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Abstract: Tree cover maps are used for many purposes, such as vegetation mapping, habitat
connectivity and fragmentation studies. Small remnant patches of native vegetation are recognised
as ecologically important, yet they are underestimated in remote sensing products derived from
Landsat. High spatial resolution sensors are capable of mapping small patches of trees, but their use
in large-area mapping has been limited. In this study, multi-temporal Satellite pour l’Observation de
la Terre 5 (SPOT5) High Resolution Geometrical data was pan-sharpened to 5 m resolution and used
to map tree cover for the Australian state of New South Wales (NSW), an area of over 800,000 km2.
Complete coverages of SPOT5 panchromatic and multispectral data over NSW were acquired during
four consecutive summers (2008–2011) for a total of 1256 images. After pre-processing, the imagery
was used to model foliage projective cover (FPC), a measure of tree canopy density commonly
used in Australia. The multi-temporal imagery, FPC models and 26,579 training pixels were used
in a binomial logistic regression model to estimate the probability of each pixel containing trees.
The probability images were classified into a binary map of tree cover using local thresholds, and
then visually edited to reduce errors. The final tree map was then attributed with the mean FPC
value from the multi-temporal imagery. Validation of the binary map based on visually assessed
high resolution reference imagery revealed an overall accuracy of 88% (˘0.51% standard error),
while comparison against airborne lidar derived data also resulted in an overall accuracy of 88%.
A preliminary assessment of the FPC map by comparing against 76 field measurements showed a
very good agreement (r2 = 0.90) with a root mean square error of 8.57%, although this may not be
representative due to the opportunistic sampling design. The map represents a regionally consistent
and locally relevant record of tree cover for NSW, and is already widely used for natural resource
management in the state.

Keywords: SPOT5; Landsat; lidar; foliage projective cover; tree cover

1. Introduction

Human activity has modified much of the world’s forests, converting large areas of continuous
forest into small, fragmented patches, such that 70% of remaining forest is within 1 km of an edge [1].
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Fragmentation degrades ecosystems, reducing biodiversity especially in the smallest and most isolated
fragments [2–6]. Some declines in biodiversity are evident almost immediately after fragmentation,
whereas others increase over time, with extinctions occurring decades or more after disturbances [7].

Managing and conserving trees in fragmented forests and other naturally heterogeneous
landscapes such as open woodlands, requires maps that can accurately depict the landscape pattern.
High spatial resolution imagery can allow small fragments such as thin corridors of trees, and scattered
individual trees, to be mapped. Such detailed maps, however, are usually only produced for small
regions [8], and it remains a challenge to create consistent high resolution maps over large areas.
Unlike freely available Landsat data, higher resolution satellite data is often prohibitively expensive for
mapping large areas. Furthermore, processing large volumes of high resolution data is computationally
intensive, especially when multi-temporal imagery is required to correct for data gaps due to cloud,
shadow, and other artefacts [9,10].

This article describes the production of a large-area tree cover map for a fragmented,
heterogeneous landscape using high spatial resolution satellite imagery. The map covers the Australian
state of New South Wales (NSW), and was required by the state government for natural resource
monitoring at both small and large scales. The following sections outline recent advances in tree cover
mapping, before describing the study area, and previous tree cover maps for NSW.

1.1. Tree Cover Maps for Natural Resource Monitoring

Land cover products are increasingly valuable inputs to a range of scientific studies and resource
management activities [11]. Researchers have focussed on land cover classification [12–16] and
monitoring change in vegetation cover [7,9,17–20]. These studies have been used to assess the extent
of remaining natural forest, the location of threats to biodiversity as well as the effectiveness of
existing protected-area networks. The challenge is to produce consistent maps across large areas while
maintaining local relevance and utility [9].

The ability to produce global maps of forest loss using Landsat is relatively new [9,10,18].
The methods are similar to studies previously limited to continental scales [15,19,21,22]. However,
these large-area studies do not perform equally across all landscapes. For example, tree cover can
be particularly difficult to quantify in grassy and semi-arid woodlands that feature naturally open
canopies with large gaps between tree crowns. Tree cover in these areas is often underestimated
by global maps, whereas mapping at regional scales allows classification schemes to be more finely
tuned [16,17,23–27]. Producing tree cover maps over large areas of fragmented forest and open
woodland remains a challenge.

