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Abstract: Earthquakes can produce significant tree mortality, and consequently affect regional
carbon dynamics. Unfortunately, detailed studies quantifying the influence of earthquake on forest
mortality are currently rare. The committed forest biomass carbon loss associated with the 2008
Wenchuan earthquake in China is assessed by a synthetic approach in this study that integrated field
investigation, remote sensing analysis, empirical models and Monte Carlo simulation. The newly
developed approach significantly improved the forest disturbance evaluation by quantitatively
defining the earthquake impact boundary and detailed field survey to validate the mortality models.
Based on our approach, a total biomass carbon of 10.9 Tg¨C was lost in Wenchuan earthquake, which
offset 0.23% of the living biomass carbon stock in Chinese forests. Tree mortality was highly clustered
at epicenter, and declined rapidly with distance away from the fault zone. It is suggested that
earthquakes represent a significant driver to forest carbon dynamics, and the earthquake-induced
biomass carbon loss should be included in estimating forest carbon budgets.
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1. Introduction

Earthquakes are critical disturbances to forest ecosystems in tectonically active areas, causing
extensive environmental degradation and substantial loss of biodiversity [1]. Through surface faulting
and ground shaking, earthquakes induce extensive forest loss. It can remove and bury trees by
landslides and debris flows [2], a consequence more evident in mountainous areas [3]. Unlike other
agents of disturbance such as wind [4], drought [5] and pest [6] that leave dead trees aboveground,
earthquakes represent a form of damage to forests that usually results in the burial of uprooted trees.

Earthquakes are a severe but generally overlooked form of disturbance to forest ecosystem.
The occurrence of catastrophic earthquake is continually increasing across the globe [7]. For example,
there were 99 earthquakes with magnitude ě 7 that occurred between 1997 and 2007, which is an over
six-fold increase on the decade previous [8]. To date, however, the relationship between earthquakes
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and forest turnover remains undefined. This gap in our knowledge stems mainly from the fact that
earthquakes are unpredictable and stochastic phenomena [1,9], a problem that is exacerbated by
limited field measurements.

Earthquake–forest impact assessment has been improved dramatically from traditional field-based
measurements to the use of advanced remote sensing techniques. Field investigation was the main
method of data collection before remote sensing imagery became available [1,10]. However, because
earthquakes often occur in mountainous areas and destroy roads, access to field sites is limited and
the assessment of earthquake forest damage becomes difficult. The availability of satellite and aerial
imagery has made it possible to estimate earthquake forest loss using remote sensing. The accuracy
of remote sensing techniques depends on the affected area (i.e., gap size), and the spatial resolution
of the remote sensors. Large gaps of disturbed forests are easily detected, while smaller areas can be
found on remote sensing images with high spatial resolution [11]. The development of remote sensing
analysis techniques, such as sub-pixel SMA (Spectral Mixture Analysis) [12], has made it possible to
detect damaged areas that are smaller than one pixel in size. In addition, SMA utilizes all the spectral
bands, which makes it more preferable than traditional green vegetation index, such as NDVI, which
uses only two spectral bands and has relatively limited accuracy. SMA has been successfully applied
to quantify tree mortality induced by hurricanes in recent years [4,13], and has great potential for
detecting earthquake-induced forest loss.

The 2008 Wenchuan earthquake was one of the strongest and most devastating seismic events
in the last 50 years in China [14], resulting in substantial damage to the local environment and
infrastructure. With a moment magnitude of 7.9, the Wenchuan earthquake occurred in a largely
forested region, providing an opportunity to study the link between earthquakes, forest ecosystems and
regional carbon dynamics. There are a few studies that have documented the impacts of Wenchuan
earthquake on ecosystems [15–17]. However, the magnitude of such impacts is still a matter of
controversy [18]. Large uncertainties exist in many earthquake-related forest loss estimates, mainly
due to the use of imprecise impact boundary, methodological challenges and a lack of field inventory
data. Qualitatively defining an impact boundary (e.g., political jurisdiction boundary) tends to bias
estimation of earthquake-ecosystem effects. An earthquake impact estimation that objectively defines
the affected area and appropriately integrates field data will therefore present the most accurate
information about the impact of earthquakes on forest ecosystems.

Here we integrated field measurements, satellite image analysis, seismic intensity fields and
empirical mortality models to estimate the immediate impact of the Wenchuan earthquake on the
forest ecosystems. The estimation of biomass loss is significantly improved by explicitly quantifying the
earthquake impact boundary and using mortality models validated with detailed field measurements.
Using a Monte Carlo simulation approach based on geographical information systems (GIS), we also
calculated the earthquake-induced forest biomass carbon loss and its uncertainty. Our aim was to
understand the regional effects and consequences of the earthquake and to provide reliable estimates
for decision-making in forest management planning.

