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Abstract: This study presents a novel approach for unsupervised change detection in multitemporal
remotely sensed images. This method addresses the problem of the analysis of the difference image
by proposing a novel and robust semi-supervised fuzzy C-means (RSFCM) clustering algorithm.
The advantage of the RSFCM is to further introduce the pseudolabels from the difference image
compared with the existing change detection methods; these methods, mainly use difference intensity
levels and spatial context. First, the patterns with a high probability of belonging to the changed or
unchanged class are identified by selectively thresholding the difference image histogram. Second,
the pseudolabels of these nearly certain pixel-patterns are jointly exploited with the intensity levels
and spatial information in the properly defined RSFCM classifier in order to discriminate the changed
pixels from the unchanged pixels. Specifically, labeling knowledge is used to guide the RSFCM
clustering process to enhance the change information and obtain a more accurate membership;
information on spatial context helps to lower the effect of noise and outliers by modifying the
membership. RSFCM can detect more changes and provide noise immunity by the synergistic
exploitation of pseudolabels and spatial context. The two main contributions of this study are
as follows: (1) it proposes the idea of combining the three information types from the difference
image, namely, (a) intensity levels, (b) labels, and (c) spatial context; and (2) it develops the novel
RSFCM algorithm for image segmentation and forms the proposed change detection framework.
The proposed method is effective and efficient for change detection as confirmed by six experimental
results of this study.

Keywords: remote sensing; unsupervised change detection; thresholding; fuzzy C-means; clustering
with partial supervision; robust semi-supervised fuzzy C-means

1. Introduction

Remote sensing data change detection is the process of identifying land cover changes using
remotely sensed imagery of the same scene acquired at different times [1,2]. In past decades, numerous
change detection methods were developed, and many have been summarized and reviewed [1–6].
The methods can be broadly categorized into either supervised or unsupervised based on the nature of
their data processing.

This study focuses on one of the most widely used types of unsupervised change detection
methods based on the difference image. From a methodological perspective, difference image-based
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unsupervised change detection is generally achieved by two pivotal steps: to produce a difference
image and to use effective methods for analyzing the difference image and identifying the pixels
as changed or unchanged [7,8]. The first step compares two co-registered multi-temporal remotely
sensed images to create the difference image, in which different mathematical operators can be
used (e.g., image differencing, image rationing, spectral gradient differencing, and change vector
analysis [9,10]).

The second step labels the difference image pixels as the changed or unchanged class, by which the
change detection map is achieved. Such a classifying problem can be viewed as an image segmentation
problem to partition the difference image into two opposite groups [11]. The most widely used method
for this issue is thresholding [12–15]; many popular algorithms can be adopted to determine the
decision threshold automatically, such as the Otsu algorithm [13], the Kapur algorithm [13], and the
expectation maximization algorithm (EM) [12]. Additionally, several pattern recognition or machine
learning methods have been used to discriminate changed and unchanged pixels, such as the support
vector machine [16], the active contour model [17], the dual-tree wavelet transform [18], and the
artificial neural network [19].

Several researchers recently focused on the fuzzy C-means (FCM) algorithm for remote sensing
data change detection [20–24]. FCM is the most popular fuzzy clustering method for image
segmentation [25]; FCM provides a suitable tool for partitioning the difference image. First, FCM
requires no selection or establishment of a probability statistical model for the distributions of changed
and unchanged classes; such a lack of requirement indicates good prospects in application. Second,
FCM has robust characteristics for ambiguity, and thus is more appropriate for discovering the changed
and unchanged classes because the ranges of pixel values of difference image that belong to the changed
and unchanged groups usually have overlaps. For example, when the difference image represents
the absolute valued difference of two temporal images, an overlapping region is observed on the
histogram of the difference image between the changed and unchanged groups [16].

Ghosh et al. [20] used the standard FCM algorithm to perform change detection, attempting to
determine a fuzzy segmentation of the difference image. Spatial contextual information has been
incorporated into FCM to further enhance the performance in change detection results; this approach
is based on the pixels being highly correlated with their neighbors in the spatial domain [23] and
on changes that are more likely to occur in connected regions rather than in discrete points [12,26].
Mishra et al. [23] incorporated neighborhood information into the input image using a local similarity
measure to make the FCM more robust to small changes. Ma et al. [24] adopted a robust fuzzy local
information C-means (FLICM) clustering algorithm to identify the changed regions in the difference
image. The FLICM was proposed by Krindis and Chatzis [25] for image segmentation. FLICM is
characterized by its use of a novel fuzzy factor that attempts to guarantee noise insensitiveness and
image detail preservation. Gong et al. [21] proposed an improved FLICM to classify changed and
unchanged classes of the change detection problem. The reformulated FLICM (RFLICM) improves
the manner of utilizing spatial information by modifying the fuzzy factor. All of the aforementioned
FCM-based algorithms can achieve effective segmenting results for the difference image, but they still
have a common limitation: they do not fully exploit another intrinsic characteristic of difference image.
The details of the limitations are discussed as follows.

When a difference image denotes the absolute valued difference of two-date images, such a
situation indicates that values close to 0 represent areas of no change and magnitudes close to 255 depict
areas of change. Following this characteristic, the difference image can be conceptually divided by two
thresholds (i.e., one low and one high) into three parts [16,27]: (1) nearly certain part of no change, in
which pixels have intensity levels lower than the low threshold; (2) uncertain part, corresponding to
the aforementioned overlapping region, in which pixels are associated with intensity levels between
the two thresholds; and (3) nearly certain part of change, in which pixels have difference intensity
levels higher than the high threshold. The nearly certain change and no-change patterns are associated
with a high probability to be changed or unchanged. Their labels (called pseudolabels) give valuable
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knowledge and can play an important role in the change detection task [16,27,28]. An efficient use
of the labeling knowledge may yield more reliable and accurate change detection results. However,
the aforementioned FCM-based algorithms only consider the intensity levels and spatial contextual
information of the difference image, without considering the valuable pseudolabels of difference image.
A possible method to compensate this drawback is to apply the semi-supervised fuzzy clustering
algorithm; such a method is applied in different conditions in which data is neither entirely nor
accurately labelled [29,30]. The algorithms with partial supervision can exploit both the data structure
and the labels of pixels.

