissions occurring around narrow wadis. In addition,
the drainage density of narrow wadis was generally high, and there were numerous mixed-pixels in
their vicinity, significantly increasing the difficulty of the extraction by numerous commissions (see
Block 6 in the supplementary online materials). Table 2 lists the statistical accuracy assessments of
the four WIs in the three study areas. The results demonstrate that the NWI performed best among
the four WIs, with the highest TPR (88.40%–94.29%) and lowest FPR (2.53%–4.50%); OA, EC, and EO
varied from 93.26%–95.62%, 3.63%–10.60%, and 5.71%–11.60%, respectively. The performance of the
three other WIs varied over different study areas. In Study Area 1, the performance of the AWEInsh
was better according to its relatively high TPR (79.87%–87.03%) and low FPR (4.7%%–6.16%). the
AWEIsh performed worst on the basis of its low TPR (about 70%) and high FPR (11.08%–11.26%),
which means that most wadis were omitted, and certain backgrounds were unexpectedly identified



Remote Sens. 2016, 8, 246 13 of 23

as wadis. In Study Area 2, the MNDWI performed worst. Its TPR only reached about 67%, and
its EC (24.69%–27.58%) and EO (29.84%–37.63%) were significantly higher than the others. The
AWEInsh and the AWEIsh performed slightly better with their OA, varying from 85.36%–86.5% and
86.5%–83.91%. In Study Area 3, the MNDWI performed better, with TPR and FPR of 77.23% and 9.69%,
respectively, compared with 74.32% and 10.7%, and 63.6% and 13.46% for other WIs. According to the
assessments, the NWI outperformed other WIs based on both visual inspections as well as on statistical
quantification. Therefore, it was selected as the optimal WI and was used for pre-processing for the
subsequent wadi extraction work. Hereafter, the AMEW refers to the method combined with the NWI.
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Table 2. Performance of the AMEW based on the AWEInsh, the AWEIsh, the MNDWI and the NWI.

Study Area WI
Accuracy (%)

TPR FPR EC EO OA

Region 1

Over all
image

AWEInsh 79.87 5.08 10.43 20.13 89.99
AWEIsh 70.20 11.08 22.76 29.80 82.79
MNDWI 72.69 8.59 17.65 27.31 85.28

NWI 94.11 4.49 9.22 5.89 95.05

Block 1

AWEInsh 81.11 4.70 9.12 18.89 90.47
AWEIsh 70.13 11.26 21.84 29.87 82.41
MNDWI 70.76 7.13 13.82 29.24 85.35

NWI 94.06 4.10 7.94 5.94 95.28

Block 2

AWEInsh 87.03 6.16 11.98 12.97 91.52
AWEIsh 86.82 11.10 21.57 13.18 88.19
MNDWI 74.46 7.29 14.17 25.54 86.51

NWI 94.29 3.85 9.21 5.71 95.60

Region 2

Over all
image

AWEInsh 76.44 10.47 22.41 23.56 85.36
AWEIsh 73.12 10.83 23.18 26.88 84.06
MNDWI 67.48 12.89 27.58 32.52 80.86

NWI 93.15 4.12 8.83 6.85 95.01

Block 3

AWEInsh 83.08 11.58 20.75 16.92 86.50
AWEIsh 80.21 11.79 21.12 19.79 85.34
MNDWI 70.16 13.78 24.69 29.84 80.47

NWI 94.19 4.95 8.88 5.81 94.74

Block 4

AWEInsh 78.56 11.21 23.15 21.44 85.46
AWEIsh 72.38 10.52 21.72 27.62 83.91
MNDWI 62.37 12.93 26.70 37.63 79.02

NWI 92.66 4.50 9.30 7.34 94.57

Region 3

Over all
image

AWEInsh 74.32 10.70 28.11 25.68 85.17
AWEIsh 63.60 13.46 35.38 36.40 80.22
MNDWI 77.23 9.69 25.47 22.77 86.70

