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Abstract: Corn growth conditions and yield are closely dependent on climate variability. Leaf growth,
measured as the leaf area index, can be used to identify changes in crop growth in response to climate
stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth
under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is
represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years
(2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the
derived normal curve, the response of crop growth to environmental factors is quantified as NDVI
residuals. Regression analysis revealed a significant relationship between yield and NDVI residual
during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing
period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where
corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is
prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the
area. Oversupply of rainfall at the end of the growing season was not found to have a measurable
effect on crop growth, while above normal precipitation earlier in the growing season reduces the
risk of yield loss at the watershed scale. The spatial extent of stress is much lower when precipitation
is above normal than under dry conditions, masking the impact of small areas of yield loss at the
watershed scale.

Keywords: temporal and spatial corn growth variability; corn NDVI-climate stress relation;
risky cell detection

1. Introduction

Crop yield in the US Corn Belt is strongly affected by climate variability, primarily through the
influence of climate on water availability as soil moisture. The summer warming trend from 1891–1936
adversely affected crop yields, while a cooling trend accompanied by increased summer rainfall
decreased variability in yield and accounted for a 20% increase in yield from 1936–1972 [1]. Crop yields
during the period of 1980–2007 were strongly correlated with the occurrence of meteorological drought
and maximum daily temperature during the grain filling and reproductive growth period [2,3]. Soil
moisture that is either higher or lower than normal conditions can cause crop water stresses, which are
harmful for crop growth over shorter spatial and temporal scales.

Despite clear evidence that soil moisture conditions cause billions of dollars of crop loss per year,
the impact of water stress on crop growth is difficult to quantify. In part this is because the extreme
events that cause yield loss are by definition infrequent in nature. Field-scale studies designed to
investigate the impact of water stress must use artificial manipulation of moisture conditions [4,5] or
they will far exceed the typical lifetime of a research grant. The available regional datasets are too
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coarse in spatial resolution. For example, the USDA National Agricultural Statistics Service’s (NASS)
Crop Progress and Condition data is compiled at the state or sub-state level. Such datasets can capture
the effects of region-wide environmental impacts such as drought, but events that are frequent at small
scales (i.e., flooding in the field low spot) are particularly hard to detect due to the coarse nature of
the datasets.

Corn phenology, the timing of corn growth and development each year, is weather and hybrid
specific. For the same corn hybrid under similar management practices, growth conditions are strongly
related with climate variability. When the hydroclimate is suitable, corn develops well and has higher
yield potential, but when faced with biophysical stresses related to climate extremes many aspects of
crop development can be affected. Observations related to the spatial variability in crop development
can give insights into crop response to hydroclimate factors because of the spatial variability in soil
water conditions, reducing the need for multi-year studies.

Analyzing corn phenology using remotely sensed satellite image provides an opportunity to
investigate the linkage between the spatial variability in crop development and water stresses. Satellite
data are increasingly used to monitor agricultural fields [6,7] and can provide a powerful tool to
record phenological trends and detect the effect of climate variability. Compared to hand-held optical
sensors, satellite images offer a valuable perspective at the field-scale instead of individual plants,
revealing regional crop conditions that are difficult to detect from limited ground measurements. On
the other hand, compared to coarse state level crop statistical reports, remote sensing imagery reveals
substantially more about the spatial variability of corn development within a region. An additional
benefit of satellite imagery is that data can be collected and processed in a repeatable and non-biased
method. Additionally, spatial information, such as soil moisture from satellite images, can also be
merged into crop modeling studies for improving regional crop yield forecasts [8,9].

Interest in studying crop phenology using satellite data has been growing in recent research [10].
Crops exhibit different features as they develop, many of these features are distinguishable from
remote sensing imagery. For example, the area of green leaves associated with a plant strongly
absorbs wavelengths of visible (red) light while reflecting near-infrared wavelengths [11]. The ratio of
absorption to reflectance also varies from the early growing season through to maturity and senescence.
Such changes in spectral properties are the theoretical basis for relating reflected radiation from satellite
images to crop growth [12]. Vegetation indices are more widely used than reflectance in remote sensing
algorithms for monitoring crop characteristics [13,14] because of their simplicity and the ease of data
processing. A vegetation index is an indicator that describes a visible characteristic, for example, the
greenness of a plant, which is correlated with the health of the vegetation. One widely used vegetation
index is the Normalized Difference Vegetative Index (NDVI), which has been related to nitrogen status
and chlorophyll content at micro scale and biomass, leaf area and grain yield at macro scale [15–18].

NDVI generated from remote sensing can be used to estimate crop growth under various climate
conditions, which in turn can be used to improve and evaluate crop models [19,20]. Constructing time
series of vegetation indices, such as NDVI, from satellite imagery can also help in the development
of region specific phenologies for multiple crop types while limiting the necessity of intensive field
monitoring. By merging NDVI values for the same region over multiple years, researchers can also
establish “normal” growing conditions in a region for a specific time of year. Then by studying
significant deviations from this “normal” phenological curve within any year, changes to crop
phenology due to climate stresses can be quantified.

The overarching goal of this study is to evaluate variability in corn growth conditions and
phenology both spatially and temporally in the St. Joseph River watershed, which is located in the
Eastern Corn Belt, USA using an 11-year time series of Landsat 5 TM imagery. Corn growth conditions
were identified using NDVI values from multiple years of satellite images, and linked with climate
stresses and county level yield observations. By quantifying the variability in corn growth response in
the presence of water stress, the phenologies extracted from the satellite data can be used to evaluate
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the ability of current generation crop growth models to represent plant responses to the more frequent
occurrence of weather extremes under projections of climate change in the Corn Belt.

