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Abstract: Analysis of urban distribution and its expansion using remote sensing data has received
increasing attention in the past three decades, but little research has examined spatial patterns of
urban distribution and expansion with buffer zones in different directions. This research selected
Hangzhou metropolis as a case study to analyze spatial patterns and dynamic changes based on
time-series urban impervious surface area (ISA) datasets. ISA was developed from Landsat imagery
between 1991 and 2014 using a hybrid approach consisting of linear spectral mixture analysis, decision
tree classifiers, and post-processing. The spatial patterns of ISA distribution and its dynamic changes
in eight directions—east, southeast, south, southwest, west, northwest, north, and northeast—at
the temporal scale were analyzed with a buffer zone-based approach. This research indicated that
ISA can be extracted from Landsat imagery with both producer and user accuracies of over 90%.
ISA in Hangzhou metropolis increased from 146 km2 in 1991 to 868 km2 in 2014. Annual ISA growth
rates were between 15.6 km2 and 48.8 km2 with the lowest growth rate in 1994–2000 and the highest
growth rate in 2005–2010. Urban ISA increase before 2000 was mainly due to infilling within the urban
landscape, and, after 2005, due to urban expansion in the urban-rural interfaces. Urban expansion in
this study area has different characteristics in various directions that are influenced by topographic
factors and urban development policies.

Keywords: Hangzhou metropolis; impervious surface area; urban expansion; spatial patterns; linear
spectral mixture analysis; Landsat imagery; topography

1. Introduction

Rapid population migrations from rural to urban regions and improved economic conditions
in China have resulted in unprecedented urban expansion rates in the past three decades [1–6].
Unfortunately, urbanization generates serious environmental problems such as air pollution, urban
heat island (UHI), and poor water quality, and produces challenges in urban planning and
management [7–11]. Therefore, obtaining timely urban distribution and dynamic change data is
necessary to examine the urban-environmental interactions and relationships [6,12–14]. In the past
four decades, many studies have been conducted to explore technology/methods to accurately map
urban land-use/cover distributions and detect their dynamic changes [15–19].

In metropolises or big cities, Landsat imagery has long been the primary data source for detecting
urban expansion because of its long-term data availability at medium spatial and spectral resolutions
and at no cost [3,8,15,19–24]. In general, change detection can be based on spectral responses (e.g.,
spectral bands, vegetation indices, image transforms), spatial features (textures, objects), and classified
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features [25–30]. However, previous studies have indicated that directly mapping and detecting urban
expansion is often difficult due to the complexity of urban landscapes and the limitation in remote
sensing data [25,31,32].

Urban land-cover change has its own characteristics: urban expansion is often dispersed in
different locations with relatively small patch sizes, and urban landscape is usually a mosaic of
different land covers such as trees, grass, shrubs, buildings, parking lots, roads, and water [31].
In particular, the spectral confusion between impervious surface areas (ISAs) and other land covers
such as bare soils and water/wetlands [25] results in poor accuracy in urban land-cover change
detection. However, ISA is regarded as a valuable attribute in exploring urban expansion and the data
can be extracted from multispectral remote sensing data [20,32–35].

In urban relevant studies, ISA is generally defined as any man-made surfaces (e.g., buildings,
parking lots, streets, highways) that water cannot infiltrate [32]. A large number of publications have
proposed improvements of ISA extraction using different sensors or resolution images (e.g., QuickBird,
IKONOS, Landsat, ASTER, MODIS, DMSP-OLS, VIIRS-DNB) [20,32–40]. The ISA mapping approaches
can be based on pixel (e.g., thresholding, supervised classification), subpixel, and objects, depending
on the spatial resolution of the remotely sensed data [34]. The major approaches for mapping ISA
distribution have been summarized in previous literature reviews, e.g., [32,34].

Because vegetation indices or vegetation abundance have high correlations with ISA [41], they
are often used to estimate ISA through regression analysis [42,43]. Since Ridd [44] proposed in 1995
the V–I–S (vegetation–impervious surface–soil) conceptual model for explaining composition of urban
landscapes, much research has been conducted to develop approaches to extract ISA data [32,34].
In general, ISA can be assumed as a linear combination of high-albedo and low-albedo objects that can
be unmixed from multispectral images using linear spectral mixture analysis (LSMA) [34]. High-albedo
objects are the land covers that have high spectral signature values, such as bright building roofs
whereas low-albedo objects are the land covers that have low spectral values such as some roads and
parking lots with dark colors. When using the LSMA-based approach for mapping ISA distribution,
one critical step is to distinguish ISA from other land covers in the high-albedo and low-albedo
fractional images, which have been examined in previous literature, e.g., [21,33].