2. Materials and Methods

2.1. Study Area

The Wenchuan earthquake occurred on 12 May 2008, with an epicenter (31.0˝N, 103.4˝E) located
at the southern end of the Longmenshan Thrust Fault in southwestern China (Figure 1). It ruptured
over 250 km of the fault and displaced the earth’s surface up to 3 m in many places [19]. Ground
shaking caused mountain collapse and landslides, which induced even more damage to the local
ecosystems. With the elevation ranging from 500 to 6000 m through the impact zone, there is a clear
vertical distribution of forest beginning with subtropical forests at the base and subalpine conifer
forests at the top of the mountains [20]. This heavily forested area plays an important role as a carbon
sink in China [21].
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Figure 1. The location of Wenchuan earthquake and field sample plots. 

2.2. Satellite Data Analysis 

Although the monitoring derived from high-resolution satellite images, such as Landsat TM or 
Quickbird, could be more accurate, low levels of spatial coverage and high costs limit their applications. 
Moreover, the weather in the Wenchuan earthquake-hit area is most cloudy, and it is almost impossible 
to acquire high-resolution satellite images with less than 20% cloud coverage. With higher temporal 
frequency, MODIS could provide images with much less cloud noise. Thus, larger coverage imagery of 
MODIS was used in the final estimation of forest mortality, and Landsat TM was utilized as a bridge to 
connect the MODIS-based mortality and field measured biomass loss. Landsat TM imagery (with 
spatial resolution of 30 m) from 18 September 2007 and 18 July 2008 was used to estimate forest 
mortality for a small typical earthquake impact area. The Landsat derived mortality map was used to 
guide the location of field sample plots. The mortality map, which covered the entire earthquake 
impacted areas, was generated from MODIS imagery. MODIS Terra images with a spatial resolution 
of 250 m were selected from two dates, 9 May 2007 and 24 May 2008, to represent the pre- and post-
earthquake conditions, respectively. 

Most of the Wenchuan earthquake-influenced areas are mountainous terrain. With the burial of 
disturbed trees, the newly created bare lands increased the fragmentation of the land use. Thus, most 
pixels in Landsat and MODIS imagery are combination of different land cover. Here, the spectral 
mixture analysis was applied to extract different land cover. The reflectance of each pixel is assumed 
to be the linear sum of the reflectance of different cover types weighted by their areal fractional 
presence within each pixel (Equations (1) and (2)). 

1

m

ib i b b
i

Cρ ρ ε
=

× = +  (1) 


=

=
m

i
iC

1
0.1

 
(2) 

where m is the number of end members, ibρ is the reflectance of pure end member i in wavelength 
band b (i.e., the reflectance of a pixel fully covered by end member i), Ci is the areal fraction of end 
member i in the focal pixel, bρ is the reflectance of the entire pixel in band b, Ɛb is the error of fit in 
band b (band residual). 

This work only focuses on forest ecosystem and its related biomass loss by the earthquake. A 
forest pixel can usually be deconvolved into 4 basic cover types or end members (Figure 2): green 
vegetation (GV), non-photosynthetic vegetation (NPV, i.e., dead wood), soil, and shade [22]. The 
reflectance of the endmembers for Landsat imagery was extracted using a technique named 
Sequential Maximum Angle Convex Cone (SMACC) [23], whereas pixel purity index (PPI) was 
applied for the endmember extraction from MODIS [24]. 

Figure 1. The location of Wenchuan earthquake and field sample plots.

2.2. Satellite Data Analysis

Although the monitoring derived from high-resolution satellite images, such as Landsat TM or
Quickbird, could be more accurate, low levels of spatial coverage and high costs limit their applications.
Moreover, the weather in the Wenchuan earthquake-hit area is most cloudy, and it is almost impossible
to acquire high-resolution satellite images with less than 20% cloud coverage. With higher temporal
frequency, MODIS could provide images with much less cloud noise. Thus, larger coverage imagery of
MODIS was used in the final estimation of forest mortality, and Landsat TM was utilized as a bridge
to connect the MODIS-based mortality and field measured biomass loss. Landsat TM imagery (with
spatial resolution of 30 m) from 18 September 2007 and 18 July 2008 was used to estimate forest
mortality for a small typical earthquake impact area. The Landsat derived mortality map was used
to guide the location of field sample plots. The mortality map, which covered the entire earthquake
impacted areas, was generated from MODIS imagery. MODIS Terra images with a spatial resolution
of 250 m were selected from two dates, 9 May 2007 and 24 May 2008, to represent the pre- and
post-earthquake conditions, respectively.

Most of the Wenchuan earthquake-influenced areas are mountainous terrain. With the burial of
disturbed trees, the newly created bare lands increased the fragmentation of the land use. Thus, most
pixels in Landsat and MODIS imagery are combination of different land cover. Here, the spectral
mixture analysis was applied to extract different land cover. The reflectance of each pixel is assumed to
be the linear sum of the reflectance of different cover types weighted by their areal fractional presence
within each pixel (Equations (1) and (2)).

m
ÿ

i“1

ρib ˆ Ci “ ρb ` εb (1)

m
ÿ

i“1

Ci “ 1.0 (2)

where m is the number of end members, ρib is the reflectance of pure end member i in wavelength
band b (i.e., the reflectance of a pixel fully covered by end member i), Ci is the areal fraction of end
member i in the focal pixel, ρb is the reflectance of the entire pixel in band b, εb is the error of fit in band
b (band residual).

