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Abstract: Studies related to vegetation dynamics in heterogeneous landscapes often require
Normalized Difference Vegetation Index (NDVI) datasets with both high spatial resolution and
frequent coverage, which cannot be satisfied by a single sensor due to technical limitations. In this
study, we propose a new method called NDVI-Bayesian Spatiotemporal Fusion Model (NDVI-BSFM)
for accurately and effectively building frequent high spatial resolution Landsat-like NDVI datasets
by integrating Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat NDVI.
Experimental comparisons with the results obtained using other popular methods (i.e., the Spatial
and Temporal Adaptive Reflectance Fusion Model (STARFM), the Enhanced Spatial and Temporal
Adaptive Reflectance Fusion Model (ESTARFM), and the Flexible Spatiotemporal DAta Fusion
(FSDAF) method) showed that our proposed method has the following advantages: (1) it can obtain
more accurate estimates; (2) it can retain more spatial detail; (3) its prediction accuracy is less
dependent on the quality of the MODIS NDVI on the specific prediction date; and (4) it produces
smoother NDVI time series profiles. All of these advantages demonstrate the strengths and the
robustness of the proposed NDVI-BSFM in providing reliable high spatial and temporal resolution
NDVI datasets to support other land surface process studies.
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1. Introduction

The Normalized Difference Vegetation Index (NDVI) derived from satellite imagery is an
important vegetation index that represents vegetation greenness and vigor, which is employed widely
in many significant areas of research [1–3], such as land cover classification and change detection [4–6],
mapping land surface emissivity [7], and assessing ecological responses to environmental change [8].

However, a trade-off must be made between spatial and temporal resolutions in remote sensing
instruments [9]. At present, no sensor provides NDVI data sets with both adequate spatial resolution
and frequent coverage to satisfy the needs of most environmental applications. The well-known
economically accessible Landsat mission provides 30-m resolution datasets, which can successfully
capture spatial details [10,11], but the revisit time of 16 days and frequent cloud cover make it very
difficult to obtain sufficient high-quality data, which severely limit its application to the detection of
rapid changes in ecosystems [12]. Furthermore, the Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery has a daily revisit cycle, but its coarse-resolution restricts its effectiveness in
heterogeneous areas.
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In order to generate high spatial and temporal resolution images, many methods have been
developed by blending MODIS and Landsat data, which have similar spectral channel, into new
synthetic data [9,13–23]. Among these methods, the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM) [13] is a representative data fusion model as well as the first to be developed.
STARFM implementation includes four steps. First, Landsat pixels that were spectrally similar to the
central pixel within a moving window were searched, and these pixels were filtered to be used as
samples in the second step. Then, spectral difference, temporal difference and location distance were
considered to determine the weights of the samples in the third step. Finally, the predicted value of the
central Landsat pixel is computed using the weighted correspondence between the Landsat and MODIS
values of each sample. Thus far, STARFM is the most widely used data fusion model in applications
such as phenology analysis and change detection [13,14,24], and several studies have aimed to address
its shortcomings and to improve its accuracy [14,15,17–20]. As a result, many new data fusion models
based on STARFM have emerged, such as the Spatial Temporal Adaptive Algorithm for mapping
Reflectance Change (STAARCH) [14], the Enhanced Spatial and Temporal Adaptive Reflectance Fusion
Model (ESTARFM) [15] and other modified STARFM-like models [17,18,20]. Among these improved
versions, ESTARFM introduced a conversion coefficient parameter based on the original STARFM,
improving the accuracy of predicted fine-resolution reflectance for heterogeneous landscapes. Hence,
ESTARFM became popular and further developed in other studies [17,18]. At present, STARFM series
is well developed, and the robustness of these models has been demonstrated [9]. However, these data
fusion models can never achieve satisfactory precision if the coarse-resolution image acquired on the
prediction date was of poor quality. The high dependence on coarse-resolution data quality to ensure
effectiveness is a severe drawback for STARFM-like model series, which reduce its suitability for mass
NDVI production.

Unmixing-based algorithms are also a common downscaling approach for creating high spatial
resolution images. In the coarse spatial resolution image, each pixel covers a large area and generally
contains more than one type of land cover class, constituting a mixed pixel [25]. Mixed-pixel unmixing
techniques have been studied for decades to extract detailed information on land-cover types within
mixed pixels with the help of fine spatial resolution classification images. These techniques have
already been used in applications such as change detection [26]. Settle and Drake [27] used the
area-weighted linear unmixing method to produce sub-pixel scale images, but the images created
using this type of method are not high spatial resolution in a real sense because all the sub-pixels
with the same classification type within a coarse-resolution pixel share the same value. However,
heterogeneity within the same land-cover type is universal due to the diversity of environmental
situations and biotic characteristics [28], even at a very small scale. In addition, there is usually
an obvious pitchy effect [21], which detrimentally affects the appearance of the unmixed image.
An effective approach for addressing these issues is to blend other models and the unmixing based
method to obtain a new model to obtain better results [9,21–23]. Such models include the Flexible
Spatiotemporal DAta Fusion (FSDAF) method, which integrates ideas from unmixing-based methods,
spatial interpolation, and STARFM into one framework [23], and the NDVI Linear Mixing Growth
Model (NDVI-LMGM), which is a combination of unmixing model and STARFM [21]. However,
similar to STARFM, these models are also limited by the quality of the coarse-resolution images.
The NDVI-LMGM uses the Savitzky–Golay algorithm to filter the MODIS NDVI time series to reduce
the influence of the poor-quality MODIS NDVI values, but it is weak in humid areas where the
cloud contamination continuously exists. Furthermore, a previous study showed that unmixing may
result in unrealistic endmember values [29]. To solve this problem, Gevaert and García-Haro [9]
presented an alternative Bayesian unmixing method, which describes data fusion uncertainties in a
clear probabilistic framework, in the Spatial and Temporal Reflectance Unmixing Model (STRUM).
Compared with STARFM, STRUM is computationally less intensive, but it uses only one pair of images
for prediction, resulting in insufficient accuracy in some cases because the difference between Landsat
NDVI and MODIS NDVI changes with vegetation growth.
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In addition to the methods mentioned above, some approaches synthesize high spatial and
temporal resolution datasets in the field of data assimilation. For example, a Kalman filter-based
method was proposed to generate continuous time series of Landsat images and further used for
regional winter wheat yield estimation [30,31]. Moreover, a previous study [16] presented by our
research group took the multi-year average NDVI calculated from MODIS “pure” (homogeneous)
pixels for each land-cover type within the application region as the background value, and the
Landsat NDVI as the observations, where NDVI time series images with Landsat spatial details and
MODIS temporal resolution could be generated by applying a Continuous Correction (CC) method.
The background value used in the CC method was stable and independent of the MODIS NDVI on the
prediction date, thereby contributing to better results compared with other models when the MODIS
NDVI acquired on the prediction date were of poor quality, but normally, this also causes significant
losses of detailed information contained in the MODIS NDVI on the prediction date. The operational
efficiency of the CC method is impressive, but the precision is restricted by the inflexible background
values, which should vary from spatial and temporal positions.

In summary, improvements are necessary at present to generate frequent high spatial resolution
NDVI datasets. Thus, to build high spatial and temporal NDVI datasets with high accuracy and
universal applicability, we propose a Bayesian unmixing based method called NDVI-Bayesian
Spatiotemporal Fusion Model (NDVI-BSFM), which employs MODIS NDVI to predict Landsat-like
NDVI images. We demonstrated the effectiveness and accuracy of the proposed approach by
comparing the predicted results with real Landsat NDVI images, field measurements, and estimators
from STARFM, ESTARFM and FSDAF.