Much previous research has indicated that spatial patterns of different urban land covers (e.g., ISA,
vegetation, water) have various effects on regulating UHI [10,41,45–47]. This requires examining the
different spatial patterns within urban regions and different urban expansion features in urban-rural
frontiers in different directions because of the impacts from topographic factors and different land
covers. Previous research mainly focused on the analysis of spatial patterns of urban land use/cover
change [33,48] but rarely examined the spatial patterns and urban expansions in different directions [20].
Therefore, this paper selected Hangzhou metropolis as a case study to examine urban spatial patterns
and expansion rates using a buffer zone–based approach in different directions at the temporal
scale. The analysis of urban ISA distribution and expansion using the buffer zone at 2 km intervals
from the urban center to a distance of 50 km in different directions and temporal scale can provide
better understanding of ISA incremental patterns within urban landscape and urban-rural frontiers.
Meanwhile, the impacts of topography and policies on urbanization were discussed. The new
contribution of this research is to better understand how different directions and temporal scale
influence urbanization patterns and rates, which are needed to make better decisions for urban
planning and management.

2. Study Area

Hangzhou metropolis was selected to examine spatiotemporal patterns of urbanization between
1991 and 2014. Located in the coastal region of east China, Hangzhou has flat terrain in the northeast
and east, and mountainous areas in the west and south (see Figure 1). Hangzhou has a subtropical
monsoon climate with four distinct seasons: hot and humid summer, cold and moist winter, and mild
temperatures in spring and fall. The average annual temperature is 17.5 ˝C, average relative humidity
is 70.3%, and average annual precipitation is 1454 mm [49]. The population increased rapidly, from
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5.8 million persons in 1990 to 8.8 million persons in 2013. Gross domestic product (GDP) increased
from 18.9 billion RMB (Chinese yuan) in 1990 to 334 billion RMB in 2013 [50]. GDP in Hangzhou
accounts for 31.4% of GDP in Zhejiang Province according to 2013 statistics [50]. As the capital of
Zhejiang Province and the center in economy, culture, finance, and traffic, Hangzhou has been an ideal
study area for examining urban dynamics during the past two decades.
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Figure 1. Study area Hangzhou metropolis, a coastal region in Zhejiang province, China, and the 
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based approach in different directions. (There are eight administrative units: Yh–Yuhang; Xs–
Xiaoshan; Xh–Xihu; Jg–Jianggan; Bj–Binjiang; Gs–Gongshu; Sc–Shangcheng; Xc–Xiacheng. The circles 
are shown at 10 km intervals for simplification). 

Hangzhou metropolis covers eight administrative units—Shangcheng, Xiacheng, Gongsu, 
Binjiang, Xihu, Jianggan, Yuhang, and Xiaoshan—with a total area of 3068 km2. The administrative 
boundaries have been modified several times in the past three decades because of rapid urbanization. 
In the 1980s, the total area of Hangzhou was only 430 km2 with a population of about 5 million. The 
limitation in land availability made the administration unit expand to 683 km2 in 1996 by 
incorporating six townships within Xiaoshan and Yuhang counties into Hangzhou. Considering the 
flat topography on the east side and mountainous regions on the west side, Hangzhou city 
government proposed the urban expansion policy “urban expansion at the east side and tourism to 
the west” in 2000 to solve the dilemma of urban expansion space. In March 2001, the administrative 
area was further expanded from 683 km2 to 3068 km2 by incorporating Xiaoshan and Yuhang counties 
[51], and a new urban core was established in the southern part of Hangzhou metropolis. 

3. Methods 

3.1. Data Collection and Preprocessing 

Landsat multitemporal imagery with L1T (systematic precision and terrain corrected) products 
(path/row: 119/39) between 1991 and 2014 was used in this research (Table 1). Six spectral bands with 
30 m spatial resolution were used; the thermal band was not used due to its coarse spatial resolution. 
No image-to-image registration is needed among the multitemporal Landsat images after checking 
the geometric accuracy among them. In addition, no atmospheric calibration was conducted for these 
images because we used the individual imagery separately in a hybrid approach for mapping ISA 
distribution. The ASTER Global Digital Elevation Model (GDEM) data with 30 m spatial resolution 

Figure 1. Study area Hangzhou metropolis, a coastal region in Zhejiang province, China, and
the strategy of analyzing impervious surface distribution and its dynamic change with the buffer
zone-based approach in different directions. (There are eight administrative units: Yh–Yuhang;
Xs–Xiaoshan; Xh–Xihu; Jg–Jianggan; Bj–Binjiang; Gs–Gongshu; Sc–Shangcheng; Xc–Xiacheng.
The circles are shown at 10 km intervals for simplification).

Hangzhou metropolis covers eight administrative units—Shangcheng, Xiacheng, Gongsu,
Binjiang, Xihu, Jianggan, Yuhang, and Xiaoshan—with a total area of 3068 km2. The administrative
boundaries have been modified several times in the past three decades because of rapid urbanization.
In the 1980s, the total area of Hangzhou was only 430 km2 with a population of about 5 million.
The limitation in land availability made the administration unit expand to 683 km2 in 1996 by
incorporating six townships within Xiaoshan and Yuhang counties into Hangzhou. Considering
the flat topography on the east side and mountainous regions on the west side, Hangzhou city
government proposed the urban expansion policy “urban expansion at the east side and tourism to the
west” in 2000 to solve the dilemma of urban expansion space. In March 2001, the administrative area
was further expanded from 683 km2 to 3068 km2 by incorporating Xiaoshan and Yuhang counties [51],
and a new urban core was established in the southern part of Hangzhou metropolis.