2. Materials and Methods

2.1. Study Area

The St. Joseph River watershed (Figure 1) with a drainage area of 2821 km2 is located in
northeastern Indiana, northwestern Ohio and southeastern Michigan. This watershed spans portions
of eight counties. Agricultural land, including row crops and pasture occupy 67% of the basin area.
Rainfed agriculture is predominant in the region, and just 5% of the cropland in the eight county area
is irrigated [21]. Three NOAA weather stations recording daily air temperature and precipitation are
located in Steuben, IN, Williams, OH and DeKalb, IN. The watershed is fully contained in a single
Landsat 5 scene (path 21, row 31).
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900 m2. The CDL is available for Indiana beginning from 1999, and for Ohio and Michigan from 2006 
and 2007, respectively. The CDL products are used to identify corn pixels in the St. Joseph River 
watershed for each year of analysis. These are in turn used to extract the spectral signature (NDVI) 
for corn only, which is the focus of this study.  

USDA/NASS releases basic phenological information for corn in weekly Crop Progress and 
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2.2. Data

2.2.1. Land Cover and Crop Progress Data

The Cropland Data Layer (CDL) product is a raster-formatted, geo-referenced, crop-specific, land
cover map produced by the USDA National Agricultural Statistics Service (NASS). The purpose of
the CDL program is to use satellite imagery to provide acreage estimates of major crop commodities
for each state [22]. The resolution for CDL products is 30 m, so the area of each pixel is 900 m2. The
CDL is available for Indiana beginning from 1999, and for Ohio and Michigan from 2006 and 2007,
respectively. The CDL products are used to identify corn pixels in the St. Joseph River watershed for
each year of analysis. These are in turn used to extract the spectral signature (NDVI) for corn only,
which is the focus of this study.

USDA/NASS releases basic phenological information for corn in weekly Crop Progress and
Condition Reports at the state or agricultural statistic district level [23]. The latter is a sub-state region
comprised of multiple counties. These reports show the percent of crop fields (by area) that have
reached or completed a specific phenological stage (planted, emerged, silking, dough, dent, mature
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and harvested) each week during the growing season. The weekly progress reports were used to
identify the range and median in growing season length in the Northwest District of Indiana using the
dates for corn planting and harvesting each year. Ohio and Michigan do not report district level crop
progress data, so information from those states were not used for defining the growing season.

2.2.2. Remote Sensing Observations

Eleven years of Landsat-5 Thematic Mapper (TM) images (Path 21, Row 31) were downloaded
from the USGS EarthExplorer [24] for the duration of the CDL data in the St. Joseph River watershed
(2000–2010). The resolution of the Landsat 5 TM image pixel is 30 m ˆ 30 m. The Landsat satellite
collects images for the same location every 16 days, so there are approximately 10 images spanning
the corn growing season each year. Only images with cloud coverage less than 60% were kept for
analysis. Table 1 lists the 63 Landsat 5 TM images used for this analysis with their acquisition dates
and cloud coverage.

Table 1. Selected Landsat TM5 images during the growing season, path 21, row 31.

Year Date Day of Year Cloud
Coverage (%) Year Date Day of Year Cloud

Coverage (%)

2000

27 April * 118 0

2005

9 April * 99 0
13 May 134 0 27 May 147 23
29 May 150 0 30 July 211 19
14 June 166 30 18 October 291 0
30 June 182 10

2006

28 April * 118 0
2 September 246 20 15 June 166 7
18 September 262 0 1 July 182 21

20 October 294 0 17 July 198 0

2001

30 April * 120 0 2 August 214 1
17 June 168 0 5 October 278 12

4 August 216 0

2007

15 April * 105 0
20 August 232 10 1 May * 121 49

5 September 248 0 18 June 169 4
7 October 280 10 20 July 201 0

2002

3 May * 123 0 22 September 265 0
20 June 171 0

2008

3 May * 124 22
6 July 187 0 20 June 172 37
22 July 203 30 6 July 188 2

7 August 219 0 23 August 236 10
8 September 251 0 24 September 268 0
24 September 267 0 10 October 284 0

2003

6 May 126 30

2009

4 April * 94 13
22 May 142 0 22 May* 142 17
23 June 174 0 23 June 174 3
25 July 206 3 9 July 190 7

11 September 254 0 11 September 254 5
27 September 270 14

2010

9 May 129 13
13 October 286 0 10 June 161 0

2004

26 June 177 23
8 May 129 60 29 August 241 3
25 June 177 22 14 September 257 0

13 September 257 4 30 September 273 10

* Image date is earlier than the USDA National Agricultural Statistics Service’s (NASS) recorded date for 50% of
planting completed.

2.3. Data Processing

The NDVI is developed from two important wave bands: the red and near infrared, and has been
widely used for agricultural mapping and yield monitoring [25–29]. The NDVI is calculated as:

NDVI “ pRNIR ´ Rredq
M

pRNIR ` Rredq (1)

where Rnir is the reflectance in the near infrared spectrum, and Rred is the reflectance in the red band
spectrum. Values of NDVI range from 1.0 to ´1.0 [30]. Barren land, sand or snow usually present
very low NDVI values (for example, less than 0.1). Sparse vegetation such as shrubs and grassland or
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senescing crops may result in moderate NDVI values (approximately 0.2 to 0.5). High NDVI values
(approximately 0.6 to 0.9) correspond to dense vegetation such as that found in temperate and tropical
forests or crops at their peak growth stage. Since the NDVI shows a close relation to canopy chlorophyll
content, it can also be used to estimate Leaf Area Index (LAI) [31,32], which is an important vegetation
biophysical characteristic.

NDVI values also change during the plant growing cycle. During development from planting to
physiological maturity, corn experiences several growth stages. These stages are separated into two
groups: vegetative and reproductive periods. The vegetative period covers the timing from planting to
the stage when the entire tassel is visible (the visible tassel or VT period) and leaves are fully developed.
The reproductive period starts from the silking stage and ends at physiological maturity. For a single
plant, the growth rate is slow at the beginning of the vegetative period, but increases when new leaves
appear. It reaches the maximum canopy coverage in the early reproductive period. Corn NDVI values
roughly follow the same trend, where the peak NDVI value is often observed during the silking period.
Natural senescence usually begins at the end of the denting period; NDVI values decrease from the
beginning of natural senescence to maturity.