Given the above analysis, this paper proposes a novel approach to unsupervised change detection
based on a robust semi-supervised FCM clustering algorithm (RSFCM). Its point of departure is to
combine difference intensity levels, pseudolabels, and spatial contextual information for the difference
image analysis.

The rationale of the proposed method is to first use an adaptive Bayesian thresholding technique
to recognize automatically a set of nearly certain patterns. The properly designed RSFCM algorithm is
then adopted to solve the change detection issue, which considers the intensity levels, pseudolabels
(the labels of the recognized pixels), and spatial context. On the one hand, RSFCM extends the
objective function of FCM to include a supervised component, by which pseudolabel knowledge
is incorporated into the clustering process of RSFCM. Via labeling information, RSFCM can obtain
more accurate membership functions than can the unsupervised FCM algorithms (for instance, the
nearly certain change patterns will achieve a higher membership grade of change class). On the other
hand, RSFCM defines a novel Markov random field (MRF) model to modify the membership of each
pixel, therefore, the robustness of RSFCM to noise and error labels (the labels obtained automatically
may have error labels) is enhanced. The labeling knowledge helps to enhance change information
and restrain the over-smoothness of membership functions by spatial context; meanwhile, the use of
spatial context guarantees noise insensitiveness. Thus, RSFCM is expected to perform better than the
previously mentioned FCM-based change detection methods, which mainly consider intensity levels
and spatial context.

The proposed change detection technique has the following characteristics: (1) unsupervised,
(2) working well on separating overlapping clusters; and (3) integrating the merits of both supervised
and unsupervised strategies (to fully exploit the available information from the difference image). The
main contributions of this study are as follows:

1. The basic idea, which consists of the synergistic exploitation of the intensity levels, labeling
knowledge, and information on spatial context for the difference image analysis;

2. The method of automatically obtaining labeled pixels, the novel RSFCM algorithm for image
segmentation, and the framework definition of the proposed change detection technique.

The rest of this paper is structured as follows. The next section details the proposed change
detection method and each step involved. Section 3 presents the experimental results on six different
real remote sensing datasets to verify the effectiveness of the proposed approach. The conclusions are
drawn in Section 4.

2. Methodology

Let X1 and X2 be two co-registered remotely sensed images with the same size of I ˆ J acquired
over the same geographical area at two different times t1 and t2. Then, the difference image denoted by
XD “ tXDpi, jq|1 ď i ď I, 1 ď j ď Ju is obtained by applying the commonly used image differencing
technique [12] to X1 and X2. In the case of synthetic aperture radar (SAR) images, the natural log
difference is used instead of the direct difference because the log-operator is robust and not sensitive
to the speckle noise of SAR images [21]. In particular, the difference image is generated using Equation
(1) for optical images and Equation (2) for SAR images:

XD “ |X2 ´ X1| (1)
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XD “ |logpX2q ´ logpX1q| (2)

Let Ω “ twu, wcu be the set of classes to be identified, where wu denotes the class of unchanged
pixels, and wc denotes the changed class.

As shown in Figure 1, the proposed RSFCM technique—unlike the most widely used approaches
to change detection—synchronously considers the three types of information (intensity levels, labels,
and spatial context) from the computed difference image in the process of discriminating changed
regions from unchanged regions. This method includes two main steps: First, labeled data points
(i.e., the nearly certain patterns) are identified, automatically, by using selective Bayesian thresholding
of the difference image histogram. Then, labels of these patterns along with intensity levels and spatial
context are inputted into and utilized synergistically by a well-defined RSFCM classifier to produce
the change detection map. The RSFCM algorithm enhances the traditional FCM by incorporating both
the labeling knowledge and spatial contextual information.
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Section 2 is organized as follows. Section 2.1 gives the detailed description of the method to
derive the labeled data points. Section 2.2 details the proposed RSFCM algorithm. Finally, Section 2.3
presents the operational procedure of the proposed RSFCM change detection approach.

2.1. Identification of Labeled Patterns

The first step of the proposed change detection method attempts to identify the sets Sc and Su

comprising changed and unchanged patterns, the labeling information of which will be used to guide
the RSFCM classifier in the second step. The set Sc (Su) should theoretically contain pixels that are
associated with the changed (unchanged) class with no uncertainty. However, we are addressing an
unsupervised change detection problem where no ground truth information is available. Therefore,
we relax the ideal assumption with the more realistic constraint that pixels contained in the sets Sc and
Su have a high probability to be changed or remain unchanged as in [16].

In this study, we propose to identify the sets Sc and Su by selectively thresholding the histogram
hpiρq of difference image, where iρ is the random variable associated with the difference intensity
levels in XD. As previously mentioned, different methods can be used to identify the threshold for
separating changed pixels from unchanged pixels. In particular, this study particularly uses the
threshold selection approach based on Bayesian decision theory [12]. The EM algorithm is adopted to
estimate the statistical parameters of changed and unchanged classes, and the Bayesian threshold T0

is then calculated based on Bayes theorem. Additional details of identifying T0 can be found in [12].
The change detection map produced by T0 is affected by the errors that result from the uncertainty
that characterizes pixels with an intensity level close to T0 [27]. This problem primarily occurs because
of the range overlap of pixel values of the changed and unchanged classes. By contrast, given that



Remote Sens. 2016, 8, 264 5 of 25

threshold T0 is identified based on the Bayesian decision rule for minimum error, it represents a
reasonable reference point to derive the sets Sc and Su. Accordingly, the desired sets Sc and Su can be
obtained by defining a margin around T0 as follows:

#

Sc “ tXDpi, jq|iρpi, jq ą Tcu

Su “ tXDpi, jq|iρpi, jq ă Tuu
(3)

where iρpi, jq is the intensity level of the pixel XDpi, jq, and Tc and Tu are two T0-induced thresholds
that meet the condition Tc > T0 > Tu.