3. Methods

3.1. Data Collection and Preprocessing

Landsat multitemporal imagery with L1T (systematic precision and terrain corrected) products
(path/row: 119/39) between 1991 and 2014 was used in this research (Table 1). Six spectral bands with
30 m spatial resolution were used; the thermal band was not used due to its coarse spatial resolution.
No image-to-image registration is needed among the multitemporal Landsat images after checking
the geometric accuracy among them. In addition, no atmospheric calibration was conducted for these
images because we used the individual imagery separately in a hybrid approach for mapping ISA
distribution. The ASTER Global Digital Elevation Model (GDEM) data with 30 m spatial resolution
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was used to examine the impacts of topographic factors on ISA distribution and its dynamic change.
The QuickBird images were used for collection of reference data for accuracy assessment of the ISA
mapping results. Meanwhile, the boundary file of administrative units was used to analyze the ISA
density at the administrative unit scale.

Table 1. Datasets used in this research.

Dataset Image Acquisition Date

Remote sensing data

Landsat 5 TM 23 July 1991; 12 May 1994; 3 June 2005; 24 May 2010

Landsat 7 ETM+ 11 October 2000

Landsat 8 OLI 26 October 2014

QuickBird QuickBird images in 2010 and 2014 were used for
accuracy assessment

DEM ASTER GDEM with 30-m spatial resolution

Other data Administrative boundary data at district level

Note: TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus; OLI, Operational Land Imager; ASTER
GDEM, Terra ASTER Global Digital Elevation Model.

3.2. Mapping ISA Distribution

Developing accurate ISA distribution for each date is critical for further examining urban
expansion over time. Figure 2 illustrates the hybrid approach to map ISA distribution. The major
steps include (1) producing fractional images from Landsat multispectral imagery using the LSMA
approach; (2) calculating the modified normalized difference water index (MNDWI) and using it in the
decision tree classifier to separate water from other land covers; (3) using the decision tree classifier
to produce bright ISA, dark ISA, confused ISA and others based on MNDWI and three fractional
images; (4) modifying the confused ISA pixels into ISA and others using cluster analysis (i.e., ISODATA
unsupervised classification); and (5) conducting post processing and evaluate the results.
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(Note: MNDWI, modified normalized difference water index; ISA, impervious surface area; final ISA is
the combination of bright ISA, dark ISA, and other ISA separated from the confusion).

Previous studies have shown that ISA can be accurately extracted from multispectral imagery
using the LSMA-based approach [33,34]. One critical step in this approach is to identify representative
endmembers. The endmembers can be identified from the scatterplots between spectral bands
or transformed components. Previous research has indicated that the transformed components
contain the majority of information in the first three components, and the endmembers can be
better identified from the components than from spectral bands. Although different transform
algorithms such as principal component analysis and minimum noise fraction (MNF) are available,
MNF is regarded as an effective approach to extract the majority of information [21,22,34]. In this
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research, the Landsat multispectral imagery was transformed into a new dataset using MNF.
Three endmembers—high-albedo object, low-albedo object, and vegetation—were selected from
the scatterplots of the three MNF components [23,41]. A constrained least squares solution was used to
unmix the multispectral image into three fraction images and one error image. A detailed description
of the LSMA approach can be found in many publications, e.g., [21,52].

Since the high-albedo fraction image contains bright ISA and bare soils, and the low-albedo
fraction image contains dark ISA, water/wetland, and shadows, it is critical to remove the non-ISA
pixels from the high-albedo and low-albedo fraction images before they are combined to generate
an ISA image [33,35]. Because MNDWI is regarded as an effective method to separate water from
other land covers [53], this index and the three fraction images were used in a decision tree classifier to
extract bright and dark ISA categories [16]. However, some confusion exists among ISA, shallow water,
moist soils, and shadows; thus, the multispectral values of these confused classes were retrieved and a
cluster analysis (ISODATA) was used to classify the spectral signatures into 30 clusters. The analyst
separated them into ISA or others through visual interpretation.

This hybrid approach was used to map ISA distributions separately for the years between 1991
and 2014. In order to further improve ISA mapping performance, the time series ISA distribution data
were further examined by checking areas that appeared to have changed between two image dates.
For example, generally speaking, if the pixels were ISA in 2010, they should be ISA in 2014; if not,
these pixels were visually examined and modified if needed. Sometimes this assumption is not true
due to redevelopment of urban areas; that is, the reconstruction of old residential areas might convert
urban ISA to grass (a new park).

The final results were evaluated using high spatial resolution QuickBird images from 2010 and
2014. In this research, 300 points were selected using the stratified random sampling technique; that
is, the minimum number for ISA was 100 in order to analyze the accuracy of the 2010 and 2014 ISA
results. Each point was examined using the QuickBird images, and an error matrix was produced
for the ISA images. Overall accuracy (OA), producer accuracy (PA), and user accuracy (UA) were
calculated [54]. ISA results in other years were not evaluated due to the lack of reference data, but the
accuracies can be assumed similar using this approach [33].