2.3.1. NDVI Calculation for Corn Pixels

The first step for computing NDVI values for corn pixels is to remove non-clear land pixels for
all Landsat TM5 images. The object-based cloud and cloud shadow detection software Fmask [33]
was utilized to identify cloud, shadow and unobstructed land surface pixels. Digital Number values
from the visible and near-infrared bands in the raw Landsat 5 TM imagery are first converted to Top
of Atmosphere (TOA) reflectance, while the thermal band is converted to Brightness Temperature
(BT) using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [34]). The TOA
reflectance and BT (in degrees Celsius) are used as Fmask input. Decision rules based on cloud and
cloud shadow physical properties (brightness and temperature) are then used to extract a potential
cloud/shadow layer. Cloud potential layers are improved by eliminating edge cells. Then the base
and top height of clouds are computed and used to calculate projected shadows. Shadow detection
is refined via a shape similarity comparison, where geometric relationships are used to match the
potential cloud shadow with the cloud. Clearly visible land pixels are identified by Fmask as those
with data that are not covered by cloud, cloud shadow or snow. Pixels used for the analysis are further
screened to make sure that they are clearly visible for every Landsat image for a specific year by
merging the Fmask products for all TM images in each year. As corn is not grown consistently on the
same fields on a year-to-year basis (as defined by local crop rotation practices), the pixels selected for
analysis did vary between years.

The final outputs of Fmask are clear land pixels for all TM5 images in each year. Quick
Atmospheric Correction (QUAC) from Exelis ENVI was used to remove the effects of the atmosphere
on the reflectance values of all clear land pixels. QUAC determines atmospheric correction parameters
using an in-scene approach without ancillary information, requiring only specification of sensor band
locations and their radiometric calibration [35]. The final product for NDVI calculation after running
QUAC was reflectance from all clear land surface pixels.

NDVI for all land pixels was calculated based on the atmospherically corrected reflectance of
band 3 (red, 630–690 nm) and band 4 (near infrared, 760–900 nm). Pixels identified as corn in each
CDL data layer from 2000–2010 are used to extract the corn NDVI values for pixels within 15 km of the
St. Joseph River watershed. The purpose of extending the selection area to include areas outside the
watershed is to enlarge the sample size for corn pixels. It is assumed that growing conditions within
the 15 km buffer are similar to the ones inside the watershed boundary.

Three additional filters are applied to further refine the selection of corn pixels identified by
the CDL data, to minimize the potential for mixed pixels and registration errors that can introduce
noise into the data. The first filter improves the identification of pure corn pixels by removing any
pixel that had more than one non-corn neighbor. These are assumed to be edge-of-field pixels with
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a greater likelihood of being mixed. The second filter checks for a minimum amount of change in
NDVI between planting and silking when NDVI should peak., Here the median NDVI value for all
corn pixels was calculated for all images for a year, and the image with the peak median NDVI (near
silking stage) and minimum NDVI (near planting) were identified. The difference between median
NDVI for those two images was set as a threshold. Any pixel with maximum NDVI range less than
that threshold over all images in the year was excluded. The final filter checks that NDVI increased
monotonically from planting date to peak NDVI stage, then decreased monotonically from peak stage
to maturity stage. Due to the limited availability of images each year, the maximum NDVI value
calculated from the Landsat images may not always be the peak NDVI for that year. It is possible to
have a non-monotonic change for valid pixels if the peak growth period is missed due to the lack of
available imagery. Therefore, the monotonic check is applied for images between the latest planting
date and earliest silking date, and images between the latest silking date and earliest maturity date,
where these dates have been extracted from the USDA NASS Crop Progress Reports (Table 2). Since
2004 had only three available images, the third filter was not applied. Figure 2 illustrates the impacts
on NDVI after each of these filters.

Table 2. NASS corn progress dates for the St. Joseph River Basin.

Crop
Status Year Day of Year

Status Begin
Day of Year
Status End

50% Progress
Status

Planted

2000 107 156 127
2001 105 147 124
2002 111 167 145
2003 110 159 122
2004 109 151 119
2005 100 142 122
2006 106 155 123
2007 112 147 130
2008 118 167 130
2009 123 165 143
2010 106 155 126

Silked

2000 184 219 200
2001 196 217 201
2002 195 223 206
2003 194 229 207
2004 179 221 192
2005 191 219 199
2006 190 218 199
2007 189 217 197
2008 195 230 205
2009 193 228 208
2010 183 218 199

Matured

2000 240 282 263
2001 238 287 263
2002 244 286 268
2003 250 285 273
2004 242 291 262
2005 233 289 263
2006 239 288 267
2007 245 287 263
2008 251 300 265
2009 256 312 286
2010 239 281 262
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Figure 2. Boxplot for corn Normalized Difference Vegetative Index (NDVI) values in 2003: (a) original
data for all corn pixels within the region; (b) after applying the first filter: edge-of-field pixels
are removed; (c) after applying filter 2: pixels without sufficient seasonal variation are removed;
and (d) after applying filter 3: between images from 22 May and 23 June. Pixels with decreasing NDVI
values between the two dates were removed. The third filter was also applied between images from
25 July and 11 September. Pixels with increasing NDVI values between two dates were removed.

2.3.2. Normal Curve Generalization and NDVI Residual Calculation

Since corn phenology is more correlated with air temperature (or heat units) than Julian days
since planting, development varies from year to year with respect to date [36]. Therefore, the extracted
NDVI data are associated with the Potential Heat Units (PHU) and Growing Degree Days (GDD)
accumulated from the planting date to the date of image acquisition. PHU and GDD are both used
as measures of the growth and development of plants based on daily average temperature. PHU is
calculated based on degrees Centigrade, while GDD is based on degrees Fahrenheit. Development does
not occur unless the daily average temperature is above a base temperature (lower limit). PHU/GDD
start to accumulate from the planting date to the date of physical maturity for the plant as long as
temperature is above the lower limit. The lower limit for corn is set as 8 ˝C [37]. The GDD method also
has an upper limit, which is set to 86 ˝F/30 ˝C [38], representing temperature above which the crop is
too stressed to continue development towards maturity. Such a limit does not exist with the PHU.