Many studies are focused on forested areas rather than examining all tree cover, resulting in maps
that are sensitive to the definition of forest used. For example, estimates of Canada’s net forest loss
doubled when low and high tree cover strata were included, largely due to extensive burning in open
boreal woodlands [9]. Previous regional estimates of tree cover and change in Australia have also
varied due to the definition of forest, with woodlands and open forest under-represented [28,29].

The work presented here was designed to overcome the issues described above, and map the
heterogeneous patterns of fragmented forest and open woodland through using high spatial resolution
satellite data. The method benefits from combining automated data processing suitable for continental
scale mapping with manual editing learnt from regional scale mapping. The result is a tree cover map
that can be adapted to suit many definitions of forest, and can be used for natural resource management
at small scales, such as state-wide reports, and large scales, such as local planning. We have defined
tree cover as trees and shrubs taller than two metres that are visible at the resolution of the imagery
used in the analysis (5 m).

1.2. Study Area

NSW is located on the central, eastern coast of Australia between 141˝E and 154˝E longitude
and 28˝S and 38˝S latitude (Figure 1). It covers a large area (809,444 km2), across a wide range of
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climates (arid, temperate, subtropical, alpine) and has a variety of vegetation types such as shrublands,
grasslands, woodlands and forests (Figure 1). The climatic gradients strongly influence the main
vegetation patterns: shrublands and grasslands in the arid west grade through to woodlands and then
to forest in the humid east; species composition grades from warmer, wetter, subtropical forest in the
northeast to cooler, temperate forest in the southeast [30].

Remote Sens. 2016, 8, 515 3 of 22 

 

climates (arid, temperate, subtropical, alpine) and has a variety of vegetation types such as 
shrublands, grasslands, woodlands and forests (Figure 1). The climatic gradients strongly influence 
the main vegetation patterns: shrublands and grasslands in the arid west grade through to 
woodlands and then to forest in the humid east; species composition grades from warmer, wetter, 
subtropical forest in the northeast to cooler, temperate forest in the southeast [30]. 

 
Figure 1. Examples of native trees present across New South Wales (NSW), Australia. (A) Remnant 
trees in the cleared agricultural land of the central west; (B) Open woodland in the semi-arid north 
west; (C) Sclerophyll forest on the east coast; (D) Rainforest in the north east; (E) The locations of 
each example. 

Tree clearing in NSW began following European settlement at Sydney in 1788, for both timber 
and to establish agricultural land, however it did not proliferate until the late 19th century with the 
expansion of the wheat and sheep industries [7,31]. Areas of fertile soil experienced the most 
clearing, with less productive ecosystems and areas of rugged terrain being left intact. Of the 99 
vegetation classes mapped in 2004, 41 were estimated to have been cleared by over 30% [30], leaving 
a highly fragmented landscape. In fragmented landscapes remnant patches of trees have been found 
to have a significant positive effect on ecosystems, even small fragments with low biomass [32]. 
Ecosystem services provided by small remnant patches include: improvements to the abiotic 
environment via modifications to the local micro-climate [32], water infiltration [33], improved soil 
properties [34] and the provision of resources to support local fauna [35]. These studies show that 
although many remnant vegetation fragments are degraded, their presence provides vital ecosystem 
services and need to be conserved. 

1.3. Tree Cover in the Australian Context 

An accurate record of existing tree cover is particularly important in Australia, as it has lost 
nearly 40% of its forests [7]. Prior to the work presented here, tree cover was mapped over NSW 

Figure 1. Examples of native trees present across New South Wales (NSW), Australia. (A) Remnant
trees in the cleared agricultural land of the central west; (B) Open woodland in the semi-arid north
west; (C) Sclerophyll forest on the east coast; (D) Rainforest in the north east; (E) The locations of
each example.