This work only focuses on forest ecosystem and its related biomass loss by the earthquake. A forest
pixel can usually be deconvolved into 4 basic cover types or end members (Figure 2): green vegetation
(GV), non-photosynthetic vegetation (NPV, i.e., dead wood), soil, and shade [22]. The reflectance of
the endmembers for Landsat imagery was extracted using a technique named Sequential Maximum
Angle Convex Cone (SMACC) [23], whereas pixel purity index (PPI) was applied for the endmember
extraction from MODIS [24].
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Figure 2. The typical spectral reflectance of the four endmembers used in Spectral Mixture Analysis. 
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vegetation before and after the earthquake event (ΔGV) as a measure of total wood loss in each pixel. 
Prior to calculating ΔGV, the GV values from all the images were shade-normalized to limit the effects 
of topography [22]. 
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Both winter and summer images were processed by SMA, and the extracted GV values were used in 
forest type classification, i.e., GV from winter image represents GVmin while the GV from summer 
represents GVmax (Figure 3a). 
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CD represents the ideal forest line. AC and AD represent relative probabilities for a pixel to contain 
evergreen or deciduous forest. A pixel is assumed to be evergreen forest with a probability of AD/(AC 
+ AD), and deciduous with a probability of AC/(AC + AD). 
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Figure 2. The typical spectral reflectance of the four endmembers used in Spectral Mixture Analysis.

Although NPV can directly represent the dead wood, the difference of NPV (or NPV + soil)
of pre- and post-earthquake in fact had much less correlation with the field measured biomass loss
based on preliminary analysis. This might because that the damaged trees were usually buried and
demonstrated little NPV signal but more bare land signal. Therefore, instead of using NPV as a proxy
for dead wood as has been done in other studies [4,13], here we used the difference in green vegetation
before and after the earthquake event (∆GV) as a measure of total wood loss in each pixel. Prior to
calculating ∆GV, the GV values from all the images were shade-normalized to limit the effects of
topography [22].

2.3. Extraction of Deciduous and Evergreen Forests

Coarse forested areas were preliminary extracted based on the land use/land cover map of China
with a scale of 1/100,000 [25]. The land use map has six classes: agricultural fields, forests, grassland,
water areas, urban areas, and open fields. Since part of the grassland appeared spectrally similar
to forested pixels when validating on satellite images, both forests and grassland were extracted as
potentially forested areas.

The potential forest areas were further classified as deciduous and evergreen based on their
phenological difference, i.e., pixels with a high greenness value in the summer and a low value after
senescence in the winter were classified as deciduous, while pixels that maintained a certain level of
greenness throughout the year were classified as evergreen. MODIS images from January and July
2006 were used to represent the forest conditions in winter and summer, respectively. Both winter
and summer images were processed by SMA, and the extracted GV values were used in forest type
classification, i.e., GV from winter image represents GVmin while the GV from summer represents
GVmax (Figure 3a).
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Figure 3. The scatter plots of fraction of green vegetation (GV) in summer and winter (a) and the
forest utility function (b). Points C and D represent ideal evergreen and deciduous forests, respectively;
line CD represents the ideal forest line. AC and AD represent relative probabilities for a pixel to
contain evergreen or deciduous forest. A pixel is assumed to be evergreen forest with a probability of
AD/(AC + AD), and deciduous with a probability of AC/(AC + AD).
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The ideal points for deciduous and evergreen were set based on the vegetation map, Google
images, and field investigation (Figure 3a). The pure deciduous and conifer forests were delineated
preliminarily based on the vegetation map and Google images. The areas were further refined by
field investigation. The distributions of the GVmin and GVmax were constructed for the selected pure
deciduous and conifer pixels, and the 95th percentile values of the GVmin and GVmax were taken as
the ideal points. The GVmin and GVmax for the ideal point of deciduous were set to 0.002 and 0.83,
respectively, while the two values for conifer were 0.69 and 0.75. The line connecting the ideal points
of deciduous (D) and evergreen (C) represented ideal forest line (Figure 3a, Equation (3))

ax` by` c “ 0 (3)

where x and y are axis of GVmax and GVmin in Figure 3a, respectively. The parameters a, b and c are
parameters calculated by ideal points of C and D in Figure 3a (Equations (4)–(6)).

a “ GVmin‚C ´ GVmin‚D (4)

b “ GVmax‚D ´ GVmax‚C (5)

c “ pGVmax‚D ´ GVmax‚Cq ˆ GVmin‚C ` pGVmin‚C ´ GVmin‚Dq ˆ GVmax‚C (6)

The likelihood that a pixel would be classified as forest was estimated by comparing its GVmin

and GVmax to the forest ideal line. The points located to the right of the ideal forest line were assumed
to be pure forests, whereas the points to the left were given probabilities based on their distances to
the ideal line (Figure 3b, Equation (7)).

DistAB “
|aˆ GVmax‚A ` bˆ GVmin‚A ` c|

?
a2 ` b2

(7)

The shorter the distance was, the higher probability the pixel would be classified as forest.
The origin, with both GVmax and GVmin values of 0, was set as the least likelihood of 0 (Figure 3b).