A generalized corn NDVI growth curve is obtained using a robust version of LOESS
(locally-weighted scatter plot smoothing) [39] applied to median NDVI values from all 11 years’
images plotted vs. PHU and GDD. Due to data scarcity (3–7 images per year) and the timing difference
of images, it is hard to describe the corn NDVI dynamics for specific growth periods using just one
year’s data. Therefore, all years of data are combined to create a general, regional corn growth curve. In
this way, missing information for a specific period in one year can be compensated by other years. The
generalized NDVI curve via local regression method reflects the corn growth dynamics under “normal
conditions” for 11 years. The differences between measured NDVI and the derived normal curve, the
residual or “discrepancy score” [40], can be treated as an index to reflect the influence of biophysical
stresses on crop growth. If the residual has a negative value, corn development is below normal so can
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be assumed to have experienced more growth stress than in a normal year. The Sakamoto et al. [40]
“discrepancy score” was computed based on a rescaled shaped model from 7 years of continuous daily
MODIS data and smoothed for each year. Therefore, their “discrepancy score” differs for each year,
which is different from our image based residuals. By comparing the median NDVI for a specific image
and the normal curve, we can roughly estimate basin level corn growth condition in a specific day.
Interannual corn growth analysis can be conducted by averaging NDVI residuals based on satellite
imagery. To obtain the spatial growth variability, the departure rate can also be computed based on
NDVI and the normal curve for each individual pixel.

2.3.3. Growth Stress Metrics

Actual crop growth is affected by various stresses occurring during the growing season, including
those from extreme temperatures, oversupplied or limited water, insufficient nutrients, pest infestations,
and weed competition. Actual growth is therefore always less than or equal to the potential growth
even under optimal conditions.

In this research, only crop growth stresses from extremes of temperature and water, based on the
approach used in the Soil and Water Assessment Tool (SWAT) were calculated [41].

Daily temperature stress (ts) is calculated as:

ts “ 1 Tav ą 2 ˚ Topt´ Tbase or Tav ď Tbase (2)

ts “ 1´ exp

«

´0.1054 ˚ pTopt´ Tavq2

pTav´ Tbaseq2

ff

Tbase ă Tav ă Topt (3)

ts “ 1´ exp

«

´0.1054 ˚ pTopt´ Tavq2

p2 ˚ Topt´ Tav´ Tbaseq2

ff

Topt ă Tav ă 2 ˚ Topt´ Tbase (4)

where Tav is the mean air temperature for day (˝C), Tbase is the plant’s base or minimum temperature
for growth (˝C) (defined as 8 ˝C for corn), and Topt is the plant’s optimal temperature for growth (˝C)
(defined as 25 ˝C for corn).

Accumulated temperature stresses normalized by the number of days or heat units are used to
quantify the cumulative effect of temperature on crop growth.

tsacc_day “

řn
i ts

n´ i
(5)

tsacc_PHU “

řn
i ts

řn
i“1 PHU

(6)

tsacc_GDD “

řn
i ts

řn
i“1 GDD

(7)

where tsacc_day is the accumulated temperature stress normalized by the number of days from planting
date i to image collection date n; ts is daily temperature stress; tsacc_PHU is the accumulated temperature
stress normalized by PHU; PHU is the accumulated heat units from day i to day n; tsacc_GDD is the
accumulated temperature stress normalized by GDD; GDD is the accumulated growing degree days
from day i to day n.

Water stress (ws) is computed based on the difference between average accumulated rainfall from
long term historical data and accumulated rainfall for each year, as follows:

ws “
ÿ

n
i“1 pi ´

ÿ

n
i“1 pi (8)

where pi represents daily precipitation for a single year and pi is the daily normal precipitation for a 20
year period (1991–2010). ws is calculated by comparing the accumulation of precipitation from the
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average curve p
řn

i“1 pq with that for the current year (
řn

i“1 p) relative to the planting date i for the
year of interest, and can be calculated to any day n in that year. If ws is a negative value, it means the
accumulated rainfall amount is below the average condition, so corn at that time may have suffered
more from drought. On the other hand, if ws is a positive value, it indicates a wetter than average
condition. As shown in Figure 3, the cumulative rainfall curve for year 2002 is below the long term
average curve, which results in negative ws values in this dry year. Positive ws values are found for the
year 2003, indicating it was wetter than average. Year 2006 is normal year, because the accumulation of
precipitation in 2006 is close to the long term average.
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Figure 3. Cumulative rainfall comparison between long term average (1991–2010) and specific years.

3. Results

3.1. Normalized Difference Vegetative Index with Time

Figure 4a illustrates the median growing season corn NDVI values for 11 years of images
(2000–2010). The median value of corn NDVI follows the expected phenology of the corn canopy.
In the early growing period, as corn plants emerge, vegetation coverage per unit area is small, and
the median NDVI value is low (0–0.2). As plants develop, the NDVI value grows rapidly (0.3–0.6)
capturing the increase in leaf area as the growing plant spreads to cover the soil between the rows
in the fields. The NDVI value is proportional to the canopy coverage during this stage. Corn NDVI
reaches a peak value (0.7–0.8) at the end of July or early August, at the stage when all leaves are fully
developed. As plants enter the end of the reproductive stage and natural senescence occurs, NDVI
decreases significantly.

Figure 4b shows the Coefficient of Variation (CV) of corn NDVI with time. Minimum CVs for
each year are found in the middle of the growing season associated with the peak NDVI value. This
period appears to be the most uniform stage, when the corn canopy is fully developed and spatial
differences due to different planting dates are less pronounced. Peak CVs are often encountered either
at the early or late growing season. In the early growing season when corn is just emerging, soil
reflectance dominates the NDVI measurement, causing a very low mean NDVI value (e.g., Year 2000,
2003 and 2010), and therefore a higher CV. Secondly, due to different planting dates, NDVI values
show greater variance in late June (around 30–40 days after planting), leading to higher CV values
(Year 2001, 2008 and 2009). In the late growing season, as senescence occurs, the reflectance contains
a wide range of green and non-green color intensities, also causing high CV values. Table 3 lists the
date of the maximum NDVI variation for each year. Those dates are always found during either the
leaf development stage or senescence period. This spatial variability in NDVI is illustrated in Figure 5
for De Kalb County in the year 2003. The spatial distribution pattern on 27 September appears more
heterogeneous than on 25 July, when canopy coverage and leaf overlap were well-developed.
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Figure 4. (a) Median Normalized Difference Vegetative Index (NDVI) and (b) Coefficient of Variation
(CV) from NDVI values in St. Joseph River watershed for 11 years.