The thresholds Tc and Tu determine the boundaries of the sets Sc and Su, respectively. They should
be selected to provide the pixels in Sc and Su with the correct label with high probability. In our case,
the labeled patterns (the nearly certain samples) are used to guide the grouping process of RSFCM,
and they are not required to completely model the statistics of the changed and unchanged classes.
Therefore, we can define a large uncertain region to guarantee that patterns in Sc and Su can be correctly
labeled with high probability. The pixel sets with intensity levels that are greater than and smaller than
T0 (denoted by Dc and Du, respectively) are expressed as follows:

#

Dc “ tXDpi, jq|iρpi, jq ą T0u

Du “ tXDpi, jq|iρpi, jq ă T0u
(4)

The definition in Equation (3) indicates that Tc determines which Dc patterns fall in Sc, and Tu

determines which Du patterns are located in Su. A reasonable strategy to select the Tc and Tu values
is to relate them to the statistical characteristics of the Dc and Du sets. To a large extent, mean and
variance are two widely used statistical parameters that can characterize a dataset. The Dc and Du

means are used to define the sets Sc and Su, respectively, based on the characteristics of our problem.
In particular, we express Tc and Tu as Tc = µc and Tu = µu, where µc and µu denote the mean value of
Dc and Du, respectively. Therefore, the definition shown in Equation (3) can be rewritten as follows:

#

Sc “ tXDpi, jq|iρpi, jq ą µcu

Su “ tXDpi, jq|iρpi, jq ă µuu
(5)

An example of the definition in Equation (5) is shown in Figure 2. Labels of the pixels in the sets
Sc and Su are assigned as follows according to the properties of difference intensity levels:

ylpi, jq “

#

wc i f iρpi, jq ą µc

wu i f iρpi, jq ă µu
(6)

where yl
pi,jq represents the label of XDpi, jq. Given that the patterns in Sc and Su are identified

automatically, their labels are called pseudolabels. The pseudolabel set is denoted by Yl “
!

yl
pi,jq

)

, and
the labeling information of the nearly certain pixels contained in the set Yl will be used to supervise
the clustering process of RSFCM.
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2.2. Robust Semi-Supervised FCM Clustering Algorithm

This section details with the RSFCM algorithm for analyzing the difference image. Section 2.2.1
reviews the standard FCM briefly. Section 2.2.2 provides the strategy in using the labeling information
of the nearly certain samples. Section 2.2.3 presents the scheme of exploiting the spatial context.

2.2.1. FCM Algorithm

The purpose of the difference image analysis is to discriminate changed regions from unchanged
regions. This process belongs to the field of image segmentation. As mentioned in Section 1, changed
and unchanged classes in the difference image are not clearly defined, and an ambiguous region exists
between these two classes. Therefore, we attempt to solve the change detection problem using fuzzy
clustering, because fuzzy set theory [31] provides useful concepts and tools to deal with imprecise
information [32]. In fuzzy clustering, difference image patterns are assigned neither to the changed nor
the unchanged group but to both groups with certain membership degrees. In particular, the present
work applies the properly designed RSFCM to difference image analysis, which is a variation of the
standard FCM. The RSFCM description begins with a brief summary of FCM.

FCM was first introduced by Dunn [33] and was later improved by Bezdek [34]. It is an iterative
clustering method that attempts to partition a finite collection of N data points into a set of C fuzzy
clusters by minimizing the weighting within the group sum of the squared error objective function [25]

J pU, Vq “
N
ÿ

n“1

C
ÿ

k“1

um
knd2 pyn, vkq (7)

with the following constraints:
$

’

&

’

%

C
ř

k“1
ukn “ 1

0 ď ukn ď 1
@n P t1, ¨ ¨ ¨ , Nu (8)

where Y “ ry1, y2, ¨ ¨ ¨ , yNs is the dataset to be grouped; C is the cluster number; U is the fuzzy partition
matrix (membership functions), such that ukn indicates the membership grade of yn in the kth cluster;
m is the weighting exponent in each fuzzy membership; V is the set of the prototypes vk associated

with clusters; and d2
pyn ,vkq

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
yn ´ vk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
is the squared distance measure (Euclidean norm) between

pattern yn and cluster center vk.
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The computation of the cluster centers and membership functions is performed as follows:

vk “

N
ř

n“1
um

knyn

N
ř

n“1
um

kn

(9)

ukn “
1

C
ř

j“1

˜

d2pyn, vkq

d2pyn, vjq

¸r1{pm´1qs
(10)

The fuzzy partition matrix U is generally normalized, with its elements falling within [0, 1], and
U and V are iteratively updated to approach an optimum solution. The iterative process ends when
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Uprq ´Upr´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă ε is achieved, where Uprq and Upr´1q are the partition matrix in the rth and (r ´ 1)th

iteration, respectively, and ε is a small positive threshold predefined manually. More details of FCM
can be referenced in [34]. The dataset to be clustered in our problem is the difference image, which is
divided into two groups: changed and unchanged. Therefore, N “ I ˆ J and C = 2.

The FCM algorithm provides an appropriate tool to cluster the overlapping changed and
unchanged clusters. Nevertheless, given no information on pseudolabels and spatial context, the
conventional FCM only uses the difference intensity levels of the difference image pixels. We attempt
to integrate these two types of valuable information into FCM to enhance the performance in change
detection results, which is more difficult than when only spatial information is incorporated. Strategies
to exploit labeling knowledge and information on the mutual influences among image pixels are
presented in Sections 2.2.2 and 2.2.3 respectively.

2.2.2. Strategy for Exploiting Labeling Knowledge

Several techniques have been proposed to enhance FCM performance with the help of partial
supervision [29,30,35–37]. Bensaid and Bezdek [35] used labeled patterns as seeds to initialize the
clusters’ centers. However, the potential of labeled data points has not been fully realized because
they have only been used for initializing the cluster prototypes. To fully utilize this potential, labeled
patterns are given more weight than the unlabeled ones in [36] when the cluster centers are calculated.
Nevertheless, this approach assumes that the labeled patterns all have a correct label; the reassignment
of patterns is conducted only for unlabeled patterns. This manner is inappropriate for our condition
because the label set Yl , which is obtained automatically, can have noisy elements (error labels).
Semi-supervised clustering algorithms based on a modified FCM objective function were discussed
in [29,30,37]. These algorithms do not only fully exploit the labeled data points but are also suitable for
conditions in which data is neither completely nor perfectly labeled.

Inspired by [30], we propose the approach for incorporating partial supervision into the process
of analyzing the difference image, in which the problem of clustering labeled and unlabeled data is
explicitly expressed as an augmented objective function. The main idea of this strategy is to use the
labeled patterns (the nearly certain patterns) to guide the process of segmenting the difference image
to obtain a more accurate membership. The augmented objective function consists of two components.
The former is namely the FCM objective function, and it concerns unsupervised clustering. The latter
retains the relationship between the pseudolabels and clusters generated by the first component.