After a pixel was defined to be forest, another probability was calculated to categorize it as
either deciduous or evergreen by a utility function based on its distances to the two ideal points.
The distances of the pixel (A) to the ideal points (C and D) were calculated (i.e., AC and AD in
Figure 3a). The comparison between the distances AC and AD determined the probability of forest
type classification of pixel A. The pixel was assumed to be evergreen forest with a probability of
AD/(AC + AD), and deciduous with a probability of AC/(AC+AD). The shorter the distance was, the
higher the probability the pixel would be classified as the related forest type.

2.4. Quantifying the Total Impacted Area

The earthquake impact boundary was estimated by comparing the ∆GV map with surface ground
shaking experienced by the Wenchuan Earthquake (seismic intensity field). The seismic intensity of
an earthquake is proportional to the degree of forest disturbance it causes, i.e., tree mortality declines
with seismic intensity decreases. We calculated the distances of all the MODIS pixels to the Chinese
seismic intensity isoline 10. The pixels located within isoline 10 (with seismic intensity > 10) were
given negative distance values. The pixels were further grouped into bins based on their distances,
and an average ∆GV value was calculated for each bin. It was assumed that ∆GV declined with the
distance to isoline 10 until a turning point, after which ∆GV maintained a certain level regardless of
the distance to isoline 10. The distance of the turning point could be the average maximum impact
distance of the Wenchuan earthquake.

2.5. Ground-Based Tree Mortality Estimations

The ∆GV map generated by the Landsat imagery was used to guide the locations of the field
sample plots and to ensure them being randomly established across the entire disturbance gradient.
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The full range of ∆GV was classified into five levels (<0.15, 0.15–0.3, 0.3–0.45, 0.45–0.7, and ě0.7), and
six plots were allocated in each level. Altogether, thirty forest sample plots with an area larger than
0.3 ha were established over the study area, 15 from deciduous forests and 15 from evergreen forests
(Figure 1). As it is mountainous area destroyed by the Wenchuan earthquake, accessibility was also
a critical criterion for selecting the plot locations. In all sample plots, most of the destroyed trees were
buried or transported to the bottom of slopes, making it difficult to investigate the damage directly.
Thus, the pre-earthquake conditions of each field plot were represented by three 10 mˆ 10 m sub-plots
located in adjacent undisturbed forests. We tried to locate the sub-plots as close to the sample plots as
possible, but in different directions to the plots. All subplots were less than 50 m from the damaged
forest plots. Because of their proximity to the earthquake-affected field plots, the undisturbed subplots
experienced similar environmental conditions to their disturbed counterpart, including elevation,
slope, aspect and general forest conditions. Field surveys were conducted between July and August in
both 2009 and 2010, and all trees with a diameter at breast height (DBH) ě 5 cm were measured with
variables including tree species, DBH, tree height and tree status (living or dead).

Aboveground biomass of each tree in the field plots was calculated by published species-specific
biomass allometric equations [26]. If no allometric equation existed for a particular species, the
allometric equation for another species of the same the same genus (or the same family) was used.
The aboveground biomass density (kg¨ha´1) of pre-earthquake in each sample plot was calculated
based on the average biomass density of the three adjacent unaffected sub-plots. Thus, the total
aboveground biomass loss of the sample plot was the product of biomass density and buried area.

2.6. Forest Mortality Model Development

The forest biomass loss was simulated at the MODIS pixel level (250 m ˆ 250 m), i.e., the biomass
loss for each pixel was simulated separately. It included both aboveground and belowground biomass.
Aboveground biomass loss was calculated by mortality models after the pixel was defined as a forest
pixel. First, one mortality model was built in this work to scale the forest loss information from field
measured biomass loss (kg¨m´2) to Landsat TM (∆GV) (Equation (8)).

BiolossAbove “ aˆ ∆GVLandsat ` ε (8)

where BiolossAbove is the aboveground biomass loss (kg¨m´2), a is a coefficient, and ε is the residue
error, which is used in Monte Carlo simulation to estimate the uncertainty. The regression was tested
by t-test and F-test in ANOVA.

Since the MODIS imagery, instead of Landsat TM, was used to estimate the total aboveground
biomass loss of the entire study area following the Wenchuan earthquake, another model was built to
connect the ∆GV between Landsat and MODIS satellite images (Equation (9)).

∆GVLandSat “ aModis ˆ ∆GVModis ` ε (9)

The mortality models were run stochastically by randomly sampling the coefficients. The sampling
spaces of the coefficients in Equations (8) and (9) were defined by the parameters estimated by the
regression fitting analysis.

Besides the biomass loss of aboveground, the belowground biomass loss was included in the
simulation too. The belowground biomass loss was calculated as a fraction of aboveground biomass
loss at plot level, since the belowground biomass was found to be in good correlation with aboveground
biomass [27].

BioLossBelow “ rˆ BioLossAbove (10)

The field measured aboveground and belowground biomass data in this work as well as previous
studies [26] were used for calculating their ratio (r). Based on preliminary analysis, lognormal
distribution can better simulate the ratio’s distribution in both deciduous and evergreen forests,
although it is not good enough for deciduous (Figure 4). Belowground biomass loss was calculated
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in Monte Carlo simulation by multiplying aboveground biomass loss and the ratio of below- and
aboveground biomass loss. Thus, final output from the biomass loss simulation models included both
aboveground and belowground biomass.Remote Sens. 2016, 8, 252 7 of 17 
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variance of each pixel (Equation (11)). 