2. Data Processing

2.1. Data Preperation

This study used the Landsat 8/OLI surface reflectance product with 30-m resolution, which
was download from the United States Geological Survey [32], as high spatial resolution input data.
This product is atmospherically corrected using a program called L8SR [33].

The MODIS MOD09A1 product with 463-m resolution in the Integerized Sinusoidal projection
composited every eight days download from Reverb [34] was utilized as coarse-resolution input data.
It should be noted that some studies have utilized other medium-resolution MODIS product such as
MOD09GQ [21] and MCD43A4 [9], but the MOD09 daily reflectance products, including MOD09GQ
and MOD09GA, suffer from heavy cloud contamination, while the 16-day acquisition period makes
the MCD43A4 Nadir BRDF (Bidirectional Reflectance Distribution Function)-Adjusted Reflectance
product less valid because the NDVI value of a vegetation pixel can vary by a significant amount over
16 days. Thus, the eight-day MOD09A1 product was selected to balance between the data quality
and data effectiveness in the present study. Meanwhile, we employed the MODIS Pixel Quality Filter
(PQF) service on Reverb, which was released by the Land Processes Distributed Active Archive Center
(LP DAAC), to obtain quality information for the red band and the near-infrared (NIR) band of the
MOD09A1 reflectance, thereby allowing us to identify the unreliable MODIS NDVI values due to
cloud contamination and other factors.

In addition, we required land cover maps at both the Landsat scale and MODIS scale for this
study. We utilized the MODIS MCD12Q1 Land_Cover_Type_5 to flag the land-cover type of each
MODIS pixel. We also obtained a Landsat scale land cover map by converting vector land use data
based on Landsat TM/ETM+ images [35] to a 30-m grid image. In fact, the Landsat scale land cover
map can be replaced by supervised classification or unsupervised classification images based on
fine-resolution images.

To make the datasets consistent, all the datasets used in the current study were re-projected onto
the UTM (WGS84) projection. For the MODIS datasets, the images were reprojected and resampled to
480-m resolution using the MODIS Reprojection Tools (MRT), after that one MODIS pixel could be
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divided into 16 ˆ 16 Landsat pixels. Next, the NDVI index was calculated from MODIS and Landsat 8
reflectance measurements by Equation (1):

NDVI “
ρNIR ´ ρR
ρNIR ` ρR

(1)

where ρR and ρNIR are the reflectance of red and NIR, respectively.
Moreover, geometrical registration was conducted between MODIS and Landsat. Due to

disparities in the spatial resolution, routine geometric registration methods had difficulty achieving
the accuracy required in this study. Thus, we employed a method similar to the moving window
approach [20]. To begin with, a Landsat NDVI image within the study area was prepared, and its
corresponding MODIS NDVI image was reprojected and resampled to the same status as the Landsat
image. Then the MODIS NDVI and Landsat NDVI images were geometrically overlaid according to
their geographic information. Later, the Landsat NDVI image was shifted in each cardinal direction,
and the correlation coefficient between the new overlapped Landsat NDVI image and MODIS NDVI
image was computed for each movement. The position with the maximum correlation coefficient
between Landsat and MODIS was checked and treated as the best matching position. Figure 1 shows a
three-dimensional plot of the correlation coefficients. The maximum coefficient (0.79) was found for
the shift corresponding to i = 0 and j = 1 in the study area, thereby indicating that the Landsat image
was to the north of the MODIS image by one Landsat pixel.
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Landsat NDVI at different locations.

2.2. Obtaining Prior NDVI Information

It is known that the NDVI represents the vegetation status and that NDVI time series with
different land-cover types exhibit different growth cycles and trends, which are related to the biological
characteristics of plants [36,37]. In general, the trends in NDVI time series with a specific land-cover
type are relatively stable over different years, and thus the trend information in NDVI time series for
each land-cover type summarized from multiple years can be utilized as prior information.

In the present study, we determined the prior MODIS NDVI time series in eight-day intervals
throughout a year (including 46 DOY (Day of Year) samples) for each land-cover type beforehand, so it
could be used as input data for the next stage. As shown in Figure 2, the 30-m resolution classification
image and the 480-m resolution MCD12Q1 were geometrically overlaid to determine the MODIS
“pure” (homogeneous) pixels for each land-cover type in the first step. A 480-m resolution MODIS
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pixel was regarded as a MODIS pure pixel of land-cover type “X” if it was marked with “X” in the
MCD12Q1 data, and more than 90% of the 30-m resolution pixels within this MODIS pixel were also
flagged with the land-cover type “X” in the 30-m resolution classification data. Next, the MOD09A1
reflectance dataset from 2008 to 2014, as well as its PQF data, was used to calculate the average NDVI
of good-quality pure MODIS pixels within the study area for each land-cover type at each DOY sample.
Thus, a multi-year average NDVI time series, which consists of 46 NDVI values in eight-day intervals,
for each land-cover type was built (shown in Figure 3). Finally, the Savitzky–Golay algorithm [38] was
applied to filter and optimize the multi-year average NDVI time series, before generating the prior
MODIS NDVI time series for each land-cover type. In brief, the prior MODIS NDVI time series for
one land-cover type represents the average NDVI dynamic trend of this land-cover type within the
study area.
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3. Methods

Using the 30-m resolution land classification image, the NDVI-BSFM first employed the prior
MODIS NDVI datasets, the MODIS NDVI (on the paired dates t1 . . . tn and the prediction date tk, i.e.,
t1 . . . tn, tk) calculated from the MOD09A1 reflectance, as well as the PQF (t1... tn, tk), to obtain the
initial NDVI (t1... tn, tk) at 30-m resolution. This step was performed by the Bayesian pixel unmixing
process, which blends the information of the prior MODIS NDVI into the traditional unmixing process.
For example, the output initial NDVI on DOY = 206 in 2014 is a combination of the prior MODIS NDVI
on DOY = 206 (calculated from 2008 to 2014) and the MODIS NDVI on DOY = 206 in 2014. It has the
same spatial resolution as the Landsat image, but its spectral features are MODIS-like. Subsequently,
an NDVI rebuilding model was applied to combine the initial NDVI (t1... tn, tk) and Landsat NDVI
(t1... tn) observations to predict the Landsat-like NDVI on the prediction date tk. Figure 4 shows a
flowchart that illustrates the proposed method, and the main steps of the implementation are described
in detail in the following sections.
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3.1. Bayesian Pixel Unmixing Method

Unmixing-based algorithms are among the most commonly used methods for generating high
spatial resolution images from coarse-resolution images based on high spatial resolution land cover
classification images. Busetto et al. proposed a Weighted Linear Mixing model for downscaling
MODIS NDVI, which assumes that the NDVI value of a coarse pixel can be calculated as the area
fraction weighted average of the NDVI values for several land-cover endmembers at a fine spatial
scale within the coarse pixel [27,28]. If there are i land-cover endmembers within a MODIS pixel, then
at least i equations should be available to avoid the inversion of ill-posed matrices. It is reasonable to
employ spatially neighboring coarse pixels to provide extra information because the same land-cover
endmember with a similar vegetation type in a small area can be assumed to share a similar NDVI
value at a specific time according to Tobler’s First Law of Geography [39]. In general, a sliding window
of (n ˆ n) MODIS pixels is applied, where n2 must equal the number of classes i or be larger than i.
Thus, the neighboring pixels within the sliding window can be used to obtain a linear model, and
unmixing is performed by solving the linear mixing model described by Equation (2).