The following is the detailed description of the proposed technique for exploiting the pseudolabels.
The augmented objective function adopted assumes the following form:

J pU, Vq “
N
ÿ

n“1

C
ÿ

k“1

um
knd2pyn, vkq ` α

N
ÿ

n“1

C
ÿ

k“1

pukn ´ ruknq
md2pyn, vkq (11)
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The parameter α is a scaling factor that helps establish a sound balance between the unsupervised
and supervised components. Furthermore, the terms rukn are the optimal membership degrees for the
labelled data points, which are derived from the labeling information contained in the set Yl . The matrix
rU “ rrukns in Equation (11) helps to optimize the membership for the difference image pixels to the
changed and unchanged classes using labeling information (rukn) in contrast to ukn. The second
(supervised) term is minimized when the value of ukn becomes close to that of rukn. Therefore, the
membership value ukn is constrained to approach the corresponding rukn. Ideally, both ukn and rukn
should have the same value.

Using Equation (11), both the hidden and the visible structures of the difference image can be
captured. The first term attempts to discover the hidden data structure, whereas the second term
considers the visible data structure reflected by the available labels (pseudolabels). The matrix rU is the
main part of the second component. The terms rukn are iteratively computed as follows:

ruprqkn “ rupr´1q
kn ´ η

BQpL, rUq
Brukn

(12)

where the superscript r refers to consecutive iterations and

QpL, rUq “
N
ř

n“1

C
ř

k“1
δn prukn ´ `knq

2, rukn P r0, 1s (13)

L “ rlkns is a Cˆ N binary matrix used to arrange labeling information, so that lkn “ 1 if pattern
yn belongs to the kth class and 0 otherwise. The vector δ “ rδns is two valued and specifies whether the
data point n is labeled (i.e., δn “ 1 if yn is a labeled pattern and 0 otherwise). Moreover, the parameter η

in Equation (12) is a positive learning rate that controls the process of updating the membership grades
of rU. By substituting Equation (13) into Equation (12), the learning rule Equation (12) is transformed
into the following:

ruprqkn “ rupr´1q
kn ´ 2ηδn

´

rupr´1q
kn ´ `kn

¯

(14)

Equation (14) optimizes the amount rukn by exploiting the learning rate η and computed difference.
rU is initialized by U(˝), which is obtained by applying the standard FCM to the difference image.
The iterative process of computing rU terminates when

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rUprq ´ rUpr´1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă τ is reached, where τ is a

small positive threshold. The resulting matrix rU is used to compute the second term in Equation (11),
the difference between U and rU. The process of computing rU is the same process of minimizing
QpL, rUq.

After obtaining the matrix rU, an iterative semi-supervised algorithm for minimizing Equation (11)
can be derived by evaluating cluster centers and membership matrices that satisfy a zero gradient
condition. For simplicity, the weighting exponent m in Equation (11) is set to 2 in this work.
The calculation formulas of the cluster centers and membership functions are as follows [30]:

vk “

N
ř

n“1

´

u2
kn ` pukn ´ ruknq

2
¯

yn

N
ř

n“1

´

u2
kn ` pukn ´ ruknq

2
¯

(15)

ukn “
αrukn
p1` αq

`

1´ pα{ p1` αqq
C
ř

s“1
rusn

C
ř

s“1
d2 pyn, vkq {d2 pyn, vsq

(16)

Thus far, the utilization of labeling information (the pseudolabels) is accomplished by the terms
rukn in Equations (15) and (16), and a semisupervised FCM algorithm (SFCM) is presented. However,
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similar to the conventional FCM, SFCM is also sensitive to noise and outliers because it does not
consider information on spatial context. Moreover, the SFCM performance can be affected to a certain
extent by the noisy (error) labels contained in the set Yl . Local spatial information is introduced into
SFCM, as presented in Section 2.2.3, to enhance the robustness of SFCM to noise pixels and error labels.

2.2.3. Strategy for Utilizing Information on Spatial Context

This section proposes a technique for incorporating information on spatial context in SFCM, by
which the RSFCM clustering algorithm is developed. The developed technique does not improve
the SFCM by modifying its objective function as in [21,25]. Instead, it focuses on the modification of
the membership in each iteration process. The aim of the modification is to discourage unlikely or
undesirable configurations in the SFCM membership functions, such as a high membership value
immediately surrounded by low values of the same class (Figure 3a).
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A Markov random field (MRF) provides an opportune tool to introduce information on the mutual
influences among image pixels in a powerful and formal manner, and it has been widely used for the
change detection problem [7,12,26,38,39]. We call a random field an MRF if and only if some property
of each site (pixel) is related only to the neighborhood ones and has no relationship with the other
ones in a field (an image) [39]. Thus, the complexity of utilizing the spatial contextual information
can be largely simplified by passing from a global model to a model of the local image properties
(i.e., adopting the MRF method). An important issue of MRF model is the energy function, by which
the abstract MRF expression is converted into a computable expression.

The SFCM algorithm is improved in this work based on the MRF-based spatial context, which is
incorporated into the SFCM membership by adding a new spatial energy term. We then use XDpi, jq to
denote the data points of the difference image, where (i, j) represents the pixel coordinates.

First, we present the conventional local MRF energy function because it has a basic relationship
with the proposed scheme for the utilization of spatial context. The local energy function for pixel
XDpi, jq takes on the following form [12,38,40]:

UMRFpXDpi, jqq “ UspectralpXDpi, jqq `UspatialpXDpi, jqq (17)

where UspectralpXDpi, jqq is the spectral energy function from the observed image, and UspatialpXDpi, jqq
is the spatial energy term that describes information on the mutual influences among neighboring
pixels. Introducing the concept of the spatial neighborhood system is necessary to determine the
spatial energy term, and the most commonly used second-order neighborhood system (Figure 3b) is
adopted. The second-order neighborhood system for pixel (i, j) is denoted by N(i, j). The spatial energy
term can then be defined as follows [12,38]:

UspatialpXDpi, jqq “ β
ÿ

pg,hqPNpi,jq

Iplpi, jq, lpg, hqq (18)
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The parameter β is a constant used to tune the influence of information on spatial context, and
lpi, jq and lpg, hq (pg, hq P Npi, jq) denote the class labels for the pixel (i, j) and its neighborhood,
respectively. Furthermore, Ip¨ , ¨ q is an indicator function that is applied to count the number of
neighborhood pixels that belong to the same class of XDpi, jq , which is defined as follows:

Iplpi, jq, lpg, hqq “

#

1 i f lpi, jq “ lpg, hq
0 otherwise

(19)

On the basis of the MRF energy Equation (17), we propose the approach to improve the
membership of SFCM. After calculating it in each iteration process, the SFCM membership is modified
by adding a novel fuzzy spatial term. The modified membership takes on the following form:

uMod
k,pi,jq “ uk,pi,jq ` uspatial

k,pi,jq (20)

The term uk,pi,jq is the membership grade for the pixel (i, j) to class k computed by Equation (16),

and uspatial
k,pi,jq is the additional spatial term defined as follows.