Tree clearing in NSW began following European settlement at Sydney in 1788, for both timber
and to establish agricultural land, however it did not proliferate until the late 19th century with the
expansion of the wheat and sheep industries [7,31]. Areas of fertile soil experienced the most clearing,
with less productive ecosystems and areas of rugged terrain being left intact. Of the 99 vegetation
classes mapped in 2004, 41 were estimated to have been cleared by over 30% [30], leaving a highly
fragmented landscape. In fragmented landscapes remnant patches of trees have been found to have
a significant positive effect on ecosystems, even small fragments with low biomass [32]. Ecosystem
services provided by small remnant patches include: improvements to the abiotic environment via
modifications to the local micro-climate [32], water infiltration [33], improved soil properties [34]
and the provision of resources to support local fauna [35]. These studies show that although many
remnant vegetation fragments are degraded, their presence provides vital ecosystem services and need
to be conserved.

1.3. Tree Cover in the Australian Context

An accurate record of existing tree cover is particularly important in Australia, as it has lost nearly
40% of its forests [7]. Prior to the work presented here, tree cover was mapped over NSW using Landsat
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data (25–30 m pixels), based on methods developed for the Queensland (QLD) Statewide Landcover
and Trees Study (SLATS) [25]. The SLATS method relied on a model between field measurements of
foliage projective cover (FPC) and normalised Landsat data [36]. FPC is the percentage of ground area
covered by the vertical projection of foliage from tree crowns, and is commonly used in Australia [37,38].
Changes in FPC over time can be useful for detecting clearing, and distinguishing persistent tree
foliage from temporary ground cover and understorey foliage.

Landsat based maps were a great improvement on previous products, however significant small
patches of vegetation were still not mapped [29,39]. Farmer, Reinke and Jones [29] compared tree cover
derived from time series 25 m Landsat data [28], 10 m SPOT4 data, and 0.15 m aerial photography,
and found that tree cover mapped from sensors with pixel sizes greater than 10 m did not accurately
detect small remnant patches of vegetation. Landscape fragmentation, product scale and minimum
mappable unit were shown to influence the magnitude of error.

2. Materials and Methods

The method described here was adapted from that used previously across QLD and NSW with
multi-temporal Landsat data, which allowed the separation of persistent tree cover from temporary
vegetation cover [25]. Instead of Landsat data, multi-temporal high spatial resolution imagery was
purchased from the Satellite pour l’Observation de la Terre (SPOT5) High Resolution Geometric sensor.
SPOT5 data was found to have a similar data quality to Landsat [40], while providing a higher spatial
resolution (2.5–20 m pixels). The main components of the method were: (1) pre-process and mask the
SPOT5 data to pan-sharpened standardised surface reflectance; (2) model FPC from each SPOT5 image;
(3) develop a multi-temporal model of tree cover probability; (4) derive a tree map from thresholding
and editing of the probability model; (5) attribute the tree map with an estimate of FPC. These main
steps are illustrated in Figure 2 and described in more detail below.

2.1. Multi-Temporal SPOT5 Pan-Sharpened Surface Reflectance

A complete coverage of SPOT5 imagery was acquired for NSW from 2008, 2009, 2010 and 2011,
for a total of 1256 images, with all parts of the state covered by pixels from the four time periods.
Multi-temporal data were used as many trees and areas of herbaceous ground cover were found
to be indistinguishable in single images, but could be separated in multi-temporal imagery due to
the persistence of the tree foliage compared to the fluctuations in ground cover caused by a closer
relationship to rainfall. The pointable, push-broom sensor produced multispectral imagery in three
bands with 10 m pixels, one shortwave infrared band with 20 m pixels, and one panchromatic band
with 2.5 m pixels. The spectral ranges are green (0.49–0.61 µm); red (0.61–0.68 µm); near infrared
(NIR) (0.78–0.89 µm); shortwave infrared (SWIR) (1.58–1.75 µm), and panchromatic (0.49–0.69 µm).
The images have a nominal swath width and path length of 60 km and were provided in units
of calibrated, scaled, at-sensor radiance. Each image acquired needed to fulfil standard minimum
specifications. They were nominally cloud free and the look angle was specified to be as close to nadir
as possible and no more than 18 degrees off nadir. Images were preferentially obtained in summer
months (November–March) when the grass cover was senescent, which provided good contrast to the
green overstorey foliage [36].