NDVIcoarse “ ANDVIe ` ε (2)
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In Equation (2), NDVIcoarse is an (n2 ˆ 1) column vector containing the NDVI of each MODIS
pixel in the n ˆ n moving window that is currently being unmixed. The endmember fraction matrix A
is an (n2 ˆ i) matrix, which is calculated from the 30-m resolution classification image, and NDVIe

is an (i ˆ 1) column vector that contains the NDVI of each land-cover types at Landsat scale, where
the aim of Equation (2) is to obtain NDVIe by minimizing the residuals (ε) introduced by the linear
mixing model.

However, it is known that unmixing may yield unrealistic estimates of the endmember values,
and several studies have aimed to address this problem [9,29,40]. In addition, it should be considered
that the decomposition results are totally dependent on the quality of the coarse-resolution image,
so decomposition based on a coarse-resolution image that contains large amounts of noise would
never get the correct results. Therefore, there is still room for improving the accuracy of traditional
decomposition strategies. In this study, we employed a Bayesian theory based solution, which is based
mainly on a previous method [9], to constrain the estimation of the endmembers.

We treated the filtered multi-year average NDVI time series of pure MODIS pixels for each
land-cover type as prior information, where this process is described in Section 2.2. Furthermore, we
assumed a Gaussian distribution for the prior probability with mean NDVIp and covariance matrix Σp.
We also assumed that the MODIS NDVI observations (NDVIo) were noisy within the sliding widow,
where they followed a Gaussian distribution with covariance matrix Σo. In these conditions, the
posterior distribution follows a Gaussian distribution with expectation value µe and covariance matrix
Σe. Finally, the following expressions can be obtained according to Bayes’ theorem of conditional
probabilities [41]:

Σe “ rΣ´1
p ` ATΣ´1

o As
´1

(3)

µe “ Σe

”

ATΣ´1
o NDVIo ` Σ´1

p NDVIp

ı

(4)

Note that µe is the expectation value for the posterior probability, which is also the minimum
mean squared estimator of the endmembers. According to the equations given above, we can conclude
that the expectation value for the endmembers comes from a combination of prior knowledge and the
MODIS NDVI observations.

It is important to define the covariance matrices, so we employed spherical covariance matrices,
as described in a previous study [9], to define Σp and Σo as follows:

Σp “ σ
2
p I piq (5)

Σo “ σ
2
o I
´

n2
¯

(6)

where I(i) and I(n2) represent the (i ˆ i) and (n2 ˆ n2) identity matrices, respectively, and σ2
p and

σ2
o represent the variances assigned to the prior NDVIp and the observation NDVIo, respectively.

The individual values of σ2
p and σ2

o are not remarkable, but the ratio σratio “ σp{σo is the key index for
controlling the relative importance of the prior information and the observations. If the observations
are of poor quality according to the PQF, then after reducing the σratio, more stress is placed on the
prior information, thereby decreasing the influence of the observation noise on the estimators, and
vice versa. Therefore, better results can be obtained by optimizing σratio.

It should be noted that, the fixed window is moved pixel by pixel, so the equations and results
obtained differ from the MODIS pixels. Following the steps described above, each MODIS pixel
yielded a set of expected NDVI values for the posterior probability for each class. Finally, the pixels at
Landsat scale within a MODIS pixel were assigned the corresponding class’s expected NDVI value,
which we refer to as the so-called “initial NDVI” in the next section, according to the 30-m resolution
classification image.
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3.2. High Spatial and Temporal NDVI Rebuilding Model

The initial NDVI images at Landsat resolution synthesized from the MODIS data, as described in
the previous section, were not Landsat-like images, but instead they were MODIS-like images. For one
thing, the spectral features of the initial NDVI images were inherited from MODIS. For another thing,
the initial NDVI images contained no spatial details similar to those in Landsat images. Moreover,
in the initial NDVI images, the within-class variations in a MODIS pixel were totally ignored. In order
to build Landsat-like NDVI images, the relationships between observations of real Landsat NDVI
images acquired on the paired dates and their corresponding initial NDVI were required in a rebuilding
model to adjust the initial NDVI on the prediction date to Landsat-like NDVI, this step was done pixel
by pixel.

We assumed that the initial NDVI growth of a vegetation pixel followed a pattern, such as the
one shown in Figure 5. Mainly due to the sensor differences and other uncertainties, the relationship
between the NDVI derived from Landsat data (Lt) and the initial NDVI calculated from MODIS data
(Mt) on date t can be expressed as follows.

Lt “ Mt ` εt (7)
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In Equation (7), the difference term εt, which was regarded as a constant in most previous
studies [13,14], would actually change over time duo to phenology. For example, it is reasonable for
the difference term εt to equal 0.2 in summer when the vegetation is at its most luxuriant, whereas it
would impossible for it to reach 0.2 in winter when the plants are withered and the NDVI is close to 0.
If we assume two distinguishable dates t1 and tk, then the relationship between the Landsat NDVI and
the initial NDVI on the two dates can be accordingly expressed by Equations (8) and (9), respectively.

L1 “ M1 ` ε1 (8)

Lk “ Mk ` εk (9)

In general, the initial NDVI, which is downscaled from MODIS NDVI, can represent the vegetation
status and the range of εt will be larger when the initial NDVI (Mt) is higher. Hence, we assumed a
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positive correlation between εt and Mt. Combining Equations (8) and (9), the relationship between L1

and M1 on date t1 and Lk and Mk on date tk can be described as follows.

L1 ´M1

M1
“

Lk ´Mk
Mk

(10)

If we take the predicted Landsat NDVI Lk as the variable that needs to be solved, then Equation (10)
can be translated into the following form.

Lk “ Mk `
Mk ˆ pL1 ´M1q

M1
(11)

Thus, if we determine the initial NDVI and the Landsat NDVI for the pair on date t1, and the
initial NDVI on date tk in advance, then we can obtain the Landsat NDVI on date tk by applying
Equation (11). In addition, from Equation (11), we can find that the predicted Landsat NDVI is based
on the initial NDVI on the prediction date, as well as being adjusted by the relationship between
the initial NDVI and Landsat NDVI paired on another date. However, an adjustment that relies on
only one pair of images is not always valid and the real situation is complicated by several factors,
including the intricate dynamics of vegetation growth, changes in the land-cover type, atmospheric
impacts, and various other factors. If more than one Landsat images within a region can be acquired
during one year, the extra information with multiple temporal phases can be highly beneficial, thereby
contributing to more reliable results. Equation (12) provides a method for combining n pairs of initial
NDVI and Landsat NDVI on dates from t1 to tn to predict the Landsat NDVI on date tk:

Lk “ Mk `

řn
j“1ω

`

tk, tj
˘

ˆ
MkˆpLj´Mjq

Mj
řn

j“1ω
`

tk, tj
˘ (12)

where j is a variable that ranges from 1 to n, Lj and Mj are the Landsat NDVI and the initial NDVI on
date tj, respectively, and the weightωptk, tj) determines the contribution of the NDVI pair on date tj to
the adjustment.

To define the weight ωptk, tj), two features need to be considered. First, paired data on closer
dates can provide a more accurate indication of the estimator because plants grow gradually. Second,
paired data for which the initial NDVI has a greater correlation coefficient with respect to the initial
NDVI on the prediction date can be more representative of the status of the NDVI on the prediction
date. To consider both features, the weighting factorωptk, tj) was defined as follows.