The spatial information contained within the neighborhood centered at pixel (i, j) can be effectively
used with Equation (18). However, Equation (18) is defined following classical set theory and uses the
hard indicator function Ip¨ , ¨ q. Therefore, it is inappropriate for defining the spatial term uspatial

k,pi,jq as the
SFCM algorithm belongs to the family of fuzzy clustering, in which the pixels are assigned not to any
one class but to all the classes with certain membership grades. Additionally, we change the influence
of the pixels within the local window flexibly based on their spatial distances to reflect the damping
extent of the neighborhood pixels with the spatial distance from the center pixel. Thus, to determine
the degree of influence of the neighboring pixels for the center pixel, a fuzzy spatial information
measure is defined based on the membership degree and distance as follows:

uspatial
k,pi,jq “ β

ÿ

pg,hqPNpi,jq

uk,pg,hq

dpi,jq,pg,hq
(21)

where uk,pg,hq is the membership degree for XDpg, hq to cluster k computed by Equation (16), dpi,jq,pg,hq is
the spatial Euclidean distance (Figure 3c) between pixel (i, j) and its neighborhood pg, hq, and parameter
β is used to control the influence of spatial information on the change detection process. Generally,
different β-values can be considered. Here, we simply set the value of β to 1 as both uk,pi,jq and uk,pg,hq
are the membership of SFCM calculated by Equation (16).

In expression Equation (21), we adopt the membership uk,p¨ ,¨ q to replace the hard indicator
function Ip¨ , ¨ q to describe the influence of neighboring pixels on the central pixel. The inverse distance
d´ 1

pi,jq,pg,hq
is used, as the closer the neighbors from the center (i, j) are, the more influence they exert on

the result and vice versa. With the proposed fuzzy spatial term Equation (21), unlikely or undesirable
configurations in the membership functions can be discouraged. For instance, if the central pixel
is corrupted by noise while its neighboring pixels are homogeneous, i.e., not corrupted by noise
(Figure 3a), the undesirable membership grade of the noisy (central) pixel will converge to similar
neighboring pixel membership degrees because of the addition of the fuzzy spatial term Equation (21).

Eventually, we achieve a robust semi-supervised FCM algorithm called RSFCM, of which the main
steps are presented in tabular form (Algorithm 1). In RSFCM, difference intensity levels and labeling
information are used to estimate the membership, which is then modified by information about spatial
context (as shown in Steps 3a–d of Algorithm 1). In the stage of estimating membership functions,
the supervised (second) term of Equation (11) constrains the membership value ukn to approach
the optimal rukn and enables the nearly certain change patterns to have a greater membership of the
change class (see Step 3b), by which the change information is enhanced; in the stage of modifying
the membership, the fuzzy spatial term Equation (21) discourages the undesirable configurations of
membership functions caused by noise or error labels (see Step 3d), by which membership functions
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become spatially smooth. Therefore, RSFCM provides noise-immunity and preserves more detailed
change information.

Notably, in the proposed RSFCM algorithm, the weighting exponent m is set to the value of 2 (see
Equations (15) and (16)). In addition, the modified membership grades computed by Equation (20) are
normalized in each iteration process, with their elements falling in [0,1].

Algorithm 1 Main steps of the RSFCM clustering algorithm

1: The standard FCM is applied to the difference image to produce an initial partition matrix U(˝).
2: The matrix rU is derived with labeling knowledge.

rU is initialized with U(˝) and r = 1 is set.
Repeat
rUprq is computed using Equation (14).
Until

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

rUprq ´ rUpr´1q
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă τ where τ is a small positive threshold.

3: Membership functions U are computed using intensity levels, rU and spatial context.
U is initialized with U(˝) and r = 1 is set.
Repeat

(a) V (r) is computed using Equation (15).
(b) U (r) is computed using Equation (16).

(c) The fuzzy spatial term uspatial
k,pi,jq is computed using Equation (21).

(d) U (r) is modified with Equation (20).

Until
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Uprq ´Upr´1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ă ε where ε is a small positive threshold.

2.3. Implementation of the RSFCM Change Detection

In this study, a novel technique based on RSFCM is presented to analyze the difference image in
the unsupervised change detection problems. The technique is an ensemble method that combines the
difference intensity levels, pseudolabels and spatial context. Labeling information is used to guide the
computation of membership functions, and spatial information helps to restrict membership functions
to be spatially smooth. Fully exploiting the available information from the difference image guarantees
the effectiveness of the RSFCM for change detection. The implementation of the RSFCM change
detection method includes the following three operational steps (Figure 1):

(1) Produce difference image

The proposed approach is based on the difference image that represents the change information.
Difference images are created by applying differencing technique (as shown in Equation (1) or
Equation (2)) to X1 and X2, two remotely sensed images of the same scene taken at two different times.

(2) Identify labeled patterns (nearly certain samples)

This step is a preparatory stage to derive the nearly certain samples with a high probability to be
changed or unchanged class, of which the pseudolabels are used by RSFCM to guide the clustering of
the difference image. The nearly certain patterns are identified by applying two adequate thresholds
induced by the Bayesian threshold to the histogram of the difference image. Details of the process can
be found in Section 2.1.