3.3. Spatiotemporal Analysis of ISA Distribution and Its Dynamic Change

3.3.1. Analysis of Spatial Patterns of ISA Distribution and Its Dynamic Change at Pixel Level and
Administrative Unit Scale

In order to better understand the ISA distribution patterns, the pixel-based ISA images with a
30 ˆ 30 m cell size were aggregated into fractional ISA images with a cell size of 1 ˆ 1 km; thus, ISA
abundance and patterns can be clearly shown through the transition of the fraction values from urban
core to rural regions.

Based on time series ISA datasets, the ISA amount and density within administrative units were
calculated so we could understand the temporal ISA change at administrative unit scale.

Di “
ISAi

Ai
(1)

where Di is the ISA density at the ith administrative unit, ISAi is the total ISA area in the ith
administrative unit (km2), and Ai is the total area of the ith administrative unit (km2).

Pixel-based change detection is often based on the comparison of classified images at different
dates [25]. This research also used the classification-based comparison approach to examine ISA
expansion based on the developed ISA images between 1991 and 2014. Average annual ISA change
rate (km2/year) was calculated to analyze urbanization rates at temporal scale.

RISA “
ISA pt2q ´ ISA pt1q

t2´ t1
(2)

where ISA(t2) and ISA(t1) represent ISA amounts in subsequent (t2) and prior (t1) years, respectively.
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3.3.2. Analysis of Spatial Patterns of ISA Distribution and Its Dynamic Change Using the Buffer
Zone-Based Approach in Different Directions

The buffer zone-based approach has been used to analyze spatial patterns of land-cover change,
including urbanization [20], but previous research mainly analyzed overall spatial patterns within
zones without taking different directions into account. Because the spatial patterns of urbanization
may be influenced by external factors such as topography, traffic networks, and hydrological networks,
it is necessary to examine urban expansion patterns at different aspects. Therefore, we divided
this study area into eight directions—east, southeast, south, southwest, west, northwest, north, and
northeast—with buffer zones of 2 km intervals within a radius of 50 km (see Figure 1). The objective
of using the combination of buffer zones and eight directions is to better understand whether the
urban ISA increase is due to infilling within the urban region or expansion into the urban-rural frontier,
and where different patterns of urban expansion or infilling occurred in which year or time period.
The ISA amounts within the buffer zones in different directions were calculated. Because the buffer
zones increase in size as the distances from the urban center increase, it is necessary to remove the
impacts of buffer zone size on the ISA amount. The ISA density in a buffer zone is also calculated with
Equation (1), but the area is based on each buffer zone. The area for each buffer ring (Aj) is defined as:

Aj “
ßr2

j ´ ßr2
j´1

8
(3)

where j is the number of each circle, and r is the radius of each circle, from 2, 4, 6, . . . , to 50 km.

3.4. Impacts of Topography on Urban ISA Distribution and Dynamic Change

Topography may be an important factor in constraining urban land-cover distribution and its
dynamic change, but previous research has not paid much attention to it. In this research, we examined
the impacts of elevation and slope on ISA distribution and dynamic change in Hangzhou metropolis.
The ASTER GDEM data were used to calculate elevation and slope. Elevation ranges were grouped
into six levels: <20, 20–40, 40–60, 60–80, 80–100, and >100 meters; slope ranges were grouped into
four levels: <5, 5–10, 10–15, and >15 degrees. The ISA amount for each elevation or slope level was
calculated based on ISA data in each given year and grouped elevation or slope images.

4. Results

4.1. Analysis of ISA Distribution and Its Dynamic Change at Pixel Scale

The hybrid approach for mapping ISA distribution produces an OA of over 95% according to the
accuracy assessment results for 2010 and 2014 (Table 2). The other dates of ISA results are believed to
have similar accuracy using this approach [33], although no accuracy assessment can be conducted
because of the difficulty in collecting reference data for historical remote sensing data. These results
with high accuracy provide the required data source for further examining the spatial patterns of ISA
dynamic change.

The spatial distributions of ISA density in different years (Figure 3) indicate their different spatial
patterns in the past two decades. Overall, the transition of ISA distribution is obvious, from high
density in the urban core to low density in rural areas. There was only a single urban core before
2000, but, after 2000, ISA expansion increased rapidly and a new urban core appeared in the southern
part—Xiaoshan district. As shown in Figure 4, the ISA expansion was mainly located in the eastern
part with flat terrains, due to constraints of mountainous regions in the western part. Before 2000,
much ISA increase was in the urban region from infilling open spaces, but in the last 10 years, ISA
increase was in the frontiers, especially in the eastern part.
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Table 2. Accuracy assessment results of impervious surface area (ISA) mapping of Hangzhou
metropolis in 2010 and 2014.