NWI 90.08 4.03 10.60 9.92 94.34

Block 5

AWEInsh 78.04 8.16 11.69 21.96 86.16
AWEIsh 62.03 15.55 22.26 37.97 75.23
MNDWI 85.43 8.13 11.63 14.57 89.23

NWI 90.73 2.53 3.63 9.27 94.69

Block 6

AWEInsh 67.24 11.36 22.95 32.76 81.55
AWEIsh 61.59 14.83 29.94 38.41 77.36
MNDWI 80.05 12.14 24.52 19.95 85.27

NWI 88.40 4.33 8.74 11.60 93.26

4.2. Comparison of the AMEW and Other Conventional Extraction Methods

To further validate the robustness and adaptability of the AMEW, the maximum likelihood (ML)
classifier and the SVM classifier were compared with the AMEW. Supervised classifiers were used as
comparison groups mainly because of their high classification accuracy compared to unsupervised
classifiers [51]. Several previous studies have used this type of method for a reference and comparison
with proposed methods [18,43]. Among various supervised methods, the ML classifier is one of the
most representative parameter classifiers, while the SVM classifier is one of the most representative
non-parameter classifiers. We selected a substantial number of training samples to describe the
spectral characteristics of each class in order to ensure the effectiveness of the supervised method,
in accordance with the assumption that a small number of intelligent training samples should be
sufficient to ensure an accurate image classification [52]. The radial basis function (RBF) was used as
the kernel function of the SVM. The highest accuracy derived from various kernel parameters was
used to represent the performance of the supervised classifier. Landscapes in the were categorized into
four classes (i.e., wadi, vegetation, bare land, and built-up land). The extraction results for the three
methods, i.e., AMEW, ML, and SVM, are illustrated in in Figure 9. To better display the relevant results,
we again used specific blocks selected from the three study areas to reveal the local performance.
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Four possibilities in each set of extraction results (i.e., TP, TN, FN, and FP) and five metrics, including
TPR, FPR, EC, EO, and OA, were calculated to assess the performance of each method and were
derived from error matrices through ENVI [34]. The principle used was to calculate the specific pixel
number correctly classified as wadi or incorrectly classified as background by comparing the extracted
result with the reference map. The statistical accuracy assessment results are listed in Table 3.
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Figure 9. (a) NWI image of Study Area 1; (b–d) extraction results for Study Area 1; (e) NWI image of
Block 1; (f–h) extraction results for Block 1; (i) NWI image for Block 2; (j–l) extraction results for Block 2.
For further illustrations of results, see Figures S3 and S4 in the supplementary online materials.

Visual inspection revealed that the ML classifier and the SVM classifier performed poorly for wadi
extraction in terms of both main streams and tributaries. In principle, they could only extract wide
wadis but they ignored the majority of narrow wadis that displayed extremely weak contrast with
their heterogeneous background (refer to Block 2 in Figure 9). Worse still, they usually misclassified
background with similar spectral characteristics to wadis as rivers (refer to Block 6 in Figure S4 of the
supplementary online materials). The AMEW performed significantly better than the other two with
significantly fewer omissions and commissions. The rare omissions mainly occurred in: (i) specific
segments of the wide wadis (discussed in Section 5.1); and (ii) areas that could not be significantly
enhanced by WIs. Commissions mainly occurred in: (i) narrow wadis with very low spectral contrast
with backgrounds; (ii) non-wadis features that were enhanced by WIs by mistake, such as roads and
mountain shadows; and (iii) linear false alarms in backgrounds. Because the practical effects of the
AMEW were highly reliant on the enhancement effect of WIs, there is no doubt that areas erroneously
enhanced by WIs will be identified as wadis by subsequent image processing steps. Moreover, since
WIs could only enhance parts of wadis given their high complexity, commissions are likely to appear
in areas where the discrimination between wadis and background was limited. It was quite possible to
produce extraction results with large commission errors if the network of tributaries was too dense.
Note that the reference map was manually digitized based on human interpretation, and random
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errors were inevitably generated even when we tried to minimize them using a synthesis of results
from three experienced operators.