(3) Distinguish changed regions from unchanged regions
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In this step, the change detection map is generated by labeling the difference image pixels into
changed and unchanged classes. First, the difference image is partitioned into two fuzzy clusters by
calculating the fuzzy partition matrix U “ ruk,pi,jqs using the properly designed RSFCM algorithm.
Then, a defuzzification process takes place to convert the fuzzy partition matrix U to a crisp partition.
The maximum membership procedure is the most important approach developed to defuzzify U [25].
In this study, this procedure is adopted to convert the fuzzy difference image achieved by RSFCM to
the change detection map. It assigns the pixel XDpi, jq to the class wk with the higher membership

wk “ argk

!

max
!

uk,pi,jq

))

wk “ wu or wc. (22)

3. Experiments and Analysis

3.1. Dataset Description and Experimental Settings

3.1.1. Datasets

To evaluate the effectiveness of the proposed change detection approach, six real multitemporal
remotely sensed datasets acquired by different sensors referring to different changes were considered
in the experiments. Typical corrections, such as co-registration and relative radiometric correction,
were done on the six used remote sensing datasets before applying the proposed change detection
approach. The first three datasets shown in Figure 4 are available from [41]. The information regarding
the north direction and detailed location of these three datasets could not be made available from [41].
The other three datasets with their detailed location information are shown in Figure 5. Reference data
(ground truth) is always a problem for accuracy assessment of land cover change detection; inaccurate
reference data will lead to an improper assessment result. In this study, the reference images were
created manually based on a detailed visual analysis of the two original images and their difference
images using ENVI.

The first dataset is the Bern dataset, which represents a section (301 ˆ 301 pixels) of two SAR
images acquired by the European Remote Sensing 2 satellite SAR sensor over an area near the city of
Bern in April 1999 and May 1999. The Aare Valley between Thun and Bern was selected as a test area
given that the River Aare flooded parts of Thun and Bern as well as the Bern airport entirely between
these two dates. Figure 4a–c shows the images and the corresponding ground truth.

The second dataset, the Mexico dataset, represents a section (512 ˆ 512 pixels) of two optical
images acquired by the Landsat ETM+ sensor over an area of Mexico on 18 April 2000 and 30 May
2002. Between the two acquisition dates, fire destroyed a large portion of vegetation in the considered
region. Figure 4d,e shows channel 4 of the April and May images, respectively, and Figure 4f shows
the ground truth of the second dataset.

The third dataset is called the Ottawa dataset, which is a section (290 ˆ 350 pixels) of two SAR
images acquired by the Radarsat SAR sensor over the city of Ottawa in July 1997 and August 1997.
These images contain roughly two regions: land and water. The images and the available ground truth
are shown in Figure 4g–i, respectively.

The dataset used in the fourth experiment is the Liaoning dataset, which comprises two Landsat
7 ETM+ images acquired in August 2001 and August 2002 in Liaoning Province, China. The area
selected for the experiments is a section with a size of 400 ˆ 400 pixels. Figure 5a–c shows channel 4 of
the two images and the available ground truth.

The dataset used in the fifth experiment is the Madeirinha dataset composed of two Landsat TM
images with a size of 400 ˆ 400 pixels acquired in July 2000 and July 2006 near Madeirinha, Brazil.
Figure 5d–f shows band 3 of the images and the ground truth of the fifth dataset, respectively.

The dataset used in the sixth experiment is the Neimeng dataset (400 ˆ 400 pixels), which was
acquired by Landsat 5 TM in August 2007 and 2010 in Neimeng Province, China. Figure 5g–i shows
channel 7 of the two images and the corresponding ground truth.
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3.1.2. Compared Algorithms and Evaluation Criteria

To evaluate the effectiveness of the proposed RSFCM change detection approach, experiments
were conducted on the six different remote sensing datasets. Performance of the proposed technique
was compared with those of five known algorithms. The first compared algorithm is the EM algorithm,
which serves as the basis for identifying labeled pixels for the RSFCM approach. The second compared
algorithm is the EMMRF algorithm, where EM was combined with MRF [12]. The algorithm increases
the accuracy of the final change detection map from EM by exploiting the spatial context by the
traditional MRF spatial Equation (18).

The third, fourth, and fifth compared algorithms belong to the FCM algorithm family.
The third compared algorithm, which is the standard FCM, is the most basic member of the family.
This experiment was conducted to demonstrate whether adding information on the spatial context
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would yield better results. The fourth and fifth compared algorithms are the FLICM [25] and
RFLIFCM [21], respectively. Both of them are state-of-the-art context-sensitive FCM algorithms.
The two experiments were designed to prove whether adding labeling information will yield better
change detection results and the low time complexity of RSFCM.

In addition, to show the effect of using labeling knowledge on the RSFCM change detection
results, we provide the results produced by a special RSFCM (called sRSFCM), which does not
consider any labeling information. In particular, the parameter α used to control the influence of
labeling information is set to 0 in the sRSFCM algorithm.

Both qualitative and quantitative analyses were made on the experimental results. In the
qualitative (visual) analysis, we compared the binary change detection map of each algorithm with the
binary ground truth image. For quantitative analysis, four accuracy indices were computed for each
change detection map: (1) miss detection (MD); (2) false alarms (FA); (3) overall error (OE); and (4)
Kappa coefficient (KC) [16,42].

In addition, the time T consumed in the whole process is also an important criterion. T was
recorded to compare the time complexity of different algorithms, and the unit used is the second.
The computation time analyses were performed on a computer with an Intel(R) Core (TM) i5-2400
3.1 GHz processor and 4 GB RAM.

3.2. Experimental Results

The EM algorithm is free from using any parameters, and the EMMRF algorithm depends on
the parameter β that tunes the influence of spatial contextual information. The FCM, FLICM, and
RFLICM use the value of weighting exponent m to control the degree of fuzziness in the resulting
membership functions. For the proposed RSFCM, the parameter m is set to 2 (see Equations (15) and
(16)). RSFCM uses the parameter α to adjust the contribution of labeling information. In this study,
various parameter values of the algorithms were experimentally explored, and only the best change
detection results are presented for performance evaluation and illustration. In the following, we first
present the test of the parameter α of RSFCM and then the results on the six remotely sensed datasets.

3.2.1. Test of the Parameter α

This section tests the parameter α, which is used by RSFCM to adjust the influence of labeling
knowledge. The parameter α was tested because we wanted to know its effect on the RSFCM change
detection results and attempted to find a reasonable range (or value) for which better results could be
achieved. In this test, the parameter α ranges from 0 to 8 and includes certain discrete values. The six
datasets were experimented on, and the reliable and cogent criterion KC was used. Figure 6 shows the
testing results on the six datasets. In particular, the α-value 0, which corresponds to an unsupervised
RSFCM algorithm (i.e., the sRSFCM), serves as a comparison point for the test.
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Based on the six curves, the value of KC increases conspicuously when the α-value changes from
0 to 1, whereas the KC value nearly stays constant in all the datasets when the α-value is larger than 1.
The noticeable increase indicates that the utilization of labeling knowledge can significantly improve
the performance of RSFCM. Moreover, the stability of KC under various α-values in the range of 1–8
shows that RSFCM is robust. That is, one can select any value in the range [1–8] for a reasonable
performance of RSFCM for all the six datasets.