2010 2014

ISA Non-ISA PA UA ISA Non-ISA PA UA

ISA 96 4 93.2 96.0 95 5 91.3 95.0
Non-ISA 7 193 98.0 96.5 9 191 97.4 95.5

OA 96.3 95.3

Note: ISA, impervious surface area; non-ISA, other land covers; PA, producer accuracy; UA, user accuracy; OA,
overall accuracy.
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4.2. Analysis of ISA Distribution and Its Dynamic Change at Administrative Units

The expansion trends of ISA amounts and densities at administrative units over time (Figure 5)
show that Xiaoshan in the southeast and Yuhang in the northwest are the two largest administrative
units and have the highest urban expansion areas (see Figure 5a). These two units were merged into
Hangzhou metropolis in 2001 because of the constraints of land availability in Hangzhou city. The
Xihu district in the southwest and Jianggan district on the east side are two middle size areas and
have much smaller ISA amounts than Xiaoshan and Yuhang, but higher than the four small core
districts—Binjiang, Shangcheng, Xiacheng, and Gongsu. Xiaoshan and Yuhang have large expanses of
land available for urban sprawl, Xihu has limited land available due to West Lake and mountainous
areas, and Jianggan has limited land available due to water bodies (river and ocean on the east side).
The ISA increases in the four core districts were due to infilling in the urban regions. However, Yuhang
and Xiaoshan had the lowest ISA densities in Hangzhou metropolis due to their large agricultural
and mountainous areas, while Xihu had low density due to mountains and the lake. It is reasonable
that the urban core regions (e.g., Binjiang, Shangcheng, and Gongshu) have higher ISA densities
than urban-rural regions (e.g., Yuhang, Xiaoshan) (see Figure 5b). Overall, the ISA density obviously
increased for each district from 1991 to 2014.

Overall, ISA in Hangzhou metropolis increased rapidly from 146 km2 in 1991 to 868 km2 in 2014
(Table 3). Since entering the 21st century, annual ISA growth rate has been over 33 km2 and as high
as 49 km2 in 2005–2010; in contrast, it was only 16 km2 in 1994–2000. There are eight districts in
Hangzhou metropolis (see Figure 1). Xiaoshan, located at the east and south sides with flat terrain, has
the highest annual ISA growth rate, followed by Yuhang, with flat terrain in the north and northeast
and mountains in the west. The core urban regions in Binjiang, Gongshu, Shangcheng, and Xiacheng
have very low ISA growth rates (see Figure 6).
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Table 3. Summary of ISA amounts and annual growth rates in Hangzhou metropolis, 1991–2014.

1991 1994 2000 2005 2010 2014

Total ISA (km2) 145.59 227.69 321.40 489.55 733.35 867.63
Change detection period – 1991–1994 1994–2000 2000–2005 2005–2010 2010–2014

Annual ISA growth rate (km2/year) – 27.37 15.62 33.63 48.76 33.57
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4.3. Analysis of ISA Distribution at Buffer Zone Scale in Different Directions

Overall, the ISA distributions had similar trends between 1991 and 2000; that is, ISA density had
the highest value within a distance of 4 km from the urban center, decreased gradually until 16 km,
and then appeared stable with small density values beyond that distance (see Figure 7a). After 2005,
the ISA distribution had a V shape at about 6 km from the urban center, reached a peak around 8 km,
and decreased gradually until a distance of around 34 km. Overall, the ISA density for each buffer
zone increased. Within a distance of 4 km from the urban center, the density increase value was small,
from 0.52 to 0.58 between 1991 and 2014. The highest ISA density increase appeared at distance range
of 8–16 km, with increases from 0.12 to 0.58 at around 8 km and 0.05 to 0.37 at 16 km. The ISA density
remained stable with low values at 20–50 km between 1991 and 2014 but had the highest increase
between 2005 and 2010 for all distance from 6 to 50 km. This result indicates that, before 2000, the
major urbanization occurred within a 16 km radius of the urban center, and, after 2000, especially after
2005, urbanization occurred extensively between 6 and 50 km (see Figure 7a).

Analysis of Figure 7a is based on the ISA values of buffer zones at 2 km intervals from the
urban center to a distance of 50 km from 1991 to 2014, but this result did not reflect the spatial
patterns of ISA density distributions in different directions. Therefore, Figure 7a1–a8 illustrates the
ISA density distribution in eight directions in order to understand different spatial patterns of ISA
density distribution in various regions.

For east direction with flat terrain (in Figure 7a1), ISA had very high density within the distance
of 4 km from the urban center but decreased sharply to the lowest density at 8 km. ISA density was
low (less than 0.2) between 8 and 50 km before 2000, but increased considerably to over 0.3 in the
distance of 8–40 km in 2014, and the ISA increase was especially fast in this distance range between
2000 and 2010, implying rapid urbanization in the past decade in this direction. In the north direction
(Figure 7a2) with flat terrain, ISA density had high values within 6 km, decreased to a valley out to
22 km, and increased gradually to a small peak at 26 km before 2005. ISA density was low from 15 to
50 km, but ISA increased considerably after 2005, especially in the distance of 16 to 50 km between
2005 and 2010, implying that major urbanization occurred in this direction. In the northeast direction
(Figure 7a3), high ISA was located within 8 km, decreased gradually to a valley at 22 km, and increased
to a small peak at 25 km. Before 2000, ISA was very low between 14 and 50 km. A high ISA increase
occurred within 10–32 km between 2000 and 2010, implying rapid urbanization in this region during
this period.