ω
`

tk, tj
˘

“
1

tk ´ tj
ˆ

1
Mk ´Mj

(13)

In Figure 5, t1 is nearer to tk, and M2 is closer to Mk, so the paired data on dates t1 and t2 both
play important roles in adjusting the estimator on date tk.

In conclusion, the proposed model first uses a Bayesian based method to introduce the prior
MODIS NDVI into the unmixing process to yield a more accurate initial NDVI at the Landsat scale,
before combining the initial NDVI and Landsat NDVI image pairs acquired on other dates to rebuild
the Landsat-like NDVI on prediction date. This model can predict a single Landsat-like NDVI image
as well as building a Landsat-like NDVI time-series dataset.

4. Experiments and Results

In this research, experiments over two study areas were conducted. On the one hand, a small area
in Huailai, Hebei Province, China, was used to demonstrate the performance from different aspects by
comparison with STARFM and ESTARFM predictions. On the other hand, a Landsat tile in Yunnan



Remote Sens. 2016, 8, 452 10 of 23

Province, China, was also used to test the effectiveness of the proposed method when applied to
large areas.

The parameter σratio was demonstrated to significantly reduce the prediction errors when equal
variance was assigned to prior information and measurements (σratio = 1) compared with an almost
unconstrained estimate in a previous study [9]. In the present study, we optimized the σratio to obtain
better results, which we set to 0.5 when the MODIS NDVI measurements had ideal quality and 4 for
poor quality empirically, according to the MODIS PQF. Hence, if the MODIS NDVI measurements
that needed to be unmixed had ideal quality, more importance was placed on the MODIS NDVI
measurements, whereas if the MODIS NDVI measurements were noisy signals, they had to be highly
restricted by the prior information, therefore more importance was placed on the prior information.

We also conducted evaluations and different comparisons to comprehensively confirm the
robustness of the proposed method. We calculated four statistics between the predictions and the
Landsat observations to quantify the global accuracy, i.e., the Average Absolute Difference (AAD,
Equation (14)), the Average Absolute Relative Difference (AARD, Equation (15)), the correlation
coefficient (r, Equation (16)), and the Root Mean Square Error (RMSE, Equation (17)), as follows:

AAD “
1
n

ÿn

i“1
|NDVIp

i ´ NDVIo
i | (14)

AARD “
1
n

ÿn

i“1
|pNDVIp

i ´ NDVIo
i q{NDVIo

i | (15)

r “

řn
i“1

´

NDVIp
i ´ NDVIp

¯

`

NDVIo
i ´ NDVIo

˘

c

řn
i“1

´

NDVIp
i ´ NDVIp

¯2
¨

b

řn
i“1

`

NDVIo
i ´ NDVIo

˘2
(16)

RMSE “

g

f

f

e

řn
i“1

´

NDVIp
i ´ NDVIo

i

¯2

n
(17)

where NDVIp
i and NDVIo

i are the predicted and observed values for pixel i, respectively.

4.1. Performance Comparison over a Small Region

4.1.1. Study Area of Huailai

The Huailai area is located around the experimental station of the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences (40˝211 N, 115˝471 E) in Huailai County, Hebei Province,
China. The site consists of a rectangular area of 280 km2, which corresponds to 608ˆ 512 Landsat pixels.
The typical elevation of the site is about 480 m and it has a temperate continental climate. The study
area is mainly made up of forests, farmland predominantly planted with corn, and shrubland. Figure 6
shows the location and survey of the Huailai area.

The Huailai area was covered by two Landsat scenes (WRS-2 path 123 and row 32, path 124 and
row 32), so there was a high probability of obtaining cloud-free Landsat images. In fact, we obtained
14 cloud-free Landsat 8 surface reflectance imageries (DOY = 14, 30, 94, 119, 142, 206, 222, 238, 247,
270, 279, 286, 318, and 359) in 2014, ensuring abundant validation data for the proposed approach.
Furthermore, field experiments were performed at this site throughout 2014, when in-situ NDVI
datasets were collected. The availability of suitable data motivated the selection of the Huailai site as a
study area.

In this part of the work, a total of three Landsat and MODIS image pairs of the Huailai area from
2014 (DOY = 94, 206, and 286), as shown in Figure 7, were used as input datasets. Among them, only
two image pairs (DOY = 94 and 206) were used in Section 4.1.2 to retrieve single Landsat-like NDVI
images. In the work described in Section 4.1.3, the three image pairs were all used to build Landsat-like
NDVI images for all of 2014.



Remote Sens. 2016, 8, 452 11 of 23

Remote Sens. 2016, 8, 452 10 of 23 

 

ݎ = ∑ ௜௣ܫܸܦܰ) − ௜௢ܫܸܦܰ)௣)തതതതതതതതതതܫܸܦܰ − ∑௢)തതതതതതതതതത௡௜ୀଵටܫܸܦܰ ௜௣ܫܸܦܰ) − ௣)തതതതതതതതതതଶ௡௜ୀଵܫܸܦܰ ∙ ට∑ ௜௢ܫܸܦܰ) − ௢)തതതതതതതതതതଶ௡௜ୀଵܫܸܦܰ  (16)

RMSE = ඨ∑ ௜௣ܫܸܦܰ) − ௜௢)ଶ௡௜ୀଵܫܸܦܰ ݊  (17)

where ܰܫܸܦ௜௣ and ܰܫܸܦ௜௢ are the predicted and observed values for pixel i, respectively. 

4.1. Performance Comparison over a Small Region 

4.1.1. Study Area of Huailai 

The Huailai area is located around the experimental station of the Institute of Remote Sensing 
and Digital Earth, Chinese Academy of Sciences (40°21′ N, 115°47′ E) in Huailai County, Hebei 
Province, China. The site consists of a rectangular area of 280 km2, which corresponds to 608 × 512 
Landsat pixels. The typical elevation of the site is about 480 m and it has a temperate continental 
climate. The study area is mainly made up of forests, farmland predominantly planted with corn, 
and shrubland. Figure 6 shows the location and survey of the Huailai area. 

 
Figure 6. Location of the Huailai area and its corresponding Landsat 8/OLI image (NIR-red-green 
composite). 

The Huailai area was covered by two Landsat scenes (WRS-2 path 123 and row 32, path 124 and 
row 32), so there was a high probability of obtaining cloud-free Landsat images. In fact, we obtained 
14 cloud-free Landsat 8 surface reflectance imageries (DOY = 14, 30, 94, 119, 142, 206, 222, 238, 247, 
270, 279, 286, 318, and 359) in 2014, ensuring abundant validation data for the proposed approach. 
Furthermore, field experiments were performed at this site throughout 2014, when in-situ NDVI 
datasets were collected. The availability of suitable data motivated the selection of the Huailai site as 
a study area. 

In this part of the work, a total of three Landsat and MODIS image pairs of the Huailai area 
from 2014 (DOY = 94, 206, and 286), as shown in Figure 7, were used as input datasets. Among them, 
only two image pairs (DOY = 94 and 206) were used in Section 4.1.2 to retrieve single Landsat-like 
NDVI images. In the work described in Section 4.1.3, the three image pairs were all used to build 
Landsat-like NDVI images for all of 2014. 

Figure 6. Location of the Huailai area and its corresponding Landsat 8/OLI image
(NIR-red-green composite).

Remote Sens. 2016, 8, 452 11 of 23 

 

 
Figure 7. Input paired NDVI images of the Huailai site: Landsat NDVI images acquired on: DOY = 94 
(a); DOY = 206 (b); and DOY = 286 (c); and their corresponding MODIS NDVI images (d–f). 