In subsequent case studies, the change detection results with the optimal α-value are presented
for performance evaluation. The α-values used in the first to the sixth experiments are 2, 4, 3, 2, 4,
and 1, respectively.

3.2.2. Experiment Results and Analysis

Performance studies were conducted based on the best results of the algorithms obtained by
altering their parameters. The results are exhibited in two ways: the final maps in graphic format and
the evaluation criteria in a tabular format. The change detection maps obtained from the six algorithms
on the Bern, Mexico, Ottawa, Liaoning, Madeirinha, and Neimeng datasets are shown in Figures 7–12
respectively. In order to clearly show the difference of the change map compared to the corresponding
ground truth, each map is partitioned into four parts in different colors: black denotes the unchanged
pixels that are detected correctly, yellow the FA pixels, red the MD pixels, and white the correctly
detected change pixels. The four accuracy indices (MD, FA, OE, and KC) of each map and computation
times on the six datasets are depicted in Tables 1–6 respectively.
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Table 1. Change detection results on Bern dataset.

Bern MD FA OE KC T/s

EM 59 4785 4844 0.2966 1.2
EMMRF 41 1088 1129 0.6580 3.4

FCM 390 282 672 0.6989 3.0
FLICM 284 88 372 0.8219 6.2

RFLICM 242 105 347 0.8383 6.5
sRSFCM 354 26 380 0.8062 3.2
RSFCM 213 83 296 0.8630 3.8

Table 2. Change detection results on Mexico dataset.

Mexico MD FA OE KC T/s

EM 1329 9792 11,121 0.7901 1.8
EMMRF 784 4575 5359 0.8912 5.3

FCM 3632 1931 5563 0.8758 3.4
FLICM 3576 1286 4862 0.8903 18.7

RFLICM 3538 1271 4809 0.8915 18.8
sRSFCM 4090 901 4991 0.8856 5.2
RSFCM 2238 1809 4047 0.9117 5.6

Table 3. Change detection results on Ottawa dataset.

Ottawa MD FA OE KC T/s

EM 1417 9030 10,447 0.6758 1.3
EMMRF 602 2363 2965 0.8950 3.5

FCM 2765 2158 4923 0.8150 1.5
FLICM 2450 296 2746 0.8925 8.2

RFLICM 1771 560 2331 0.9110 8.5
sRSFCM 2453 294 2747 0.8924 3.6
RSFCM 1456 800 2256 0.9151 3.9
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Table 4. Change detection results on Liaoning dataset.

Liaoning MD FA OE KC T/s

EM 2271 10533 12,804 0.7639 1.5
EMMRF 1924 8474 10,398 0.8045 3.4

FCM 4692 2292 6984 0.8533 2.4
FLICM 4941 1874 6815 0.8557 12.5

RFLICM 4891 1861 6752 0.8570 12.7
sRSFCM 5224 1406 6630 0.8521 3.3
RSFCM 4320 1917 6237 0.8691 3.8

Table 5. Change detection results on Madeirinha dataset.

Madeirinha MD FA OE KC T/s

EM 2305 6577 8882 0.7828 2.3
EMMRF 1590 4141 5731 0.8554 5.4

FCM 4229 2671 6900 0.8118 5.9
FLICM 5616 1271 6887 0.8011 16.7

RFLICM 5124 1455 6579 0.8127 17.5
sRSFCM 5897 895 6792 0.8011 6.8
RSFCM 3348 1943 5291 0.8589 7.2

Table 6. Change detection results on Neimeng dataset.

Neimeng MD FA OE KC T/s

EM 1467 16,989 18,456 0.8096 4.3
EMMRF 813 12,545 13,358 0.8558 7.7

FCM 9134 2804 11,938 0.8571 6.5
FLICM 8020 1861 9881 0.8751 22.5

RFLICM 7740 1903 9643 0.8798 23.8
sRSFCM 8132 1978 10,110 0.8732 8.2
RSFCM 6319 2784 9103 0.8921 8.6

The visual comparison between the generated change maps and corresponding ground truths
gives a rough idea about the quality of each of these maps.

As shown in Figures 7–12 six methods provide different change maps over the same geographical
area. The change detection maps yielded by EM contain many yellow noise spots (Figures 7, 8, 9, 10,
11 and 12a) and have the largest (worst) FA (Tables 1–6). This is mainly because EM fails to consider
any information on the spatial context in the process of the difference image analysis. By incorporating
the information provided by the neighboring pixels, the EMMRF algorithm greatly improves the EM
change detection results. Most of the noise is removed (Figures 7, 8, 9, 10, 11 and 12b), and the value
of FA significantly decreases (Tables 1–6). As an example, for the Bern data, the FA value decreases
from 4785 to 1088 (Table 1). However, the detecting results from the EMMRF are still not satisfactory
enough compared to the reference maps (Figures 7, 8, 9, 10, 11 and 12b). The two major reasons for
this are that, (1) EMMRF is a post-processing of the EM change detection, and its results depend on
the EM results; and (2) the EMMRF algorithm (similar to EM) is developed based on the classical set
theory and does not work well on separating the overlapping unchanged and changed clusters.

Benefiting from the fuzzy set theory, FCM produces better change detection results than the
context-insensitive EM for all the six case studies (Figures 7–12 and Tables 1–6). It also performs better
than the context-sensitive EMMRF algorithm for the Bern, Liaoning and Neimeng datasets in terms
of OE and KC (Tables 1, 4 and 6). Nevertheless, the change detection maps from FCM still contain
much noise (Figures 7, 8, 9, 10, 11 and 12c). Moreover, FCM produces the highest (or nearly highest)
MD value, thus proving that the use of spatial context positively affects the change detection results.
Through incorporating information about the spatial context, change detection maps obtained by
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FLICM (Figures 7, 8, 9, 10, 11 and 12d) and RFLICM (Figures 7, 8, 9, 10, 11 and 12e) are robust to
noise and almost all the yellow noise spots on the FCM change maps are eliminated. The results from
FLICM and RFLICM are better than those of EMMRF and even better than those of sRSFCM (that is,
the special case of RSFCM in which no labeling information is considered). However, similar to the
standard FCM, FLICM and RFLICM overlook some vital change regions. This can be seen from the
(large) red area for MD pixels contained in their change maps. This is mainly because, FLICM and
RFLICM algorithms are intended to improve FCM robustness to noise and outliers, and they only
consider information on the spatial context. The use of spatial information may lead to over smoothing
on the boundaries of change regions (Figures 7, 10 and 11).