Table 3. Performance evaluation of the ML classifier, the SVM classifier and the AMEW.

Study Area Method
Accuracy (%)

TPR FPR EC EO OA

Region 1

Over all
image

ML Classifier 70.39 23.12 47.49 29.61 74.75
SVM Classifier 69.23 21.94 45.06 30.77 75.17

AMEW 94.11 4.49 9.22 5.89 95.05

Block 1
ML Classifier 81.92 31.66 61.40 18.08 72.96

SVM Classifier 74.56 20.23 39.24 25.44 78.00
AMEW 94.06 4.10 7.94 5.94 95.28

Block 2
ML Classifier 35.14 4.40 8.56 64.86 75.05

SVM Classifier 35.06 1.22 2.37 64.94 77.13
AMEW 94.29 3.85 9.21 5.71 95.60

Region 2

Over all
image

ML Classifier 71.94 23.27 49.80 28.06 75.20
SVM Classifier 73.02 22.65 48.48 26.98 75.97

AMEW 93.15 4.12 8.83 6.85 95.01

Block 3
ML Classifier 74.93 18.02 32.29 25.07 79.45

SVM Classifier 71.29 13.66 24.48 28.71 80.95
AMEW 94.19 4.95 8.88 5.81 94.74

Block 4
ML Classifier 66.21 21.28 43.96 33.79 74.64

SVM Classifier 61.47 16.33 33.74 38.53 76.42
AMEW 92.66 4.50 9.30 7.34 94.57

Region 3

Over all
image

ML Classifier 75.08 24.93 65.52 24.92 75.07
SVM Classifier 81.79 30.55 80.27 18.21 72.85

AMEW 90.08 4.03 10.60 9.92 94.34

Block 5
ML Classifier 76.08 14.19 20.32 23.92 81.81

SVM Classifier 80.92 20.44 29.26 19.08 80.12
AMEW 90.73 2.53 3.63 9.27 94.69

Block 6
ML Classifier 82.28 35.89 72.47 17.72 70.13

SVM Classifier 91.39 45.98 84.86 8.61 67.15
AMEW 88.40 4.33 8.74 11.60 93.26

According to Table 3, there are no obvious differences between the ML classifier and the SVM
classifier. Their TPR and OA reached only around 75% while the TPR and OA of the AMEW were
generally above 88% and 93%, respectively. In addition, the ML and SVM classifiers demonstrated
very high FPR, i.e., averages greater than 20%. Their average EC and EO were above 40% and
25%, respectively, which exceeded that of the AMEW (with an EC of 3.63%–10.60% and an EO of
5.71%–11.60%). These statistics were basically consistent with the visual illustrations in Figure 9.

5. Discussion

5.1. Limitations of the Proposed AMEW

Although we have demonstrated an effective performance and robustness of the proposed AMEW,
certain limitations are inevitable in the use of the method given the high level of complexity of the
wadis networks. In this study, 2-D Gaussian matched filtering was used to enhance wadis based on
their Gaussian-curve-shaped spectral characteristics. However, because a 2-D Gaussian kernel could
not detect the central part of wide wadis, wide wadis and narrow wadis had to be extracted separately.
Thus, we applied the local adaptive threshold segmentation on the outcome of large window-sized
neighborhood analysis to obtain the wide wadis, and the complete results were generated by a fusion
of narrow and wide wadis. The results indicate that the AMEW is capable of identifying most of the
narrow wadis but performed comparatively poorly in the case of wide wadis. In general, it produced
many gaps in the extraction results, and sometimes only the edges of wadis detected (Figure 10).
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Figure 10. Reference maps and wadi extraction results based on different window sizes. As the window
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window sizes for block 2.