4.1.2. Retrieving Single Landsat-Like NDVI Images 

In general, the MODIS NDVI on the date upon which the predicted Landsat-like NDVI is based has 
a crucial impact on the predicted result. In this section, we describe the performance of the proposed 
method using both ideal and poor quality MODIS NDVI data on the prediction date. As noted, two 
input NDVI image pairs on DOY = 94 and 206 were used in the work described in this section. 

First, we tested the NDVI-BSFM in an ideal situation, where the MODIS NDVI image on the 
prediction date was of ideal quality, to retrieve a Landsat-like NDVI image on the date DOY = 238. In 
addition, STARFM and ESTARFM were used to obtain the NDVI for comparison by indirectly 
predicting the red and NIR bands using the same input datasets. 

Figure 8 shows that the three methods all produced excellent results. However, NDVI-BSFM 
yielded more realistic and detailed spatial information compared with STARFM, because the 
neighboring pixels were used to obtain a weighted average prediction of the center pixel in 
STARFM, which produces more reliable predictions but it also loses small spatial characteristics to 
give a hazy appearance. In contrast, NDVI-BSFM does not consider the neighborhood information 
during the prediction step and it is based only on the predicted pixel itself, thereby preserving its 
specific characteristics. In this experiment, ESTARFM successfully preserved spatial details, thereby 
demonstrating its advantage compared with STARFM. 

The overall accuracy of NDVI-BSFM was higher than that of STARFM and ESTARFM 
according to the global assessment indices shown in Table 1. The values of AAD, AARD, and RMSE 
for the predictions obtained using NDVI-BSFM were lower than those for the predictions made 
using STARFM and ESTARFM. The correlation coefficient (ݎ) for NDVI-BSFM was 0.9663, which 
was much higher than that for STARFM and ESTARFM, i.e., 0.9144 and 0.9342, respectively, thereby 
indicating better agreement with the actual Landsat NDVI values calculated directly from the 
Landsat 8/OLI reflectance image acquired on the prediction date. 

Figure 7. Input paired NDVI images of the Huailai site: Landsat NDVI images acquired on:
DOY = 94 (a); DOY = 206 (b); and DOY = 286 (c); and their corresponding MODIS NDVI images (d–f).

4.1.2. Retrieving Single Landsat-Like NDVI Images

In general, the MODIS NDVI on the date upon which the predicted Landsat-like NDVI is based has
a crucial impact on the predicted result. In this section, we describe the performance of the proposed
method using both ideal and poor quality MODIS NDVI data on the prediction date. As noted, two
input NDVI image pairs on DOY = 94 and 206 were used in the work described in this section.
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First, we tested the NDVI-BSFM in an ideal situation, where the MODIS NDVI image on the
prediction date was of ideal quality, to retrieve a Landsat-like NDVI image on the date DOY = 238.
In addition, STARFM and ESTARFM were used to obtain the NDVI for comparison by indirectly
predicting the red and NIR bands using the same input datasets.

Figure 8 shows that the three methods all produced excellent results. However, NDVI-BSFM
yielded more realistic and detailed spatial information compared with STARFM, because the
neighboring pixels were used to obtain a weighted average prediction of the center pixel in STARFM,
which produces more reliable predictions but it also loses small spatial characteristics to give
a hazy appearance. In contrast, NDVI-BSFM does not consider the neighborhood information
during the prediction step and it is based only on the predicted pixel itself, thereby preserving
its specific characteristics. In this experiment, ESTARFM successfully preserved spatial details, thereby
demonstrating its advantage compared with STARFM.Remote Sens. 2016, 8, 452 12 of 23 
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images can be reduced in an effective manner by a weighted mechanism, but the quality of the 
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is a fatal constraint on prediction accuracy. In fact, even the eight-day composited MODIS 
MOD09A1 datasets, which have better data quality than MODIS daily reflectance products, still 
inevitably contain bad pixels. If the bad pixels were joined into patches or blocks, local estimators 
could never eliminate these effects. In this study, bad pixels were detected by the MODIS PQF and 
corrected using prior information by applying a Bayesian framework. Therefore, in theory, the 
proposed method was expected to perform well routinely, regardless of the MODIS NDVI data 
quality. 

Within the Huailai area, the MODIS NDVI image on DOY = 217 was of poor quality, and hence 
experiments was conducted to retrieve the Landsat-like NDVI image on DOY = 217 in this case. 
Figure 9 and Table 2 show that STARFM was incapable of capturing the spatial details and barely 
reflected the ground truth, and ESTARFM yield incorrect spatial characteristics, that were deeply 
affected by the MODIS bad pixels on DOY = 217. In contrast, NDVI-BSFM successfully built realistic 

Figure 8. The comparison of results predicted by three methods (NDVI-BSFM,STARFM and ESTARFM)
under the condition of good MODIS NDVI: (a) original Landsat NDVI image on DOY = 238; (b) NDVI
image on DOY = 238 predicted by NDVI-BSFM; (c) NDVI image predicted by STARFM; (d) NDVI image
predicted by ESTARFM; (e) MODIS NDVI image on DOY = 241; (f) the absolute error distribution
diagram of NDVI-BSFM; (g) the absolute error distribution diagram of STARFM; (h) the absolute error
distribution diagram of ESTARFM.

The overall accuracy of NDVI-BSFM was higher than that of STARFM and ESTARFM according
to the global assessment indices shown in Table 1. The values of AAD, AARD, and RMSE for the
predictions obtained using NDVI-BSFM were lower than those for the predictions made using STARFM
and ESTARFM. The correlation coefficient (r) for NDVI-BSFM was 0.9663, which was much higher
than that for STARFM and ESTARFM, i.e., 0.9144 and 0.9342, respectively, thereby indicating better
agreement with the actual Landsat NDVI values calculated directly from the Landsat 8/OLI reflectance
image acquired on the prediction date.

The errors in the predicted NDVI obtained using NDVI-BSFM had several causes. First, the
eight-day composite cycle of MOD09A1 made the MODIS NDVI more reliable, but it also led to
mismatches and further increasing the uncertainty of the relationship between the paired initial NDVI
and Landsat NDVI data. Second, uncertainties in the Landsat and MODIS datasets, errors in the 30-m
resolution land cover map, and surface disturbances that occurred over the paired and prediction
dates all introduced deviation into the final estimators.
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Table 1. AAD, AARD, r and RMSE between the predicted NDVI values obtained using the three
methods and actual Landsat NDVI observations on DOY = 238.

Method AAD AARD r RMSE

STARFM 0.0574 15.42% 0.9144 0.0904
ESTARFM 0.0469 12.31% 0.9342 0.0802

NDVI-BSFM 0.0459 11.85% 0.9663 0.0648

For most downscaling strategies, including STARFM, the effects of noisy signals in paired
images can be reduced in an effective manner by a weighted mechanism, but the quality of the
coarse-resolution data on the prediction date, from which the predicted results are mainly inherited, is
a fatal constraint on prediction accuracy. In fact, even the eight-day composited MODIS MOD09A1
datasets, which have better data quality than MODIS daily reflectance products, still inevitably contain
bad pixels. If the bad pixels were joined into patches or blocks, local estimators could never eliminate
these effects. In this study, bad pixels were detected by the MODIS PQF and corrected using prior
information by applying a Bayesian framework. Therefore, in theory, the proposed method was
expected to perform well routinely, regardless of the MODIS NDVI data quality.