Table 3. Date of maximum NDVI variation (range of the 95% prediction interval) for each year.

Date Days after Planting 95% Interval Median NDVI CV

17 September 2000 133 0.4050 0.4938 0.2207
16 June 2001 43 0.4565 0.2833 0.3868
5 July 2002 41 0.3561 0.4934 0.1875

26 September 2003 147 0.4677 0.5117 0.2605
12 September 2004 136 0.5128 0.4591 0.2974

17 October 2005 168 0.1535 0.2387 0.1937
30 June 2006 58 0.3870 0.5906 0.1728

21 September 2007 134 0.4343 0.4588 0.2368
19 June 2008 40 0.5690 0.2665 0.5225
22 June 2009 30 0.5841 0.2253 0.6017

28 August 2010 114 0.5783 0.4930 0.3415
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identify NDVI values for a specific growing period defined by Julian days. Therefore, NDVI 
dynamics are also regressed against PHU and GDD accumulated from the planting date (Figure 6). 
Two outliers (see Figure 6) were removed when generating the normal growth curve. The first is from 
2005 imagery, and is removed because it associated with an extremely high PHU and GDD 
suggesting that it was collected well after crop maturity. The second one is from 2007 imagery, and 
yields extremely high NDVI values at the very end of the growing season, suggesting the NDVI value 
at this time does not correctly represent the corn growth condition.  

Figure 5. Spatial distribution of NDVI as observed from Landsat 5 TM imagery for De Kalb
County, IN on the following dates in 2003: (a) 22 May, NDVI mean = 0.19, CV = 0.16; (b) 25 July,
NDVI mean = 0.83, CV = 0.02; (c) 27 September, NDVI mean = 0.54, CV = 0.20.
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3.2. Normal Growth Condition

The generalized corn NDVI growth curve obtained from all 11 years’ images is shown in Figure 6.
Since different planting dates each year may affect the starting point of the NDVI curve, the NASS
recorded planting date (50th percentile value) is used as the starting point for each year’s analysis.
In addition, different lengths of the growing season (number of days vary from 122 days in 2002 to
151 days in 2003 based on the 50th percentile of NASS crop progress records) may make it difficult to
identify NDVI values for a specific growing period defined by Julian days. Therefore, NDVI dynamics
are also regressed against PHU and GDD accumulated from the planting date (Figure 6). Two outliers
(see Figure 6) were removed when generating the normal growth curve. The first is from 2005 imagery,
and is removed because it associated with an extremely high PHU and GDD suggesting that it was
collected well after crop maturity. The second one is from 2007 imagery, and yields extremely high
NDVI values at the very end of the growing season, suggesting the NDVI value at this time does not
correctly represent the corn growth condition.Remote Sens. 2016, 8, 269 12 of 23 
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The rank of the annual discrepancy score (average of the residual calculated for each image over 
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on whether Julian days or heat units are used, the relative positions in the rankings are quite 
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Figure 6. Generation of normal NDVI curve based on 11 years data versus: (a) days after planting;
(b) Potential Heat Units (PHU); and (c) Growing Degree Days (GDD). The normal curve is generated
by smoothing NDVI using robust loess method, with a span of 40%.

The departure of image median NDVI values from the normal curve (NDVI residual) are
calculated and plotted vs. Julian days, PHU and GDD, respectively (Figure 7). For year 2002, most
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NDVI residuals are negative, indicating increased stress levels relative to the long-term average for
almost the entire growing season, which can be attributed to the drought that occurred that year. For
years 2008 and 2010, corn NDVI deviations are negative for the second half of the growing season,
suggesting increased stress on crop growth in the later parts of the growing season. Years 2004, 2007
and 2009 all have positive residuals during the peak NDVI stage, indicating corn growth is above
normal. Residuals for the other years are small so NDVI values are close to the normal curve, indicating
an average growth year. Corn response to year to year variability is reflected in these departures from
the normal curve. Therefore, positive NDVI residuals do not necessarily mean the corn is not in any
way stressed, but that its growth is above the normal condition based on the multiple year record.

Remote Sens. 2016, 8, 269 13 of 23 

 

6.65 and 8.03 t/ha, which are around 1.50–3.00 t/ha lower than year 2003 and 2009 (9.51 and 9.48 t/ha 
respectively), confirming that corn in 2002 and 2008 may have experienced more growth stress, which 
negatively affected yield.  

 

Figure 7. Eleven year median NDVI values minus normal NDVI for the same: (a) number of days 
after planting; (b) PHU; and (c) GDD. 

Table 4. Rank of NDVI residual for each set of annual images. Rank 1 = best NDVIs, while Rank 11 = 
worst NDVIs. 

 Days PHU GDD Growing 
Season 
Rainfall 
Amount 

(mm) 

Growing 
Season 
Mean 

Temperature 
(°C) 

Year Rank Discrep. 
Score Rank Discrep. 

Score Rank Discrep. 
Score 

2000 4 0.0171 6 0.0090 6 0.0041 482 19.6 
2001 6 −0.0019 4 0.0275 3 0.0301 460 19.9 
2002 11 −0.1086 11 −0.0797 11 −0.0667 390 20.2 
2003 3 0.0391 3 0.0407 2 0.0317 634 19.7 
2004 5 0.0100 7 0.0054 7 0.0034 445 19.9 
2005 8 −0.0183 5 0.0225 5 0.0262 287 21.6 
2006 9 −0.0399 9 0.0011 8 0.0026 384 20.8 
2007 2 0.1069 2 0.0480 4 0.0282 378 20.8 
2008 10 −0.0743 10 −0.0563 10 −0.0573 394 19.8 
2009 1 0.1134 1 0.0542 1 0.0450 490 18.0 
2010 7 −0.0028 8 0.0029 9 0.0008 358 19.7 

  

Figure 7. Eleven year median NDVI values minus normal NDVI for the same: (a) number of days after
planting; (b) PHU; and (c) GDD.