Biomass Belowground/Aboveground (%)

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

Figure 4. The distribution of biomass ratio between belowground and aboveground: (a) deciduous
with log-mean of 3.3 and log-STD 0.3; and (b) evergreen with log-mean of 2.8 and log-STD 0.3.

2.7. Monte Carlo Simulation and Uncertainty Analysis

The entire process from forest type classification to forest biomass loss modeling was embedded
in a Monte Carlo model (Figure 5). The boundary of the earthquake impact area and the input ∆GV of
each pixel from MODIS were fixed for the input of Monte Carlo model. The boundary line of 75 km
away from the seismic intensity isoline of 10 was set as the earthquake impact area. The uncertainty
of the SMA when generating the ∆GV from MODIS is not included in the Monte Carlo simulation.
The simulation was iterated 100 times, and the mean and variation of the biomass loss were calculated.
The number of iteration in Monte Carlo was set based on the repeated trials, which output stable
results, i.e., similar mean and variance values were output by different trials. In addition, the sensitivity
of the simulation was examined by changing the coefficient values of forest mortality models and the
GV values of ideal deciduous and evergreen points by ˘20%.
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As mentioned above, all pixels were simulated independently in the Monte Carlo simulation.
Thus, the variance of the total biomass loss output from the Monte Carlo program would be the sum
of the variance of each pixel (Equation (11)).

VαrpTq “
N

ÿ

i“1

VαrpXiq (11)

where Var(T) is the variance of total biomass loss of impact area, Var(Xi) is the variance of pixel i, and
N is the total number of pixels in the impact area.

The variance in Equation (11) ignores the fact that spatial auto-correlation exists in most
geographical phenomenon, i.e. closer pixels have more similar forest structure, biomass, and biomass
loss. The total variance of multiple variables with correlation (Equation (12)) would be much larger
than the variables without correlation (i.e., independent to each other).

VαrpTq “
N

ÿ

i“1

VαrpXiq`2
N

ÿ

i“1

M
ÿ

j“1

covpXi, Xjq (12)

where Var(Xi) is the variance of variable Xi and COV(Xi, Xj) is the covariance of variables Xi and Xj.
The covariance of any two variables is related to their Pearson correlation and standard deviation

(Equation (13)).
COV(Xi, Xj) “ Corr(Xi, Xj)ˆSTD(Xi)ˆSTD(Xj) (13)

where corr(Xi, Xj) is the correlation between variables Xi and Xj and STD(Xi) is the standard deviation
of variable Xi.

By combining Equations (12) and (13), the total variance of correlated N variables can be revised
into Equation (14).

VαrpTq “
N

ÿ

i“1

VαrpXiq`2
N

ÿ

i“1

M
ÿ

j“1

corrpXi, Xjq ˆ STDpXiq ˆ STDpXjq (14)

The most popular proxy of auto-correlation, Moran’s I, is similar to Pearson correlation [28].
Equation (14) can be borrowed to calculate the biomass loss variance of all the pixels that have
auto-correlation. However, it needs to be noted that not all the pixels in the earthquake impact area
are correlated with each other. The spatial auto-correlation only exists within a distance (i.e., range).
The pixels with distance beyond the range are independent to each other. Thus, Equation (14) need to
be adjusted based on the range (Equation (15)).

VαrpTq “
N

ÿ

i“1

VαrpXiq`2
N

ÿ

i“1

M
ÿ

j“1

αυto_corrpXq ˆ STDpXiq ˆ STDpXjq (15)

where M is the subset of the pixels that has auto-correlation with pixel i. It differs in different focal
pixel i.

Since the earthquake impact area is quite large, and includes a huge number of pixels. It is
extremely time consuming to calculate the 2nd part in Equation (15) by comparing every pair of pixels.
We simplified Equation (15) using the standard deviation of each pixel twice instead of two pixels’
standard deviation (Equation (16)).

M
ÿ

j“1

STDpXiqSTDpXjq “

M
ÿ

i“1

STDpXiqSTDpXiq (16)
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Thus, the final variance of the total biomass loss can be calculated based on Equation (17).

VαrpTq “
N

ÿ

i“1

VαrpXiq`2
N

ÿ

i“1

M
ÿ

i“1

αυto_corrpXq ˆ STDpXiq ˆ STDpXiq (17)

where auto_corr(X) is the spatial auto-correlation Moran’s I of forest biomass loss in earthquake impact

area and M is the number of pixels included in the auto-correlation range.
N
ř

i“1
VαrpXiq is the variance

of biomass loss output by Monte Carlo simulation. Moran’s I was calculated in GIS software ArcGIS
using the ∆GV map. As the study site is quite large, and ArcGIS can not calculate the Moran’s I using
all the pixels. We iteratively extracted a small amount of pixels and calculated the Moran’s I value for
each iteration. The averaged Moran’s I value of the 14 iterations (0.62) was used in the final calculation.