Within the Huailai area, the MODIS NDVI image on DOY = 217 was of poor quality, and hence
experiments was conducted to retrieve the Landsat-like NDVI image on DOY = 217 in this case.
Figure 9 and Table 2 show that STARFM was incapable of capturing the spatial details and barely
reflected the ground truth, and ESTARFM yield incorrect spatial characteristics, that were deeply
affected by the MODIS bad pixels on DOY = 217. In contrast, NDVI-BSFM successfully built realistic
NDVI estimators, which were highly correlated with the real Landsat NDVI image. The values of
AAD, AARD, and RMSE for NDVI-BSFM were less than half those for STARFM and ESTARFM, but r
remained at a high level of 0.9457, thereby demonstrating that NDVI-BSFM could routinely perform
better than STARFM with very poor-quality MODIS data on the prediction dates. Nevertheless,
NDVI-BSFM over-estimated the results at the lower right part of the image because of the abnormally
high values in MODIS NDVI, which were omitted by MODIS PQF.
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information on vegetation change due to phenological cycles, inter-annual climatic variability, and 
long-term trends [24]. In this study, in addition to predicting single NDVI images, as described in 
Section 4.1.2, we retrieved all the eight-day Landsat-like NDVI images throughout 2014 using the 
same three paired NDVI images. Figure 10 shows that the phenology of the vegetation was clearly 
visible, where the NDVI of the vegetation region within the study area started to increase in the 
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Figure 9. The comparison of results predicted by three methods (NDVI-BSFM,STARFM and ESTARFM)
under the condition of poor MODIS NDVI: (a) original Landsat NDVI image on DOY = 217; (b) NDVI
image on DOY = 217 predicted by NDVI-BSFM; (c) NDVI image predicted by STARFM; (d) NDVI
image predicted by ESTARFM; (e) MODIS NDVI image DOY = 217 ; (f) the absolute error distribution
diagram of NDVI-BSFM (g) the absolute error distribution diagram of STARFM; (h) the absolute error
distribution diagram of ESTARFM.



Remote Sens. 2016, 8, 452 14 of 23

Table 2. Values of AAD, AARD, r and RMSE between the predicted NDVI values produced using the
two methods and the actual Landsat NDVI observations on DOY = 217.

Method AAD AARD r RMSE

STARFM 0.1184 24.79% 0.7830 0.1535
ESTARFM 0.1435 29.89% 0.7306 0.1899

NDVI-BSFM 0.0544 13.62% 0.9457 0.0706

4.1.3. Retrieving Landsat-Like NDVI Time Series

During the development of NDVI-BSFM to retrieve Landsat-like NDVI time series, we aimed
to address two main issues. First, the accuracy of NDVI-BSFM was tested repeatedly with different
inputs, thereby allowing the general performance of NDVI-BSFM to be summarized. Second, building
high-quality Landsat-like NDVI time series was an important goal of this study, because high spatial
resolution NDVI datasets with frequent coverage are required to extract and separate information
on vegetation change due to phenological cycles, inter-annual climatic variability, and long-term
trends [24]. In this study, in addition to predicting single NDVI images, as described in Section 4.1.2,
we retrieved all the eight-day Landsat-like NDVI images throughout 2014 using the same three paired
NDVI images. Figure 10 shows that the phenology of the vegetation was clearly visible, where the
NDVI of the vegetation region within the study area started to increase in the spring before peaking
during the summer and then declining in the winter. Nevertheless, discontinuities were also visible in
the predicted NDVI time series. These were basically inherited from the corresponding MODIS NDVI
images and were mainly due to cloud contamination, errors in the atmospheric correction process and
angle effects.Remote Sens. 2016, 8, 452 14 of 23 
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We employed the AAD, AARD, r, and RMSE indices to quantitatively evaluate the accuracy
of the estimators. When excluding the three paired Landsat acquisitions, the remaining 11 Landsat
observations of the 14 cloud-free Landsat images acquired during 2014 were used as the true values
to check the performance of the method. As shown in Figure 11, for each prediction, the values of
AAD, AARD, and RMSE obtained using NDVI-BSFM were stably and considerably lower than those
produced with STARFM, and the value of r was persistently higher using NDVI-BSFM. In addition,
Table 3 shows the average assessments for the 11 evaluations, where the average values of AAD,
AARD, r, and RMSE (0.0487, 0.3278, 0.8808, and 0.0718, respectively) were excellent for NDVI-BSFM.
Overall, we can conclude that NDVI-BSFM obtained superior performance compared with STARFM,
and hence it is a powerful new approach for the construction of NDVI time series.
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Table 3. Comparison of the average accuracy assessments by the two methods for each prediction.

Methods Average AAD Average AARD Average r Average RMSE

STARFM 0.0767 48.66% 0.7685 0.1140
NDVI-BSFM 0.0487 32.78% 0.8808 0.0718

In addition, during 2014, experiments were performed to collect the spectrum reflectance at several
locations in the study area using the SVC HR-1024 field spectroradiometer. Next, the reflectances
of the red and NIR bands, which were employed to calculate the measured NDVI directly, were
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generated using the Landsat 8/OLI spectral response function. Finally, the field measurements of
some pixels and their corresponding Landsat 8/OLI observations were utilized as reference values to
assess the temporal NDVI profiles. Thus, NDVI time series profiles of four vegetated pixels with field
measurements produced by NDVI-BSFM and by STARFM were both compared with the references,
and the results are shown in Figure 12.Remote Sens. 2016, 8, 452 16 of 23 
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Landsat pixels.

According to Figure 12, the NDVI time series curves produced by NDVI-BSFM were closer to the
references than those produced by STARFM, thereby demonstrating the greater accuracy and suitability
of the proposed method. In particular, the field measurements were comparatively higher, which
was mostly due to scale effects because the experiments were fixed at points, whereas the Landsat
pixels were made up of polygons with a spatial extent of 30 m, thereby causing some unavoidable
disagreements. In addition, the major fluctuations in STARFM NDVI curves were mainly due to
accumulated errors when predicting the reflectance of the red and NIR bands, whereas the regularities
in the NDVI time series for a vegetation pixel should increase and decrease gradually. In contrast,
the NDVI time series profiles produced by NDVI-BSFM were smoother, thereby demonstrating that
NDVI-BSFM is more effective in retrieving NDVI time series.

4.2. Application over a Large Area

Note that the Huailai test site may be too small to draw comprehensive and credible conclusions
from the comparison. In addition, obtaining several cloud-free Landsat observations within a year
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in some humid areas is usually difficult, and therefore it is sometimes necessary to predict with only
one input image pair. Among the existing methods, STARFM is regarded as able to predict with
only one input image pair, but ESTARFM was designed to work with two or more input image pairs.
Recently, a new data fusion method FSDAF, was demonstrated to achieve better results with higher
accuracy, more spatial details, and better retrieval of land-cover type changes with only one input
image pair [23]. Therefore, for a case where only one input image pair was used, the proposed method
was quantitatively compared with STARFM and FSDAF in a larger area with varying land-surface
characteristics, i.e., a Landsat tile in Yunnan Province, China.

4.2.1. Study Area in Yunnan

This site is a Landsat tile (WRS-2 path 130 and row 43) located in the center of Yunnan Province,
China. The tile is 7278 ˆ 7585 pixels in extent at 30-m scale, and is centered at 24˝331 N and 115˝331 E,
close to the tropic of cancer. The species is rich, and multiple cropping is predominant due to the
subtropical monsoon climate. The land cover in this area consists of forests, shrubland, and farmland.
Figure 13 shows the location and survey of the Yunnan area.Remote Sens. 2016, 8, 452 17 of 23 
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Figure 13. Location of the Yunnan area and its corresponding Landsat 8/OLI image
(NIR-red-green composite).