In the northwest direction (Figure 7a4), ISA was very low within 6 km but increased sharply to
a peak within 6–10 km in 1991–2014. ISA density decreased sharply to its lowest value at 14 km in
1991–2000, and another small peak occurred at 38 km. After 2005, ISA was very low in the distance
range of 28–36 km and beyond 44 km due to constraints of mountains in this direction (see Figure 1).
In the south direction (Figure 7a5), there were peaks at 4 km and 10 km before 2000, but after that, a
higher peak occurred at 8 km. ISA density had small values from 14 to 50 km before 2000. Since 2000,
ISA increased at 12–30 km, implying the urbanization occurred in distance range of 6–26 km, especially
in 6–12 km, between 2000 and 2010. The mountains limited ISA expansion beyond 30 km. In the
southeast (Figure 7a6), very high ISA density appeared within 4 km, decreased sharply to a valley at
6 km, then increased gradually to a peak at 14 km in 1991–2005, and remained at high ISA density
from 10 to 24 km in 2010–2014. Because Shaoxing city is located within 42–50 km in this direction, ISA
values remained relatively high for the entire distance to 50 km.

Toward the southwest (Figure 7a7) and west (Figure 7a8), ISA density was low because of
mountains. In the southwest, there was a peak around 30–32 km due to growth of Fuyang city (see
Figure 1), and another small peak at 14 km. In the west direction, a peak occurred at 14 km after 2010.
The major southwest urbanization occurred at 12–16 km and 28–34 km in 2005–2010, and the major
west urbanization happened between 10 and 24 km in 2010–2014.
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Figure 7. Comparison of impervious surface area (ISA) densities at temporal scale in eight directions
at 2 km intervals within a radial distance of 50 km from the urban core of Hangzhou metropolis,
China (Note: (a) represents the trend of ISA density distribution of entire study area over time;
(a1–a8) represent the trend of ISA density distribution at different directions: East—(a1); North—(a2);
Northeast—(a3); Northwest—(a4); South—(a5); Southeast—(a6); Southwest—(a7); and West—(a8)).
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This analysis, based on Figure 7a1–a8, indicates different spatial patterns of ISA density in each
direction. Major ISA increases were mainly located in the east and northeast directions where there
is flat terrain. These different ISA distribution patterns may also be influenced by human-induced
factors such as different policies during the years between 1991 and 2014, in addition to constraints
of topography.

4.4. Analysis of ISA Dynamic Change at Buffer Zone Scale in Different Directions

In order to explore the spatial distribution of urban expansion in different directions, Figure 8
provides ISA density change at buffer zones within the change detection periods in eight directions.
It indicates that the regions within 8 km from the urban center had higher growth values of ISA density
from 1991 to 1994 than in other time periods. The regions within 8–14 km had higher ISA density
values from 2000 to 2005, and the regions within 14–50 km had higher values in 2005–2010 (Figure 8a).
In 1991–2000, major ISA density growth occurred in the distance range of 4–16 km with the highest at
8 km, implying that major ISA expansion was located in the urban core in this period. In 2000–2005,
major ISA density increase occurred between 6 and 26 km, with the highest value in the 8–12 km range;
in 2005–2010, the increase was in the distance range of 8–36 km with the highest ISA density growth
at 14 km; and in 2010–2014, major ISA density growth occurred within 8–24 km, with the highest at
18 km (see Figure 8a). This indicates that urbanization began in the urban core and shifted gradually
to urban-rural frontiers. This result implies that, before 2000, major ISA increase was due to infilling
within the urban landscape, and, after 2000, the ISA increase was mainly due to urban expansion into
the frontier areas.

The ISA density change had obviously different spatial patterns in various directions as shown in
Figure 8. In the east direction (in Figure 8a1), high ISA density change occurred in the urban core area
within 4 km in 1991–2000, the peak shifted to the 20–24 km buffer in 2000–2005, and to the distances
of 10–12 km and 30 km in 2000–2010. Overall, the period of 2005–2010 had the highest ISA change,
especially from 26 to 50 km in this direction. In the north direction (in Figure 8a2), the peak occurred
at 8 km before 2000, and shifted to 12 km in 2000–2005. Within 14–50 km, the highest ISA density
value appeared in 2005–2010 compared to the other periods. On the northeast side (in Figure 8a3), the
peak was at 6 km before 2000, shifted to 8–10 km in 2000–2005, and to 14–30 km in 2005–2010. In the
northwest, the peak was around 8 km before 2005, and shifted to 14 km in 2005–2010. In the south
direction, the highest ISA change was located at 8 km for each change detection period, especially in
2000–2005. In the southeast, the highest ISA density changes occurred at basically the same distance,
8–10 km, during the entire study period but especially in 2000–2010. Another high ISA density change
was located in 18 km in 2000–2010. In the southwest and west directions, the major ISA increase
was at 14 km in 2005–2010. Figure 8 indicates that before 2000, the annual ISA density change was
mainly in the east, north, northeast, and northwest directions within a distance range of 5–10 km;
with the exception of the northwest, it shifted to 10–30 km in 2000–2005 and farther from the urban
center out to 50 km in 2005–2010. In contrast, on the south and west sides, very limited ISA change
occurred beyond 25 km. The high ISA changes in the east, northeast, and north were mainly due to
flat terrain, and the low ISA changes toward the west and southwest were mainly due to constraints of
mountainous terrain.
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Figure 8. Comparison of impervious surface area (ISA) density change among different change
detection periods in eight directions at 2 km intervals within a 50 km radius from Hangzhou metropolis
urban center (Note: (a) represents the trend of ISA density change of entire study area over time;
(a1–a8) represents the trend of ISA density change at different directions: East—(a1); North—(a2);
Northeast—(a3); Northwest—(a4); South—(a5); Southeast—(a6); Southwest—(a7); and West—(a8)).
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4.5. Analysis of Topographic Impacts on Urban Expansion