The maximum distance of the auto-correlation (range) was estimated by semivariogram in ArcGIS.
Similar to the calculation of Moran’s I, we iteratively extracted a small amount of pixels to construct the
semivariogram and estimated the ranges. The average range of all the 8 iterations was used to calculate
the number of pixels within the range (M). The final averaged range is 6862 m with corresponding M
of 2367 (i.e., number of pixels).

3. Results

3.1. Proxy for Forest Biomass Carbon Loss

A remote sensing metric (∆GV) validated by the field tree mortality data was used to calculate
regional forest biomass loss associated with the Wenchuan earthquake. It was calculated by subtracting
post-earthquake GV (2008) from pre-earthquake GV (2007). Thus, positive ∆GV values indicated net
biomass loss following the Wenchuan earthquake, whereas negative ∆GV values reflected forested
areas that were unaffected or had improved their green vegetation cover (growth). There was
a strong and significant correlation between Landsat-derived ∆GV and the field measured biomass
loss (Figure 6, Table 1). Thus, ∆GV was used as a proxy for forest biomass loss resulting from the
Wenchuan earthquake. As the regression models have intercept of 0 and the R2 is invalid, the t-test
and F-test were applied to evaluate the significance of the regression (Table 1).
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Figure 6. The relationship between field measured forest biomass loss rate and: Landsat TM ∆GV (a);
and Landsat TM and MODIS ∆GV (b).
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Table 1. Linear regression model and ANOVA analysis between GV from Landsat TM and field measured mortality: (a) For deciduous; (b) For evergreen; and (c)
Between GV from Landsat TM and MODIS.

Estimated (B) Standard Error t-Value Pr (>|t|) Df Sum of Square Mean of Square F Value Pr (>F)

(a) Deciduous TM_∆GV (900 m2) 12,737.9 604.1 21.09 <0.0001
TM_∆GV 1 537,853,472 537,853,472 444.65 <0.0001
Residuals 14 13,343,914 1,213,083

(b) Evergreen TM_∆GV (900 m2) 11,979.8 858.3 13.96 <0.0001
TM_∆GV 1 457,454,043 457,454,043 194.81 <0.0001
Residuals 14 32,875,103 2,348,222

(c) MODIS_∆GV 0.99171 0.02504 39.61 <0.0001
MODIS_∆GV 1 36.601 36.601 1568.8 <0.0001

Residuals 249 5.809 0.023

The unit is kg/900 m2, corresponding to the pixel size of Landsat.
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3.2. Spatial Pattern of Forest Mortality

The severity of forest mortality was consistent with the seismic intensity of the Wenchuan
earthquake. The earthquake had a strong effect on tree mortality at the fault zone (Figure 7a). Field
investigation found the most intensive biomass losses, including both above and belowground loss,
were 133 Mg¨ha´1 in the evergreen sites and 125 Mg¨ha´1 in the deciduous sites. The highest biomass
loss based on the ∆GV map was 167 Mg¨ha´1. The influence of the earthquake declined rapidly
with distance away from the fault trace (Figure 7a), especially within regions of seismic intensity > 9
(Figure 7). The average biomass loss was estimated to be as high as 5.4 Mg¨ha´1 at the fault zone (with
a corresponding ∆GV of 0.3), and it decreased rapidly on a slope of 0.25 Mg¨ km´1 with distance away
from the fault line (Figure 7b).
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Figure 7. MODIS-derived ∆GV (a); and the relationship between MODIS-derived ∆GV and distance
away from Seismic Intensity Isoline 10 (b). Positive ∆GV represents forest loss, whereas negative
indicates intact or improved forest conditions. A negative distance in (b) indicates pixels that were
located within the seismic intensity isoline, i.e., the seismic intensity of these pixels was greater than 10.

Forest mortality (i.e., ∆GV) continued to decrease up to a distance of 75 km away from seismic
intensity isoline 10 (Figure 7b), after which ∆GV values remained stable. The turning point, i.e., 75 km
away from seismic isoline 10, was therefore set as the average maximum distance (boundary) for
forests affected by the Wenchuan earthquake. The forests within this boundary were further evaluated
for their biomass loss following the Wenchuan earthquake.

3.3. Quantification of Forest Biomass Loss

The Wenchuan earthquake has induced significant forest biomass loss in a relatively small impact
area. Nearly 32,244 km2 of forests are located within the Wenchuan earthquake impact zone (Figure 8).
About 10,757 km2 of forest area (33.4% of the total forest area within the study area) showed biomass
loss due to the earthquake.

The forests had a significant biomass loss of 21.8 Tg (with equivalent carbon loss of 10.9 Tg¨C),
including aboveground and belowground biomass. The 95% confidence interval of the biomass loss
was 20.8–22.8 Tg. In addition, since deciduous forests dominate the landscape of this region, most of
the damage occurred in these forests. About 8677 km2 of deciduous forests were affected and resulted
in a total biomass loss of 17.9 Tg (equivalent to 8.95 Tg¨C). Only 2079 km2 of evergreen forests were
affected with a corresponding biomass loss of 3.9 Tg (1.95 Tg¨C).
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The variation of coefficient values in the mortality models explained the largest variation in total
forest loss estimates (Table 2). On the other hand, forest classification had little effect on the uncertainty
of the simulation, i.e., the parameter values of ideal points of deciduous and evergreen trees had
relatively little influence on the variation of total carbon loss. The changes to the ideal points of forest
type did not significantly change the forest likelihood probability for most pixels.