Different from FLICM and RFLICM, RSFCM synergistically exploits both the spatial context and
pseudolabels to improve the FCM performance. RSFCM uses spatial context to modify the membership
by the improved MRF Model (21), and thus the unlikely configurations of membership functions
are discouraged. As a result, almost all the scattering of yellow false alarms in FCM change maps
are removed (Figures 7, 8, 9, 10, 11 and 12f). Also, the use of labeling knowledge (pseudolabels) by
a supervised component makes the nearly certain change patterns have a greater membership of
change category, hence enhancing the change information. The red area of the RSFCM maps is thus
significantly reduced and the missed detecting problem is noticeably solved in RSFCM (Figures 7–12).
Figures 13 and 14 present close-up shots of the change maps generated by FCM, FLICM, RFLICM,
sRSFCM, and RSFCM on the Mexico and Madeirinha datasets, from which the advantage of RSFCM
on solving the missed detection problem can be clearly seen. Consequently, the proposed RSFCM can
both tolerate noise and preserve more change information, producing the most accurate change maps
(Figures 7, 8, 9, 10, 11 and 12g).
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The quantitative superiority of the proposed method can be seen from Tables 1–6. RSFCM
yields the best values of both OE and KC for all the six experiments. For example, for the Mexico
data, RSFCM produces the smallest OE of 4047 pixels, with differences of 7074, 1312, 1516, 815, and
762 pixels compared with EM, EMMRF, FCM, FLICM, and RFLICM, respectively; the KC of RSFCM is
0.9117, which is 12.16%, 2.05%, 3.59%, 2.14%, and 2.02% larger than that of EM, EMMRF, FCM, FLICM,
and RFLICM, respectively.

As indicated in Tables 1–6 only RSFCM obtains both lower (better) FA and MD compared with
FCM for all the six datasets, quantitatively confirming that RSFCM not only minimizes the noise but
also preserves more change information. Compared with FLICM and RFLICM, our technique provides
a noticeable reduction in the MD error for all the six experiments, a comparable value in the FA error
for the Bern, Mexico, Liaoning, and Madeirinha datasets, and a higher FA for the Ottawa and Neimeng
datasets. As shown in Figures 9 and 12 the higher FA makes the RSFCM change maps contain more
noise than those of FLICM and RFLICM. However, the OE and KC values of RSFCM for the Ottawa
and Neimeng datasets are better than those of FLICM and RFLICM (the results obtained by RFLICM
are comparable to the RSFCM results on the Ottawa dataset), thus RSFCM still yields change maps
closer to ground truth.

To make a more objective evaluation of the performance of the proposed method, the average
results from the six datasets of each method were computed. Here the overall evaluation criterions
OE and KC and the computation time T were considered. Figure 15 plots the average OE, KC and
T obtained from the six methods. As can be seen, our technique produces significant reductions in the
average OE change detection error and increases in the average KC compared with other methods.
The comparison result of the average OE and KC confirms that the performance of RSFCM is superior
to those of the other five algorithms. As regards the computation time complexity, the proposed
method has slightly higher (average) computation time requirement than the EM, EMMRF, and FCM
methods. Moreover, it only requires approximately one-third of the computational times of FLICM
and RFLICM.
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The experimental results show that, in all cases and on average, the proposed RSFCM technique
outperforms the other approaches (although the results obtained by the RFLICM are comparable to the
RSFCM results on the Ottawa dataset, RFLICM requires much more computation time than RSFCM).
The approach is capable of guaranteeing noise insensitiveness and preserving more change information.
Moreover, it can fit different types of remotely sensed images and is low in time complexity.

4. Conclusions

In this study, we have proposed a novel unsupervised change detection approach in multitemporal
remote sensing images based on a properly designed RSFCM algorithm. The main idea of this
method is to combine the three types of valuable information from the difference image: (a) intensity
levels, (b) labeling knowledge, and (c) spatial information. First, the problem of deriving the labeled
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patterns (the nearly certain pixels) from the difference image is solved by determining two appropriate
thresholds for the difference image histogram based on the Bayes theory. Then, via a supervised
component and a fuzzy spatial term, RSFCM incorporates labeling knowledge and information on
spatial context into the FCM, respectively, which mainly uses the gray-level intensity. The former is
used to supervise the clustering process of the difference image for enhancing change information and
achieving more accurate membership, and the latter is used to modify the membership for obtaining
spatially smooth membership functions and thus reducing the effect of noise pixels and error labels.
Therefore, the change detection map produced by the RSFCM is not only robust to outliers but also
contains more change information.

Six experiments were conducted on different remotely sensed images to evaluate the performance
of the RSFCM. Compared with EM, EMMRF, FCM, FLICM, and RFLICM, RSFCM performs better
in both qualitative and quantitative measures. Moreover, RSFCM is low in time complexity. These
qualities verify the effectiveness and efficiency of RSFCM. Furthermore, the experimental results
indicate that RSFCM can fit different types of remote sensing images, such as TM and SAR images,
which can refer to different kinds of changes and have different degrees of noise.

Theoretically, this study contributes to the development of change detection by proposing the
idea of combining difference intensity levels, labeling knowledge, and spatial information from the
difference image. Methodologically, it presents a method to automatically derive labeled patterns from
the difference image, develops a novel algorithm (RSFCM) for image segmentation, and defines a
change detection framework.

Notably, in the first step of the proposed change detection approach, other thresholding algorithms
such as Kapur can be used to take the place of EM for obtaining nearly certain pixel-patterns. In the
second step, some universal models such as the spatial attraction model can be used to define the
fuzzy spatial term for modifying the membership.

In our future investigations, additional work will be conducted on the methods of determining the
fuzzy spatial term, and RSFCM will be applied to other types of remotely sensed images, among others.
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