Table 4 summarizes the ISA amount and corresponding percent for different elevation and slope
groups for the years between 1991 and 2014. It indicates that majority of ISA amount is distributed
in elevation values of less than 20 m, the total ISA amount increased from 211.6 km2 in 1991 to
1400.9 km2 in 2014, and the percent of ISA amount in this group accounting for total ISA amount
remain similar, only slight increase from 91.2% in 1991 to 92.3% in 2014. Overall, the ISA amount and
percent decreased as elevation increased in the given year. From 1991 to 2014, the ISA amount for each
elevation group increased, but the increment became small as elevation increased at the same time
period; that is, ISA was expanded in different elevation groups, but the expansion rate became less
and less as elevation increased. This implies that urban expansion mainly occurred in the regions with
relatively low elevations; and elevation was a constraint factor in urbanization.

Table 4. Comparison of the relationship of ISA with elevation and slope in Hangzhou metropolis at
various time intervals, 1991–2014.

1991 1994 2000 2005 2010 2014

km2 % km2 % km2 % km2 % km2 % km2 %

Elevation
(m)

<20 211.61 91.21 339.85 91.34 478.81 91.43 746.23 92.21 1163.96 92.07 1400.93 92.33
20–40 12.11 5.22 17.76 4.77 23.74 4.53 32.88 4.06 48.20 3.81 55.44 3.65
40–60 4.36 1.88 7.45 2.00 10.98 2.10 15.57 1.92 24.42 1.93 29.49 1.94
60–80 1.84 0.79 3.20 0.86 4.55 0.87 6.55 0.81 12.03 0.95 14.37 0.95
80–100 0.73 0.31 1.42 0.38 2.11 0.40 3.10 0.38 6.13 0.48 6.59 0.43
>100 1.35 0.58 2.41 0.64 3.51 0.67 4.91 0.61 9.53 0.76 10.45 0.69

Slope (˝)

< 5 217.59 93.79 364.14 97.86 511.69 97.71 790.72 97.71 1232.25 97.47 1481.57 97.65
5–10 11.44 4.93 6.33 1.70 9.28 1.77 13.87 1.71 23.11 1.83 25.77 1.70

10–15 1.98 0.85 1.48 0.40 2.48 0.47 4.16 0.51 7.85 0.62 8.71 0.57
>15 0.99 0.42 0.14 0.04 0.27 0.05 0.48 0.06 1.06 0.08 1.22 0.08

Note: km2 represents the total amount of ISA in square kilometers for each elevation or slope range in a
given year; % indicates the percentage of ISA for each elevation or slope range based on total ISA amount in a
given year.

The similar situation is for the slope groups; that is, the majority of ISA amount is located in
the areas with slope values of less than 5 degrees, i.e., the area increased from 217.6 km2 in 1991 to
1481.6 km2 in 2014, and the percent increased from 93.8% in 1991 to 97.7% in 2014. As the slope
increased, the ISA amount and corresponding percent decreased in the given year. Overall, the ISA
amount in each slope group increased from 1991 to 2014, and the increment became less as the slope
increased. This means that ISA was expanded from each slope group, but mainly located in the regions
with small slopes.

The relationship between ISA amount and elevation or slope groups indicates that the urban
expansion is mainly located in the flat terrain areas, and elevation and slope are important constraint
factors in urban expansion. This is confirmed in Figure 9, that the majority of ISA is located in the flat
regions in north and east sides, but ISA distribution and expansion is constrained by the mountainous
regions in west and south sides.
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5. Discussion

5.1. Improvement of ISA Mapping Performance

Urban classification is usually based on training samples using pixel-based classification
approaches [55,56], but the confusion between ISA and other land covers (e.g., bare soils,
water/wetland) often results in poor classification accuracy for detailed urban land-cover
classification [16,18,34,56]. The relatively coarse spatial resolution images (e.g., the common remote
sensing data of Landsat imagery) worsen the detailed urban land-cover classification due to mixed
pixel problem and complex urban land-cover composition [18,31,57]. Previous research has proven the
LSMA-based approach can effectively extract ISA [16,22,33,58], and we further modified the previous
approach and produced ISA distribution with overall accuracy of 95% using a hybrid approach
consisting of LSMA, vegetation index, decision tree classifier, and cluster analysis. This research
indicated that the hybrid approach is effective for producing accurate ISA distribution, which is
especially necessary for examining urban expansion [33,34]. One critical step is to solve the confusion
between some ISA pixels and other land covers such as bare soils and wetlands that have spectral
signatures similar to bright and dark ISAs. This research used MNDWI to separate dark ISA and
water/wetland and the analyst’s knowledge to further separate the ISA from other land covers in the
confused class. This research indicated that complete separation of ISA from other land covers is still
very difficult and a human expert is needed to further separate them in the post-processing stage.