The rank of the annual discrepancy score (average of the residual calculated for each image over
a growing season) is summarized in Table 4. High rankings indicate positive residuals, meaning that
the crop experienced higher NDVI than normal conditions, while low rankings indicate that crop
experienced lower NDVI than normal conditions. Although there is some variation in ranks based on
whether Julian days or heat units are used, the relative positions in the rankings are quite consistent.
For example, 2002 and 2008 are always the lowest ranked years, while 2009 and 2003 are more highly
ranked regardless of the independent variable. The annual yield for 2002 and 2008 was 6.65 and 8.03
t/ha, which are around 1.50–3.00 t/ha lower than year 2003 and 2009 (9.51 and 9.48 t/ha respectively),
confirming that corn in 2002 and 2008 may have experienced more growth stress, which negatively
affected yield.
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Table 4. Rank of NDVI residual for each set of annual images. Rank 1 = best NDVIs, while
Rank 11 = worst NDVIs.

Year

Days PHU GDD
Growing Season
Rainfall Amount

(mm)

Growing Season
Mean

Temperature (˝C)Rank Discrep.
Score Rank Discrep.

Score Rank Discrep.
Score

2000 4 0.0171 6 0.0090 6 0.0041 482 19.6
2001 6 ´0.0019 4 0.0275 3 0.0301 460 19.9
2002 11 ´0.1086 11 ´0.0797 11 ´0.0667 390 20.2
2003 3 0.0391 3 0.0407 2 0.0317 634 19.7
2004 5 0.0100 7 0.0054 7 0.0034 445 19.9
2005 8 ´0.0183 5 0.0225 5 0.0262 287 21.6
2006 9 ´0.0399 9 0.0011 8 0.0026 384 20.8
2007 2 0.1069 2 0.0480 4 0.0282 378 20.8
2008 10 ´0.0743 10 ´0.0563 10 ´0.0573 394 19.8
2009 1 0.1134 1 0.0542 1 0.0450 490 18.0
2010 7 ´0.0028 8 0.0029 9 0.0008 358 19.7

3.3. Yield-NDVI Residual Relationship

Biophysical stress at different crop growth stages produces different magnitudes of influence on
final yields [42,43]. Therefore, the relationship between NDVI residuals averaged over various growth
stages and county level corn yields was investigated. Growth stages selected for analysis include:
(1) The pre-silking period, where average NDVI residuals are calculated based on all available images
from planting to the earliest silking date recorded by NASS data (Table 2). Average NDVI residuals
during this period should reflect the corn growth condition during the corn vegetative period. Stress in
this period reduces stem and leaf cell expansion resulting in lower plant height and less leaf area [44];
(2) The pre-maturity period, where NDVI residuals are calculated based on available images from
planting to the earliest maturity date recorded by NASS data. This period contains both the corn
vegetative stage and the most important reproductive stages (silking, blister and dough) of the corn
plant life cycle. Stress in the early and middle reproductive stages can abort kernels, reduce kernel
weight, and increase lodging, and in turn impair final yield [45]; (3) The silking period, where the
NDVI residual are calculated for the image with the highest NDVI value for each year. This image
is typically found in the silking period, when the canopy is fully developed. Early season stresses
affect leaf area development, leading to differences in maximum NDVI values for each year. The NDVI
residual for this image is caused by accumulated stresses during the vegetative period, which could
also affect final yield; (4) The whole growing period where average NDVI residuals are calculated
based on all available images. This is the same as the annual discrepancy score introduced previously.

The relationship between these four NDVI residuals, calculated from the three different
generalized growth curves, and annual yield are summarized in Table 5. No significant relationship
was found (for significance level, alpha = 0.05) for any period if Julian day is used to generate the
normal curve. When PHU and GDD are used to generate the normal growth curve, a significant
relationship exists between NDVI residual and corn yield for the pre-silking, pre-maturity and entire
growth periods. For the pre-silking period, a significant relationship (p < 0.01) was detected between
average NDVI residuals based on GDD and annual corn yield (Figure 8). Average NDVI in the
pre-maturity stage (p < 0.05) and for the whole growing season (p < 0.05) were also statistically
significant predictors of annual yield. No significant relationship was found between the residual of
the maximum NDVI image and annual crop yield, for any of the three normal growth curves. The
relationship between annual basin level corn yield and NDVI residuals at different growing stages
(GDD based) are also shown in Figure 8.
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Table 5. Pearson correlation coefficient, r, between grain yield and average NDVI residuals for different
growth stages.

Day PHU GDD

Mean NDVI departure for pre-silking period images 0.067 0.71 * 0.76 **

Mean NDVI departure for pre-maturity period images 0.16 0.58 0.62 *

Mean NDVI departure for all images in the growing period 0.50 0.68 * 0.69 *

Departure for Highest NDVI point for each year 0.28 0.36 0.36

* means significant correlated when p < 0.05, ** means significant correlated when p < 0.01.
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There are no strong correlations found in the data (Figure 9), but it appears that points can be grouped 
into several clusters. Image averages in Cluster A have both negative NDVI residual and water stress, 
which indicates that the weather is dry and crop growth is below normal. Cluster C has both positive 
NDVI residuals and water stress, so precipitation and crop growth are both above normal. Images in 
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Figure 8. The relationship between basin level corn yield and (a) mean NDVI residual for pre-silking
period images; (b) mean NDVI residual for pre-maturity period images; (c) mean NDVI residual for
all images in the growing period; (d) residual of the highest NDVI image for each year. Residuals are
calculated based on GDD.

The correlation analysis summarized in Table 5 indicates that the NDVI residual derived from
Landsat images reflects crop stress in the pre-silking period that in turn impacts final yield. This result
is consistent with other studies that have found that NDVI from the middle to late vegetative period is
significantly correlated with biomass and final yield [46,47]. Therefore, it may be possible to predict
corn grain yield in-season for this study area, by comparing pre-silking period NDVIs to long-term
normal growth curves.