2.1.1. Ortho-Rectification

A geographic baseline image was created from SPOT5 panchromatic imagery captured in 2005.
It was registered to a state-wide dataset of ground control points using a digital elevation model (DEM)
and a satellite orbital model. In eastern NSW the DEM was based on topographic mapping data, and
was supplied by Land and Property Information, the state government’s surveying agency. In western
NSW the Shuttle Radar Topography Mission (SRTM) DEM was used. The baseline image was rectified
to the ground control points with a root mean square error (RMSE) of 5 m. All other images were
rectified to the baseline with an average RMSE of less than 3.75 m.
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Figure 2. The method combined automated and manual processing to output the 5 m binary tree cover
map and foliage projective cover (FPC) map of New South Wales, Australia. Manual processing steps
were assisted by high resolution imagery (0.5–2.5 m).

2.1.2. Surface Reflectance

The SPOT5 multispectral images were atmospherically corrected and adjusted for bi-directional
reflectance and topography, representing surface reflectance with a nadir-view and a 45˝ incidence
angle [41]. Elevation data were obtained from the 1 s SRTM DEM [42–44].

2.1.3. Pan-Sharpening

Each SPOT5 image was pan-sharpened to 5 m pixels, as although the panchromatic bands
were supplied at 2.5 m resolution, they were acquired using 5 m resolution stereo instruments.
The panchromatic bands were first degraded to 5 m and then used to sharpen the 10 m and 20 m
bands to create 5 m resolution multi-spectral imagery. The Theil-Sen Estimator, a robust regression
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technique [45], was used to fit linear relationships on a local, per-pixel basis using all the pixels in a
7 by 7 window based on high-resolution pixels (35 m by 35 m in this case), separately for each band.
The method estimated the slope between two sets of points as the median of the slopes between all
pairs of points. Using the local relationship, an estimate of the multi-spectral band was computed from
the panchromatic band, at the higher resolution.

2.1.4. Mask Creation

Masks were created for each image at 10 m resolution. Although most images contained
no or very little cloud, pixels contaminated by cloud and cloud-shadow were masked with a
semi-automated object-based method, which included manual checking and editing [46]. Surface water
was identified and masked using a multi-dimensional water index method [47]. The cast-shadow mask
identified those pixels that lie in shadows cast from the surrounding topography, using a ray-casting
technique [48], which was simplified through assuming parallel rays of light. The extreme-angles mask
identified those pixels with incidence (angle between surface normal and vector to sun) and exitance
(angle between surface normal and vector to satellite) angles greater than 80˝, which represent pixels
with low signal to noise ratio due to little incidence or reflected light. The per-pixel surface normal,
used in the calculation of these angles, was derived from the SRTM DEM.

2.2. Multi-Temporal Foliage Projected Cover

After pre-processing to pan-sharpened surface reflectance, each SPOT5 image was used to model
FPC. Due to insufficient field data to calibrate a model, we related the surface-reflectance of the 5 m
SPOT5 imagery to a Landsat derived overstorey FPC product [25,36]. The Landsat FPC product was
trained using QLD field measurements of FPC, and applied with a multiple linear regression model
to Landsat 5 TM and Landsat 7 ETM+ data [36]. The QLD data and methods were made available
through the Joint Remote Sensing Research Program (JRSRP) at the University of Queensland, which
was established to improve the consistency of products across state borders. The QLD Landsat FPC
model had a relatively low RMSE of 10.26% and 8.95% compared to field and lidar measurements,
respectively [36]. A preliminary unpublished validation of the model in NSW indicates that it has a
similar accuracy.

To calibrate between sensors, 2485 data points were collected from a total of 60 SPOT5 images
across NSW and QLD (Figure 3A). Image locations were chosen to capture a large range of vegetation
communities, land types, and variations in FPC. The multi-spectral SPOT5 images and Landsat FPC
images were degraded to an area equivalent to 3 by 3 Landsat pixels (90 m by 90 m), before sample
pixels were taken on a regular 1 km by 1 km grid. Only points that were on a slope of less than 5%
(determined from the SRTM DEM) and within an area of homogenous tree cover (determined by the
Landsat FPC), were used. These homogenous areas were defined where the coefficient of variation
of the Landsat FPC in a 5 by 5 pixel window (150 m by 150 m) was less than 0.05. Degrading the
images and choosing pixels on homogeneous sites reduced the influence of misregistration between
the SPOT5 and Landsat FPC images on the model. Multiple linear regression was used to relate the
SPOT5 reflectance to Landsat FPC and the adjusted r2 of the model fit was 0.88. The model included
terms for each SPOT5 band (λi), and interactions between them:

F “ β0 `

4
ÿ

i“1

βi f pλiq `

3
ÿ

i“1

4
ÿ

j“i`1

β3`i`j f pλiq f
`

λj
˘

(1)

where F is FPC, β are the coefficients, and the function f used to remove skewness in the
distribution [36] was:

f pxq “ loge p100x` 1q (2)
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exhibiting a variety of terrain and vegetation types, as well as the Landsat derived FPC. Each point 
was visually assessed against high resolution imagery (0.5–2.5 m pixels), and if it was located on a 
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water in at least one image were removed. 

Figure 3. The distribution of training and validation datasets used in the development of the New
South Wales (NSW) maps. (A) The location of images across NSW and Queensland (QLD) used to train
the SPOT5 FPC model using Landsat FPC data; (B) Sites used to train the probability model interpreted
from high resolution (0.5–2.5 m) imagery; (C) Sites of field measured FPC, used to validate the SPOT5
FPC map; (D) The sample of airborne lidar taken from the available lidar data used to validate the
binary tree cover map; (E) Pixels interpreted from high resolution (2.5 m) imagery used to validate the
binary tree cover map, which were stratified by catchment.

Although the model was developed using 90 m degraded imagery, it was applied on the 5 m
resolution pan-sharpened SPOT5 surface reflectance data. In doing so, we assume that the multispectral
surface reflectance and FPC models at 5 m and 90 m are linearly related.

2.3. Tree Cover Probability

A binomial logistic regression model was used to calculate the probability of a 5 m SPOT5 pixel
containing tree cover. The explanatory variables tested were: a climatological variable; an indicator of
brightness; an indicator of greenness; variation in brightness and greenness over time; and interactions
between variables. The response variable was the presence or absence of tree cover. The model
was trained using 25,930 image-interpreted points (Figure 3B), which were selected using a stratified
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random sampling method. Stratification was based on thirteen major catchments exhibiting a variety
of terrain and vegetation types, as well as the Landsat derived FPC. Each point was visually assessed
against high resolution imagery (0.5–2.5 m pixels), and if it was located on a mixed pixel it was
manually shifted to the nearest 3 by 3 pixel window (15 m by 15 m) that featured a complete cover of
its stratified attribute. Any points that were obscured by cloud, cloud shadow or water in at least one
image were removed.

A combination of brightness and greenness indicators were selected as explanatory variables as
they had previously been shown to relate to soil, grass and tree cover features [49]. Red reflectance
was used as the indicator of brightness, and FPC was used as an indicator of greenness [49].
The multi-temporal variables were calculated from the four observations for each pixel, and were used
to separate persistent tree cover from fluctuating ground cover. Using robust regression to exclude
outliers, linear models were fitted to the red reflectance and FPC time series. The fitted value at the
midpoint of each time series was used in the modelling. The red reflectance was transformed by
adding 0.001 and taking the natural logarithm to remove the skewness and improve the normality of
the distribution [36]. Overstorey vegetation tends to have low variation in red reflectance and FPC over
time. As such, the variation in FPC and red reflectance, from the fitted line, expressed as the ratio of the
fitted value at the midpoint was also used. The variation was calculated as the weighted mean residual
of the points from the fitted line, where the weights were those returned from the robust regression.

The other parameter considered for the probability model was vapour pressure deficit (VPD),
which was previously used to model FPC [36]. VPD varies spatially and is related to vegetation foliage
characteristics. In Australia, smaller needle-like foliage tends to be found in areas with high VPD,
while larger broad-leaf foliage tends to be found in areas with low VPD. The overstorey vegetation in
high VPD areas in the study area also tends to have lower FPC and brighter background reflectance
than that in low VPD areas. To allow for these relationships we included interaction terms between
the red reflectance and FPC, red reflectance and VPD, and FPC and VPD. The VPD data were obtained
from a gridded dataset, interpolated from a network of weather stations [50].