4.2.2. Retrieving NDVI Image of a Landsat Tile

In the Yunnan area, we obtained two less cloudy Landsat 8 surface reflectance imageries (DOY = 56
and 104) in 2014. We used NDVI image pair on DOY = 104 to predict a Landsat-like NDVI image
on DOY = 56, and the actual Landsat NDVI pixels with good quality (after removing bad pixels) on
DOY = 56 were used as the criterion to evaluate the performance of NDVI-BSFM, STARFM and FSDAF.
The results are shown in Figure 14, and the quantitative assessments are presented in Table 4.



Remote Sens. 2016, 8, 452 18 of 23

Remote Sens. 2016, 8, 452 17 of 23 

 

 
Figure 13. Location of the Yunnan area and its corresponding Landsat 8/OLI image (NIR-red-green 
composite). 

4.2.2. Retrieving NDVI Image of a Landsat Tile 

In the Yunnan area, we obtained two less cloudy Landsat 8 surface reflectance imageries (DOY 
= 56 and 104) in 2014. We used NDVI image pair on DOY = 104 to predict a Landsat-like NDVI image 
on DOY = 56, and the actual Landsat NDVI pixels with good quality (after removing bad pixels) on 
DOY = 56 were used as the criterion to evaluate the performance of NDVI-BSFM, STARFM and 
FSDAF. The results are shown in Figure 14, and the quantitative assessments are presented in Table 4. 

 
Figure 14. Input Landsat NDVI image on the paired date (DOY = 104) (a); and its corresponding 
MODIS NDVI image (b); Actual Landsat NDVI image on the prediction date (DOY = 56) (c); and its 
corresponding MODIS NDVI image (d); NDVI image on DOY = 56 predicted: by NDVI-BSFM (e); by 
FSDAF (f); and by STARFM (g). 

Figure 14. Input Landsat NDVI image on the paired date (DOY = 104) (a); and its corresponding
MODIS NDVI image (b); Actual Landsat NDVI image on the prediction date (DOY = 56) (c); and its
corresponding MODIS NDVI image (d); NDVI image on DOY = 56 predicted: by NDVI-BSFM (e);
by FSDAF (f); and by STARFM (g).

Table 4. Values of AAD, AARD, r and RMSE between the predicted NDVI values produced using the
three methods and the actual Landsat NDVI observations in Yunnan area.

Methods AAD AARD r RMSE

STARFM 0.0608 13.12% 0.8461 0.0911
FSDAF 0.0582 13.21% 0.8758 0.0806

NDVI-BSFM 0.0563 12.21% 0.8847 0.0793

In Figure 14, NDVI images produced by NDVI-BSFM (Figure 14e), by FSDAF (Figure 14f) and
by STARFM (Figure 14g) are all highly correlated with the actual Landsat NDVI image (Figure 14c).
Clearly, there are larger errors in the left-hand part of the images (in the red circles) predicted by
FSDAF and by STARFM. These are mainly inherited from the corresponding bad pixels in the MODIS
NDVI image on the prediction date (Figure 14d). On the other hand, NDVI-BSFM worked better in
this case because the bad pixels in the MODIS NDVI image were detected by the MODIS PQF and
then compensated for by prior information. In fact, bad pixels in MODIS data pose a serious problem,
especially in humid areas.

The comparison results shown in Table 4 determined that the three methods had comparable
overall accuracy in this experiment. However, NDVI-BSFM (AAD: 0.0563, AARD: 12.21%, r: 0.8847
and RMSE: 0.0793) performed slightly better than FSDAF (AAD: 0.0582, AARD: 13.21%, r: 0.8758 and
RMSE: 0.0806) and STARFM (AAD: 0.0608, AARD: 13.12%, r: 0.8461 and RMSE: 0.0911). In addition,
it should be noted that STARFM and NDVI-BSFM both cost less than half an hour of computing
time in this test, whereas FSDAF consumed 16 h and 44 min. Above all, it was demonstrated that
NDVI-BSFM is also suitable for working with only one pair of Landsat and MODIS data as input,
as well as operating a large area.

5. Discussion

Our experiments demonstrated that NDVI-BSFM performed better than STARFM, ESTARFM,
and FSDAF. The superior performance of the proposed method may be attributed to the following
advantages: (1) combination of the prior NDVI and unmixed MODIS NDVI; (2) accurate geometrical
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registration; (3) more appropriate assumptions; and (4) excluding interference from neighboring pixels.
These strengths are described in detail in the following.

In particular, the NDVI-BSFM creatively utilizes the filtered multi-year average NDVI time series
of the pure MODIS pixels for each land-cover type as prior information and the MODIS measurements
as observations, before incorporating the prior information to constrain the unmixing process for the
MODIS observations based on a Bayesian framework. The relative importance of the prior information
can be optimized according to the quality flags for the MODIS observations. If the MODIS observations
are noisy values that can represent reality only poorly, then more emphasis is placed on the prior, and
vice versa. Using this strategy, the good quality of the prior and the advantages of the observations are
associated in an organic manner to obtain the superior NDVI-BSFM. On the one hand, introducing
prior information into the unmixing process can be highly beneficial. Initially, it can avoid somewhat
unrealistic estimates [9] to improve the unmixing accuracy. Next, it can compensate for errors in the
observed MODIS NDVI measurements by placing relatively correct prior information in a superior
position, thereby decreasing the dependence on the quality of the MODIS NDVI and expanding
the applicability of the NDVI-BSFM. Finally, it can make the NDVI time series profiles smoother
because the prior NDVI curve of each land-cover type has already been filtered in advance. Thus,
by introducing prior information into the unmixing process, NDVI-BSFM addresses many of the
difficulties that affect STARFM-like data fusion models as well as the ineffectiveness of the traditional
unmixing-based methods. On the other hand, the unmixing estimators can also enhance the prior
information. The prior information forms a constant NDVI time series for each land-cover type, but
there are substantial variations within the same land-cover type at different locations due to the diverse
genetic traits of vegetation and environmental variation [21]. This is why the CC method [16], which
uses the prior information directly as background values, can seldom obtain high accuracy. Thus,
from this perspective, using the unmixed estimators to update the prior information has a significant
effect. In summary, the combination of prior information and the unmixed MODIS observations using
a Bayesian framework helps to obtain more reliable predictions.

In addition, the geometrical registration between the MODIS and Landsat data is logical.
Most data fusion models ignore mismatches or they simply aggregate the fine-resolution image
to the coarse-resolution scale, before registration at the coarse-resolution scale, which introduces errors
because the unmixing process and the prediction step are both conducted at the fine-resolution scale.
In the proposed method, we employ a correlation coefficient to evaluate the agreement of the two
datasets and the shifted location with the maximum correlation coefficient is regarded as the final
registration result. The proposed registration method helps to improve the global accuracy.

Moreover, the assumptions of the NDVI-BSFM are more appropriate. STARFM and other
models assumes that the difference between a Landsat measurement and its corresponding MODIS
measurement is constant, but this assumption is tenable only when the paired DOY is very close to
the predicted DOY. Therefore, nearby fine-resolution observations are required when using STARFM
and similar models. In the proposed method, the differences between MODIS and Landsat data are
assumed to change with time, where the difference is greater when the NDVI is larger. Under this
assumption, paired NDVI on a distant date can also be used to obtain effective predictions. Therefore,
the theoretical basis of the NDVI-BSFM allows the selection of paired data on a distant date. When
nearby observations are not available, the NDVI-BSFM can obtain better results than other models.
In addition, if nearby observations are available, then the nearby pairs are assigned greater weight
compared with the distant pairs according to the definition of the weight.