Table 2. The sensitivity analysis of the simulation: the biomass loss (Tg) output by changing the value
of coefficients and parameters in ˘20%.

Items Nominal Value +20% ´20%

Coefficient of deciduous mortality model (aLandsat_d) 14.2
Coefficient of evergreen mortality model (aLandsat_e) 13.3 26.1 17.4
Coefficient of scale model between MODIS and Landsat (aModis) 0.99 26.2 17.4
Ideal points’ GVmin (deciduous) 0.002
Ideal points’ GVmin (evergreen) 0.69 22.0 21.5
Ideal points’ GVmax (deciduous) 0.83
Ideal points’ GVmax (evergreen) 0.75 21.4 21.9
Maximum forest distance (d f or) 0.8247 21.8 21.7

3.4. Factors Influencing Forest Damage Patterns

In addition to seismic intensity of the earthquake, topography and tree characteristics also played
important roles in forest mortality (Figure 9). Forests located on steeper slopes sustained higher rates
of mortality (Figure 9a), i.e., a Pearson correlation coefficient of 0.66 was found between topographic
slope and ∆GV (p-value < 0.001).

Furthermore, ∆GV was found to be well correlated with tree size based on field survey
(Figure 9b,c). It had Pearson correlation coefficients of 0.42 and 0.46 with tree’s DBH and height,
respectively, and both had p-values < 0.01 (Figure 9b,c). The larger trees sustained more damages
from the earthquake. In general, topographical conditions played a more significant role in
earthquake-induced tree mortality than individual tree characteristics. The dominant species in the
study area, such as Alnus cremastogyne, Cunninghamia lanceolata, Cryptomeria fortuner and Betula utilis,
also had the highest mortality rates.
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Figure 9. The relationship between ∆GV and terrain slope (a); tree’s diameter at breast height (b); and
tree’s height (c). The brown and green points represent deciduous and evergreen forests, respectively.

4. Discussion

4.1. Improvement of the Synthetic Approach in Earthquake Influence Assessment

There are a few studies that explicitly evaluated the impacts of Wenchuan earthquake on forests
at the regional scale [15–17]. However, large uncertainties exist in these studies, mainly due to the
lack of appropriate methodology and field data. To our knowledge, this is the first study to provide
ground-based evidence that Wenchuan earthquakes impact forest mortality.

Instead of using political jurisdiction boundary like in other Wenchuan earthquake related
research [15–17], this study used seismic intensity field to define the earthquake impact zone. Forest
impacted zone was defined by a boundary that extended 75 km beyond the seismic intensity 10 isoline.
This outline is consistent with the spatial pattern of landslides triggered by the Wenchuan earthquake,
which declined with distance away from the epicenter until about 80 km from the surface rupture [29].
The new Wenchuan impact boundary outlined in this study greatly improved the accuracy of the
earthquake impact assessment compared with previous studies that used jurisdiction boundaries
alone [15–17]. Using jurisdiction boundary can significantly deviate the estimation of the earthquake
effects. For example, Jiang et al. [17] evaluated the Wenchuan earthquake-damaged forest area as
1599 km2, while our approach estimated an impact area of 10,757 km2.

The differences in methodology may lead to different forest mortality results. For example,
Chen et al. estimated 20.7% forest destroyed by Wenchuan earthquake using InSAR tools [16];
Jiang et al. found only 13.8% of forests was affected according to a quantified threshold based on
MODIS NDVI data [17]. In this study, we suggested the fraction of impacted forest areas was 33.4%,
which was in good agreement with our field experience.

Our estimation of the total forest biomass loss that resulted from the Wenchuan earthquake
(10.9 Tg in carbon) was much smaller than previously reported (235 Tg¨C) [15]. The main cause for the
difference stems from the differences in the methodologies used. Ren et al. [15] used an administrative
boundary to quantify the impact zone, which obviously overestimated the influence of this earthquake
by including tree mortality induced by other disturbances. In addition, Ren et al. [15] did not include
any field measured mortality data to calibrate their model simulations, which may have significantly
biased their estimates. By adding detailed field investigation and a precisely quantified impact zone,
our approach is able to obtain a more accurate estimate of forest biomass loss.