Tests demonstrated that the larger window size (used in the neighborhood analysis of wide wadi
extraction) yielded a better extraction performance. As the window size increased, the wide wadis
became more and more complete (Figure 10a–d), and the TPR rates also increased (Table 4). The
influence of window size is common in research using a sliding-window technique given that the
extraction objects are characterized by different width and curvatures. A small window size always
seems to be sufficient for recognizing the objects of interest, while a large window size often omits the
linear objects in satellite images. Therefore, an iterative process for different window sizes is regarded
as an effective solution [53,54]. The parameter k2 of the local adaptive threshold segmentation in
wide wadi extraction also affected the wide wadis performance. We found that the lower the k2, the
greater the TPR (Figure 11a–d, Table 4). It should be noted that the wadi systems were extremely
dense and small wadis of very low contrast made up the majority of the wadi systems. Too large
a window size and too low a k2 value invariably resulted in an unacceptably crumbly extraction
(Figure 10e–h and Figure 11e–h), greatly increasing the FPR as a result (Table 4, Table 5). For the
majority of wadis, a medium-sized window (150 pixels) and intermediate k2 value were used to
optimize the extraction effects.

Table 4. Performance evaluation of wadi extraction results based on different window sizes.

Window Size
Accuracy (%)

TPR FPR EC EO OA

100 88.99 4.30 9.20 11.01 93.56
125 91.23 4.29 9.18 8.77 94.28
150 93.15 4.12 8.83 6.85 95.01
175 93.45 5.23 11.20 6.55 94.35
200 93.54 6.02 12.89 6.64 93.84
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Figure 11. Reference images and wadi extraction results based on different values of k2. As k2
decreases, wide wadis become more and more complete, but over-extractions around small wadis
become more and more significant; (a) reference images for block 1; (b–d) the results for different k2 in
block 1; (e) reference image for block 2; (f–h) the results of different k2 for block 2.

Table 5. Performance evaluation of wadi extraction results based on different values of k2.

K
Accuracy (%)

TPR FPR EC EO OA

0.20 93.68 5.46 11.69 6.32 94.27
0.22 93.39 4.47 10.15 6.61 94.66
0.25 93.15 4.12 8.83 6.85 95.01
0.28 91.17 4.11 8.80 8.83 94.39
0.30 90.39 4.10 8.77 9.61 94.15

5.2. Preliminary Effects of WIs on the AMEW

Since the wadi extraction process of the AMEW is based on the WI calculation, the extraction
performance of the AMEW was highly dependent on the preliminary enhancement effect of WIs.
Extraction results indicated large differences with the application of different WIs. Although the
NWI outperformed the NDWI, the MNDWI, the AWEInsh and the AWEIsh, it still could not achieve
a completely satisfactory enhancement. Omissions and commission errors frequently occurred in
places where the discrimination between wadis and backgrounds was weak and inconspicuous with
an ambiguous separability (Figure 12). Moreover, linear features that were erroneously enhanced by
WIs would undoubtedly be misclassified as wadis, thereby increasing the FPR (Figure 12). In addition,
the pixel values of roads in some areas were rather high in WI images, which formed distinctive
contrasts to the surrounding wadis and backgrounds. Since the main task of neighborhood analysis
and Gaussian-matched filtering was to detect dark linear features, the dark background around the
roads was frequently misclassified as wadis, thereby generating two parallel false wadis on both sides
of the road and increasing the FPR (Figure 13). Note that this error was inevitable since the method is
based on morphological features. Linear features such as roads were therefore extracted by mistake.
However, this would not be an irretrievable error since these obvious non-wadi linear features were
not significant in number and could easily be excluded by manual inspection during refinement of the
extraction results.
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5.3. Extended Applications of the AMEW by Means of Other Optical Satellite Data