3.4. Stress-NDVI Residual Relationship

As stated in Section 3.3, annual corn yield is significantly related to the annual, pre-silking and
pre-maturity NDVI discrepancy scores. The relationship between NDVI discrepancy and precipitation
and temperature stress metrics are investigated in this section. The NDVI residuals calculated for all
images in the 11-year period in Section 3.2 are grouped into pre-silking period, pre-maturity period
and whole growing period. However, the residuals in those periods are not averaged as they were for
the yield-residual relation, but rather regressed with normalized stress indices (ws and tsacc) on the
date of image acquisition.
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The relationship between NDVI residuals and water stress (ws) is shown in Figure 9. Large
negative values of water stress (ws) represent dry conditions; positive ws represent wet conditions.
There are no strong correlations found in the data (Figure 9), but it appears that points can be grouped
into several clusters. Image averages in Cluster A have both negative NDVI residual and water stress,
which indicates that the weather is dry and crop growth is below normal. Cluster C has both positive
NDVI residuals and water stress, so precipitation and crop growth are both above normal. Images
in Cluster B represent normal weather and crop conditions. Compared to Cluster B both cluster A
and C have relatively larger absolute values (0.2–0.4) in NDVI residuals, indicating larger growth
discrepancies (could be either under or above normal condition). When corn growth is way above
or below normal, it is usually associated with extreme climate conditions. Images in cluster B do not
have a clear relationship between water stress and NDVI residuals. Since crop growth can be affected
by many environmental factors, for example, soil types and slopes, temperature, disease and pests,
leaf growth in this cluster may not respond to water stress exclusively, but is influenced by other
environmental factors. Figure 9c also has a fourth cluster, named Cluster D, that contains images
collected from the end of the growing season (after middle September) in 2003. Images in this cluster
have very large positive ws values, but an unclear relationship between ws and NDVI residuals. This
indicates that an oversupply of rainfall at the end of the growing season did not have a substantial
effect on crop development. NDVI residuals at that time are more strongly related to the natural
senescence process than water stress.
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The relationship between NDVI residuals and normalized temperature stress indices (tsacc)
are summarized in Table 6. No statistically significant relationship (p < 0.05) was found between
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temperature stress and NDVI residuals at any period based on either time units or heat units. This
might be caused by the temperature stress calculation method. Compared to average daily temperature,
daily maximum temperature is more associated with crop growth [3]. Leaf development is significantly
affected by temperature when it is associated with water limitation. A more mechanistic analysis is
needed to evaluate interactions between temperature, precipitation and other factors as they determine
evapotranspiration, which is more closely related to NDVI [48].

Table 6. Pearson correlation coefficient, r, between stress indices and NDVI residuals for different
growth stages.

Day PHU GDD

NDVI departure for pre-silking period images vs.
Normalized accumulated temperature stresses ´0.36 0.32 0.42

NDVI departure for pre-maturity period images vs.
Normalized accumulated temperature stresses ´0.18 0.32 0.35

NDVI departure for all images in growing period vs.
Normalized accumulated temperature stresses 0.07 0.27 0.27

3.5. Risky Pixel Rate-Stress Realtionship

In Sections 3.3 and 3.4 the relationship between image median NDVI residual and crop yield and
climate metrics was investigated. Since NDVI residual was computed based on the image median
NDVI value, the analysis neglected the spatial variability in crop stress. In this section, more emphasis
is put on individual pixels under stress. Any corn pixel with NDVI less than the normal growth curve
(Figure 6) is considered to be under stress. The percentage of pixels under stress (risky pixel rate) for
each image is computed, and related to water stress (Figure 10).
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Statistically significant relationships (p < 0.05) are detected between water stress and risky pixel
rates, no matter which method was used to produce the normal growth curve. Therefore, the number
of pixels experiencing growth limitations is strongly correlated with water stress. Based on Figure 10,
images with risky pixel rates over 0.8 (80% of cells are under stress) have negative ws values, indicating
drought condition is affecting crop growth for most cells. Almost all images with low risky pixel
rate (less than 0.2) are associated with positive ws values, so above average rainfall reduced the
threat of yield loss (less area experienced yield reduction). This difference in area affected under
wet and dry stress is illustrated by comparing two images from the pre-silking stage for a dry
year (2002) and a wet year (2003) (Figure 11), which clearly reflects the different impacts of rainfall
on risky cell rates. If rainfall is limited, then most cells are under stress (Figure 11a). However,
if rainfall is above average, only a small portion of cells are under stress (Figure 11b). This reflects the
collection of runoff and ponding in depressional areas that may experience catastrophic yield loss, as
opposed to the depressed growth over widespread areas in the case of water limitations.
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For wet years, although fewer cells are affected by stress (risky pixel rate < 0.2), the potential yield
loss in those cells with high stress rates could be huge. This is investigated using NDVI residuals that
can represent potential yield, and ws, for risky cells (negative NDVI residuals) only when the risky
pixel rate is less than 0.2, and ws > 0 (Figure 12). Though there is no clear relationship between ws and
the NDVI residuals, in Figure 12a, we found that very large ws values (ws > 200 mm, both found in
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increased yield in other cells that benefitted from sufficient rainfall.
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4. Discussion

The information obtained from this study can be applied to three outcomes: (1) quantifying plant
growth and environmental stress time series, which can be used to validate and constrain crop growth
models; (2) improving early in-season yield prediction; and (3) identifying areas, which have the
potential risk to obtain lower yields.

NDVI time series can provide important information for crop modeling studies by providing an
additional, sub-annual time series for evaluating models. NDVI residuals can serve as the observed
data to evaluate simulated leaf development responses to climate stresses. In most dynamic crop
models, biomass and yield are a function of the daily predicted LAI. Understanding the LAI progression
under stress and non-stress conditions is helpful to better estimate not only the annual yield but also
interannual yield variation. Since LAI can be estimated from NDVI via various approaches [49,50],
it is possible to adjust model predicted LAI based on NDVI from Landsat images and evaluate the
accuracy of crop model performance in crop growth at different stages and under various climate stress
conditions. This evaluation is especially important when exploring future climate change impacts.
Crop modeling must be able to correctly reflect seasonal crop growth responses under various climate
conditions (limited or oversupplied water). Validating crop growth model via information from
this study can improve the reliability of model predictions under more frequent extreme weather in
the future.