Overall, two important characteristics of the Wenchuan earthquake impact were observed. First,
the earthquake had a strong effect within the fault zone, where extremely high mortality was observed.
The aboveground biomass loss (117 Mg¨ha´1) in the Wenchuan fault zone was even higher than the
biomass loss following hurricane Katrina (87 Mg¨ha´1) [30]. Second, the influence of the earthquake
declined rapidly with distance away from the fault zone, suggesting the entire impact area was
relatively small when compared with other disturbances [4].
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4.2. Factors Impacting Tree Mortality Following Earthquake Events

The damage to a tree is a result of multiple factors including tree and stand characteristics and
environmental conditions. The prime impact factor on earthquake-induced tree mortality is topography.
Trees located on hills with steep slopes experienced higher mortality rates (Figure 9a). This is consistent
with the findings in other earthquake-related studies [31,32] as well as the field investigation in our
work, i.e., the landslides and mountain collapses were more often found in topographically steep
regions and consequently buried more trees. Precipitation may also be critical to tree mortality, as
heavy raining may trigger more landslide and debris flow. Unfortunately, there is no proper climate
data available and no related analysis could be carried out.

More middle-sized trees were damaged in Wenchuan earthquake, although old trees are more
susceptible (Figure 9). This is because most forests in the Wenchuan earthquake area had middle-sized
trees. Moreover, there was no significant difference in tree mortality between tree species. The species
with higher mortality were also the dominant species in this area. The lack of correlation between
tree species and vulnerability is unique to earthquake disturbance, as most other forms of natural
disturbance, e.g., wind [33], fire [34], drought [35] and insect attack [6], are closely linked to tree species.

4.3. Earthquakes Act as Major Carbon Dynamic Drivers

Our results showed that earthquakes might act as major drivers of forest carbon dynamics,
especially in tectonically active regions. The trees buried during earthquake usually have low turnover
rates with long life span (decades to centuries). Without the carbon pools of these buried woody
mass, the carbon stock estimation would be biased and the regional carbon dynamics would be
misinterpreted [36]. It was reported that Chinese forests had a living biomass carbon stock of 4.75 Pg
C in 1998 [37]. The biomass carbon loss associated with the Wenchuan earthquake offset the biomass
carbon in Chinese forests by 0.23%. On average, 14.7 earthquakes of magnitude > 5.75 occur every
month at shallow depth (<70 km) around the world [38]. In China, 16.3 earthquakes with magnitude
5.0 or greater occur each year [39]. As earthquakes continue to occur at this frequency or higher, more
forests will likely be exposed to this form of disturbance, particularly in tectonically active regions. Our
results indicate that earthquake-induced biomass carbon loss comprises a more important component
of the carbon budget than previously expected. Thus, the disturbance of the earthquake and the
dynamics of the buried woody mass need to be included in the evaluation of regional carbon balance.
Despite their importance, the earthquake-induced carbon pool has largely been missed and is not
currently represented in the calculations of carbon budget.

4.4. Uncertainties and Limitations of the Synthesis Approach

Uncertainties in our approach are mainly attributed to the definition of the areal impact boundary
by the earthquake, the performance of the SMA to produce ∆GV, and the coefficient values of the
forest mortality models. Our robust field measurements significantly improved the mortality models,
help set the ideal endmembers, and therefore provide more precise predictions of earthquake impacts.
Although the field survey was well designed and its sampling sites were allocated across the entire
damaged gradient, uncertainties still exist in the inventory data, mainly coming from measurement
errors and sampling errors. For example, we only record the trees with DBH greater than 5 cm and
likely underestimate the damage that occurred in small trees. On the other hand, the selection of ideal
points of forest types had relatively little effect on the estimation of forest loss (Table 2). This is mainly
due to the fact that most non-forest areas were excluded in the final calculation based on land use
maps. Extra caution is needed if non-forest areas are included in the analysis, which may increase
the uncertainty regarding the biomass loss estimate. Another additional limitation of our study is the
difficulty of investigating the earthquake-induced forest damage directly. Since trees are usually buried
following earthquake events, pre-earthquake forest conditions were approximated by measuring the
adjacent undisturbed forest.
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The Monte Carlo program output relatively small variation of the biomass loss (with standard
deviation coefficient of 3%). One reason is that some of the input information was set as deterministic
due to the complication of the process, including the boundary of impact area and ∆GV extracted
from SMA. Another important reason is the independence of the pixels. Although there is spatial
auto-correlation in biomass loss, the range of the auto-correlation (2367 pixels) is relatively small
compare to the impact area (172,113 pixels). One pixel is only auto-correlated to less than 2% of
the total pixels of the impact areas. This is mainly because the study area is a mountainous area
with steep valleys. The land use and vegetation are fragmented. This is significantly different from
plains. The Monte Carlo simulations have the limitation to improve the biomass loss estimation at any
specific location (pixel), which was proven by Healey et al. [40]. However, biomass loss at landscape
level can be fully accredited due to the independence among pixels, which decreases the uncertainty
of estimation.

5. Conclusions

Earthquakes have unexpected and tragic effects on ecological systems. The synthetic approach
developed in this work could efficiently quantify the forest biomass carbon loss following an
earthquake event. Our results reveal that the Wenchuan earthquake had a strong and measurable
impact on tree mortality with a total biomass carbon loss of 10.9 Tg¨C. However, the damages
were highly localized resulting in a smaller impact area than previously considered. As such, the
earthquake-induced dead trees represent a large forest carbon pool that is not yet fully recognized in
forest carbon accounting. Failing to account for the effects of earthquake disturbance may bias carbon
stock estimation and misinterpret carbon dynamics.
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