Finally, in the prediction step, unlike STARFM, which uses weighted similar pixels in a
neighborhood to predict the value of the central pixel, NDVI-BSFM only uses the predicted pixel,
thereby retaining the individual characteristics of each pixel and protecting the predicted image from
fuzziness. STARFM-like models need to employ neighboring pixels because the value of a Landsat
pixel is not usually a constant distance from the value of its corresponding MODIS pixel as most
MODIS pixels are heterogeneous; therefore, it is essential to obtain the regression relationship between



Remote Sens. 2016, 8, 452 20 of 23

the central Landsat pixel and the local MODIS pixels depending on many other similar Landsat pixels
in the surrounding area. When the neighboring pixels are considered, the estimators are more reliable
and continuous but also hazier. However, the original MODIS NDVI in STARFM is replaced by the
initial NDVI in NDVI-BSFM. The initial NDVI at Landsat scale is obtained by Bayesian unmixing
using the surrounding MODIS pixels, it is a type of downscaled NDVI product with patchy effects,
where the difference between the real NDVI of a Landsat pixel and the corresponding initial NDVI
is relatively small and regular, and hence the relationship between the Landsat NDVI and the initial
NDVI summarized on the paired dates for a Landsat pixel is sufficient to predict the NDVI of the pixel
itself. The NDVI image estimated by NDVI-BSFM appears to be much clearer without employing
weighted averaging of the neighborhood, which acts as a spatial filter. To ensure spatial continuity, the
proposed method uses prior information to constrain the unmixing process and to decrease the patchy
effects at MODIS scale, where the paired NDVI datasets are then used to adjust the estimators, and the
patches are barely visible after applying these two strategies.

The NDVI-BSFM also has several limitations and constraints. First, the NDVI-BSFM is fairly
computationally intensive and should be simplified in future studies. Second, several parameters
need to be set in the NDVI-BSFM, including the unmixing window size and the σratio, which indicates
the relative importance of the prior information and the observations when the Bayesian unmixing
process is conducted. These non-automatic parameters might limit the automation of the process
during mass production. Third, similar to other data fusion models, the NDVI-BSFM cannot accurately
detect short-term or tiny objects that are not recorded in the MODIS image at the prediction time
or in any Landsat observations, and extra care should be taken if it is applied to other datasets
where the coarse-resolution and fine-resolution sensors have a nonlinear relationship in the spectral
band passes. Fourth, the angle effect of the MOD09A1 data will introduce a slight bias, and hence a
semi-empirical kernel-driven bidirectional reflectance model [42] should be applied later to produce a
nadir BRDF-adjusted surface reflectance product, which is more consistent with the Landsat surface
reflectance product. Finally, the proposed method relies on quality control for MODIS NDVI data, so an
auxiliary quality control method needs to be developed based on the fact that inaccuracy exists in the
MODIS PQF. Moreover, the need for an accurate and comprehensive land cover map that differentiates
all main NDVI classes is also a critical issue in complex environmental situations.

Note that the prediction accuracy varies with the selection of input image pairs because different
input image pairs can have different MODIS-to-Landsat relationships, which are crucial for the
Landsat-like NDVI predictions. To investigate the influence of input data pairs with different temporal
distribution on NDVI-BSFM performance, various numbers and combinations of input data pairs
in the Huailai area were used as base images to predict Landsat-like NDVI images on DOY = 238.
Comparison of Test 1, Test 2, Test 3 and Test 4 in Table 5 shows that input image pairs with different
temporal attributes bring different knowledge to the model, thus contributing to different accuracy.
The input image pair on DOY = 206 provided the most accurate knowledge because the RMSE of Test 2
was much smaller than those of Test 1, Test 3 and Test 4, indicating that an input image pair which is
temporally closer to the prediction date is more reliable. In Table 5, it is obvious that tests involving
the input image pair on DOY = 206 (Test 2, Test 5, Test 7 and Test 8) consistently achieve high accuracy
because indicators on DOY = 206 played decisive roles according to the weighting formula. Moreover,
from Test 2, Test 5, Test 7 and Test 8, it is apparent that RMSE decreased slightly as the number of input
image pairs increased. However, a comparison between Test 2 and Test 6 reveals that the selection of
the input image pairs is more important than the number of these pairs. In brief, the acquisition of
temporally close observations can provide substantial benefits, not only in NDVI-BSFM, but also in
other data fusion models, including STARFM.
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Table 5. RMSE of the NDVI-BSFM predictions using different temporal distribution of input image
pairs when predicting a Landsat-like NDVI image on DOY = 238 in the Huailai area.

Test Name
DOY of Input Image Pairs

RMSE
94 206 286 318

Test 1
‘

0.1330
Test 2

‘

0.0665
Test 3

‘

0.1274
Test 4

‘

0.1345
Test 5

‘ ‘

0.0654
Test 6

‘ ‘

0.1268
Test 7

‘ ‘ ‘

0.0647
Test 8

‘ ‘ ‘ ‘

0.0646

6. Conclusions

In this study, we described the theoretical basis, implementation, and performance of a new NDVI
fusion algorithm called NDVI-BSFM for building frequent Landsat-like NDVI datasets by integrating
MODIS and Landsat NDVI data. The multi-year average MODIS NDVI time series for each land-cover
type is used to constrain the unmixing process for the MODIS NDVI observations in a Bayesian
framework to obtain the initial downscaled NDVI, before applying a rebuilding model, which uses the
relationships between the paired initial NDVI and Landsat NDVI on other dates to generate high spatial
and temporal resolution Landsat-like NDVI datasets. Compared with existing methods, including the
well-regarded STARFM, ESTARFM and FSDAF, NDVI-BSFM has four main advantages according to
the experiments. First, the NDVI-BSFM can produce more accurate synthetic fine-resolution NDVI
products (with the average absolute difference less than 0.05) in general conditions. Second, the
NDVI-BSFM has a mechanism for resisting error propagation from coarse-resolution NDVI with poor
quality on the prediction date, which makes the NDVI-BSFM more robust with wider adaptability.
Third, the NDVI-BSFM can preserve the contrast between neighboring pixels, so the NDVI images
produced using this method are always clear with rich spatial details. Finally, the NDVI values
produced by NDVI-BSFM are usually smooth in the time dimension, which makes the images appear
more natural in agreement with vegetation phenology. Given these advantages, we conclude that the
NDVI-BSFM can obtain better results than existing methods.

In summary, the NDVI-BSFM proposed in the present study has various advantages and improves
the capability for producing frequent Landsat-like NDVI datasets. This capability may contribute
greatly to applications that require NDVI products with both high spatial resolution and frequent
coverage, such as the monitoring of ecological dynamics, land cover mapping and change detection,
and biogeochemical parameter estimation. Moreover, the concepts employed by NDVI-BSFM should
provide inspiration for further studies in the future. Like other methods, the NDVI-BSFM is not only
designed for fusing NDVI data from MODIS and Landsat 8/OLI sensors, but can also be applied
to other sensors and products such as reflectance data and leaf area index, although extra attention
should be paid to factors such as angle effect and linear additivity in space. In future research, more
effort should be made to simplify the model as well as to reduce the influence of the angle effect and
the quality control bias of the MODIS NDVI.
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