Results in Section 3.3 reflect a significant relationship between pre-silking stage NDVI residual
and corn yield in the St. Joseph River Watershed. This indicates corn yield potential could be predicted
in season without attaining whole life-cycle corn growth information. Although the residual-yield
relationship may differ for different areas, this methodology could be applied to other regions in order
to obtain their specific normal growth curves. The corn industry can benefit from in-season yield
prediction by producing better forecasts of corn prices. Since crop yield is linked with NDVI residual,
which is spatially explicit when derived from satellite images, yield prediction could be conducted at
the pixel level.

The advantage of a remote sensing method is the identification of crop development stages within
30 m Landsat imagery, which can provide detailed patterns of spatial and temporal crop phenology
variations. Local scale information about corn development stages can also be obtained. As an objective
procedure, it holds potential to avoid reduce reliance on subjective, cost and labor intensive field
observations. Since the spatial pattern of corn NDVI can be attained by analyzing satellite images, it is
easier to accurately target areas which are suffering from stress (Figure 11). Therefore, proper crop
management could be applied in the right place, improving cost and time efficiency.

This research could be further improved in two aspects:

(1) The vegetation index, NDVI, used in this research has a potential to saturate when the leaf
area index is high, thus limiting its ability to quantify LAI late in the growing season. This
is one potential reason that no significant relationship is found between peak NDVI (high
leaf area index) and crop yield. Applying other indices, such as EVI2 and MTVI2 [6] could
overcome the saturation problem, and should be evaluated in future studies. Since our
future focus is to improve crop growth model responses to climate stresses, and since most
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crop models apply LAI to represent seasonal growth, we still use NDVI in this study because
of its well-established relationship with LAI.

(2) Although detailed spatial information could be attained due to the fine resolution of Landsat
images (30 m), the temporal coverage (16 days) is too infrequent to capture the rapid changes
in biophysical processes during the early growth stages. Therefore, we have to overlay
multiple years’ data to describe of the whole corn growth cycle in this study. Applying a
fused MODIS/Landsat approach [51] could be an appropriate way to extend the temporal
coverage for current mid-resolution images. Though new errors and uncertainties may still
be introduced by such a fused approach due to differences in spatial and spectral band
resolution, for example.

5. Conclusions

This research uses an 11 year time series of Landsat TM5 images to explore the spatial and
temporal variability of corn growth in the St. Joseph River Watershed, in Indiana, Michigan and
Ohio. Images during the corn growth period were first processed to remove cloud/shadow/snow
pixels. Atmospheric correction was then applied to exclude the effect of atmosphere on the reflectance
values. CDL data was used to extract all corn pixels in the study area. An 11 year time series of
spatially-varying corn NDVI values was finally attained. The observed corn NDVI reaches its peak
value (>0.7) around the silking period, as identified using the NASS Crop Progress Data. Spatial
variability in NDVI was also at its minimum (CV < 0.1) at this time when the canopy is fully developed.
The NDVI shows greater variation (CV > 0.2) during the leaf development and senescence periods.

A normal corn growth curve was established for the region using the median values of the
11 year corn NDVI time series reflecting the whole life cycle of regional corn growth. NDVI
residuals were calculated for individual image dates relative to the normal growth curve and used to
calculate pre-silking, pre-maturity and growing season discrepancy scores. Overall, the growth curve
constructed using GDD on the image acquisition dates appeared to be the most robust.

The growing season average discrepancy was able to clearly identify years with above average and
below average crop development. Regression analysis indicates that grain yield is most significantly
related to the pre-silking period NDVI residuals (p < 0.01). Therefore, local stake holders can estimate
in-season corn yield even when only early images are available, and identify stress risk in early stages.
Water stress is closely associated with NDVI residuals. At the scale of the entire image, dry weather
(negative ws) tends to result in crop growth below normal conditions (negative NDVI residuals), while
plenty of rainfall reduces the risk of yield loss (positive yield loss). At this scale, no impact from excess
water stress was detected. However, since corn pixels in this study are of very fine spatial resolution
(30 m), it is possible to identify individual pixels which have risks of yield loss due to stresses. The
risky pixel rate is significantly correlated with water stress, as more corn pixels are under stress when
precipitation is way below the long-term average curve. The spatial pattern of risky pixels is different
between dry and wet years. Limited rainfall was found to affect most corn pixels, while the spatial
extent of stress is much more limited when rainfall is plentiful or oversupplied. This difference in
spatial extent explains in part why yield limitation due to wet conditions is not detected for larger
spatial scales.

This study lays a framework for using mid-resolution imagery to derive crop phenology and
quantify corn responses to climate stresses. The methods derived from this study could be applied to
other areas for future research, especially climate sensitive areas, where crop growth is more easily
affected by climate variability. Using remote sensing technology, corn responses to different climate
stress (limited or oversupplied rainfall) were detected. Information conveyed from this research
is recommended for crop modeling studies to quantify model performance under various climate
conditions. A better parameterization to represent seasonal growth and annual yield under climate
stresses is critical, especially to assess the impact of future climate change, where more extreme
precipitation and drought are expected.
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Abbreviations

The following abbreviations are used in this manuscript:

BT Brightness Temperature
CDL Cropland Data Layer
GDD Growing Degree Days
LAI Leaf Area Index
LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System
LOESS Locally-weighted scatter plot smoothing.
NASS National Agricultural Statistics Service
NDVI Normalized Difference Vegetative Index
PHU Potential Heat Units
QUAC Quick Atmospheric Correction
SWAT Soil and Water Assessment Tool
ts Temperature stress
TM Thematic Mapper
TOA Top of Atmosphere
ws Water stress
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