Analysis of land-cover spatial distribution is often based on pixel-based results [59] but might
not show the spatial patterns of a land cover [17]. This research aggregated the ISA results from
the pixel level at a cell size of 30 ˆ 30 m to fractional values at a cell size of 1 ˆ 1 km to show
clearly the ISA transition from the urban core to rural areas. This implies the necessity of developing
fractional ISA distribution, especially when medium or coarse spatial resolution images are used for ISA
mapping [17,36,60]. The availability of very high spatial resolution images such as QuickBird, Pleiades,
and Worldview with half-meter spatial resolution provides a new platform for accurately producing
ISA data, which can be used to calibrate the medium or coarse spatial resolution images [36,60].

5.2. Examination of ISA Expansion and Roles of the Buffer Zone–Based Approach

Previous research only examined overall land-cover change without exploring the detailed change
of spatial patterns in different directions from the urban core [20]. This research not only provided the
overall ISA change at pixel scale, but also examined the ISA spatial patterns in eight directions and at
distances using the buffer zone–based approach. This kind of analysis provided much rich information
about ISA spatial pattern change and is valuable for explaining why different geographic locations
have different urbanization patterns and rates. Through the analysis of ISA density distribution and
its dynamic change using buffer zones in different directions between 1991 and 2014, we can better
understand the urbanization characteristics; that is, the ISA increase in urban core is mainly due to the
infilling of open space or redevelopment of old urban landscapes, and the ISA increase in urban-rural
frontier is mainly due to the urban expansion through the conversion of agriculture lands to built-up
areas. Through this research, we can better understand the history of urbanization from urban regions
to rural areas with different stages having their own urbanization patterns and rates. This kind of data
source or information is especially useful for understanding the effects of previously implemented
policies on urbanization patterns and paces.

Previous research has indicated that rapid increase of ISA can aggravate the pollution density in a
lake or river [61], and the results in this research will be useful to examine the impacts of urbanization
on water quality in West Lake, which is a famous tourism site in Hangzhou. In addition, urbanization
can result in UHI, and spatial patterns of different ISA expansion directions can intensify the UHIs in
those directions [9,10,47,62,63]. Therefore, the spatial patterns of ISA expansion in this research will be
valuable for use in examining UHI spatial patterns in Hangzhou metropolis. The buffer zone approach
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in different directions may provide new insights for examining the relationships between urbanization
and UHI, and more research is needed in the future.

5.3. Effects of Topographic Factors and Policies on Urban Expansion Patterns

China’s overall ISA growth rate was faster before 2000 compared to later [64], but Hangzhou
metropolis had a higher ISA growth rate after 2000 compared to before. This is because the city’s urban
traffic network construction project promoted ISA expansion into the urban-rural frontiers. After 2010,
the metropolis had a development strategy that enhanced the optimization of inner city function and
structure and improved intensive use of its land, resulting in a relatively lower ISA expansion rate in
2010–2014 than in 2005–2010. This implies the important role of policies in urban expansion; that is, a
new policy may considerably promote urban expansion speed in the short term. This kind of policy
may result in improved economic conditions; thus, good economic condition is often an important
factor in fast urban expansion [65].

Population and economic conditions are often regarded as the major factors influencing
urbanization patterns and rates [20,57]. However, these factors may not directly influence urban
expansion; instead, other factors such as policies, topography, hydrology, and land availability are
important but are difficult to quantify [57] when examining their relationships with urbanization rates
and spatial patterns. At the same time, urban expansion does not simply occur in a single city. It is
often influenced by neighboring cities, especially satellite cities surrounding a big city, as in Hangzhou
metropolis (see Figure 1). More research is needed to examine the different roles of external factors on
urbanization in order to provide scientific foundations for better urban planning and management.

6. Conclusions

This research selected Hangzhou metropolis as a case study to examine spatial patterns of ISA
distribution and its dynamic change in administrative units and radial buffer zones in different
directions using multitemporal Landsat imagery between 1991 and 2014. The following conclusions
can be obtained from this research:

(1) The hybrid approach can effectively extract ISA distribution with an overall accuracy of over 95%,
and both producer and user accuracies of over 91%. This approach provided the fundamental
data sources for examining urban dynamic change over time.

(2) ISA in Hangzhou metropolis increased from 146 km2 in 1991 to 868 km2 in 2014. Annual ISA
growth rates were between 15.6 km2/year and 48.8 km2/year with the lowest growth rate in
1994–2000 and the highest growth rate in 2005–2010.

(3) Urban expansion has various rates and patterns at different distances from the urban center in
various directions between 1991 and 2014. Topographic factors, especially slope, are important
constraints influencing spatial patterns of urban distribution and expansion.

(4) Policies may be important factors influencing urbanization patterns and rates, but they are
difficult to quantify.
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