As mentioned in Section 5.2, the extraction results were dependent on the preliminary
enhancement effect of the WIs. As a consequence, there was no strict requirement for satellite images
with similar spectral features. The AMEW performed well as long as the preliminary enhancement
of the WIs was carried out effectively. The aforementioned tests indicated that, using Landsat 8 OLI
images, the AMEW is capable of precisely mapping wadis with a satisfactory degree of accuracy. Thus,
it is assumed that optical data with similar wavelength features to Landsat OLI images could also be
used. This point is of great importance since the extended application of Landsat OLI from spatial and
temporal resolution perspectives can be used to accomplish more meaningful research, such as time
series change detection, combining OLI imagery with previous Landsat series imagery such as TM and
ETM+ of high quality. Moreover, based on the same principle, it can also be assumed that the AMEW
can be extended to other series of optical imagery with different spatiotemporal resolutions, such
as the visible infrared imaging radiometer suite (VIIRS) and the MODIS [18], which is important for
research on a continental scale as well as for near-real time monitoring of valuable natural resources.

6. Conclusions

Wadis are a valuable water resource in desert regions, and their accurate mapping and monitoring
is of great importance for regional hydrological management and utilization. While currently available
river extraction methods are reported to be successful in specific aquatic environments, they have
limited applicability to wadi extraction given their irregular drainage patterns, complex network
systems, and inconspicuous spectral characteristics. In this study, an automated method for extracting
wadis (AMEW) was developed in order to delineate wadis networks from Landsat-8 OLI imagery.
The approach combines WIs and subsequent image processing technologies from their morphological
features, including multi-scale Gaussian matched filtering and local adaptive threshold segmentation.
Experimental results demonstrate that the AMEW with high accuracy, automation, and promising
applicability can be used for wadi extraction on a large scale.

We produced a composite of three classical WIs (MNDWI, the AWEInsh, and the AWEIsh) by HIS
transformation in order to construct a new WI (NWI) to preliminarily suppress the influence from
massive noise and false alarms, in an attempt to take advantage of various WIs. Experimental results
demonstrated that the NWI, combining the merits of other WIs, achieved a significantly increased
performance and was the optimal WI for suppressing heterogeneous noise. In addition, extended
application to other optical data with similar spectral wavelengths demonstrates that the proposed
AMEW could be easily transferred to different data with varying spatiotemporal resolution and should
be useful for extraction and mapping of other land cover types.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/3/246, Figure S1:
(a–d) WI images of Study Area 2; (e–h) wadi extraction results of Study Area 2; (i–l) WI images of Block 3;
(m–p) wadi extraction results of Block 1; (q–t) WI images of Block 4; (u–x) wadi extraction results of Block 4.,
Figure S2: (a–d) WI images of Study Area 2; (e–h) wadi extraction results of Study Area 2; (i–l) WI images of
Block 5; (m–p) wadi extraction results of Block 5; (q–t) WI images of Block 6; (u–x) wadi extraction results of
Block 6., Figure S3: (a) NWI image of Study Area 2; (b–d) the extraction results of Study Area 2; (e) NWI image
of Block 3; (f–h) the extraction results of Block 3; (i) NWI image of Block 4; (j–l) the extraction results of Block 4,
Figure S4: (a) NWI image of Study Area 3; (b–d) the extraction results of Study Area 3; (e) NWI image of Block 5;
(f–h) the extraction results of Block 5; (i) NWI image of Block 6; (j–l) the extraction results of Block 6.
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Appendix A

Table A1. Acronyms for common expressions.

Category Acronyms Full Name

Method AMEW Automated method for extracting wadis
WI Water indices

SVM Support vector machine
ML Maximum likelihood

NDWI Normalized difference water index
MNDWI Modified normalized difference water index

AWEI Automated water extraction index
Data OLI Operational Land Imagery

MODIS Moderate-resolution imaging
spectroradiometer

Error metrics TPR True positive ratio
FPR False positive ratio
EC Error of commission
EO Error of omission
OA Overall accuracy
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