A variety of models was assessed, using the kappa statistic to determine how well they classified
the training data, where a pixel was classified as tree cover when its probability was at least 50%.
The best model, which achieved a kappa statistic of 0.81, used the following explanatory variables:
FPC, red reflectance, VPD, and variation in FPC. The interactive explanatory variables did not increase
the model accuracy. The final model was then applied to every pixel across NSW, creating a statewide
probability image. As the robust regression required at least three observation in the time series, pixels
with fewer than three observations due to missing data (e.g., from clouds) were assigned a null value
(0.2% of the data).

2.4. Binary Tree Cover

The probability surface was used as the primary dataset in classifying tree cover pixels. The surface
was split into 305 tiles across NSW where each tile was approximately 55 km by 57 km. These tiles
approximate the size and location of the SPOT5 images, although due to the variable look angle
of the sensor the images did not conform to the standard paths and rows of nadir-viewing sensors.
A probability threshold was manually selected for each tile in order to classify tree cover pixels,
as there was insufficient training data for optimum thresholds to be calculated using accuracy
statistics. This was done interactively by visually discerning tree foliage in 2.5 m pan-sharpened
SPOT5 near-natural imagery acquired during the 2011 summer. Due to variations in vegetation type
and structure the effectiveness of any specific threshold varied spatially within each tile. To account for
this, most tiles were iteratively refined by identifying sub-tile thresholds for specially digitised areas.
This process removed most errors, although commission errors remained in some areas due to the
presence of water or the inability of the time series to differentiate green herbaceous vegetation from
tree cover. Omission errors from clouds also remained. Each tile was therefore further edited on-screen
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by visually comparing with the SPOT5 2.5 m imagery. Visible commission errors were manually erased
and missing patches of contiguous forest were digitised.

The probability thresholds varied from 0–40 in the southwest to 60–98 in the northeast and along
the coast. Southwest NSW had good separation of trees and non-trees in the probability image, and
could have lower thresholds without causing large commission errors. Northeast NSW and coastal
areas required higher thresholds to separate areas of cropping and wetland vegetation that had higher
probability values due to persistent greenness. There was also severe flooding in this part of the state
which affected vegetation growth greatly.

2.5. Foliage Projective Cover

Once the binary tree cover map was produced, each tree cover pixel was attributed with an
estimate of FPC. This was calculated as the mean of the multi-temporal FPC values for each pixel,
so as to smooth fluctuations in time and better represent persistent tree foliage. In nearly all cases,
this was the mean of three or four values, as it was very rare to have a pixel masked more than
once by cloud or cloud-shadow. The mean value was also calculated for persistently dark pixels
present in areas of steep terrain, even though they may have been masked by the cast-shadow and/or
extreme-angle masks. FPC in these areas is considered more uncertain, due to reduced signal-to-noise
in the satellite measurements.

2.6. Validation

Rigorous validation is crucial in producing useful land cover products [11,51–54]. However,
the challenges, including a very large commitment of resources and time, have generally discouraged
thorough validation in large scale, high resolution maps [55]. Intensive field survey is not practical
but airborne lidar data does offer opportunities for precise measurements of forest structure and
cover [10,23,36,56].The use of relatively finer resolution satellite data as the basis of or as a component
of large area land cover accuracy assessment has also been established [57–61].

Our validation dataset consists of field surveys to assess the final FPC map, a classification of
tree cover from a sub-sample of the extensive archive of lidar data available, and a large collection of
binary tree cover samples based on the visual assessment of very high resolution reference imagery
(Figure 3C–E). As the number of field sites collected was small compared to the large area mapped,
the lidar products and visually assessed imagery were needed to distinguish the many vegetation
types present across NSW. Accuracy was assessed using these two independent datasets with different
scales. The lidar products provided precise tree maps, where even short, thin and scattered trees were
detected, and may include areas of trees that would not be mapped as such by visual interpretation.
The high resolution imagery provided locations where trees were present or absent according to visual
assessment, which is closer to representing what most mapping programs accomplish. Each of the
datasets is described in more detail in the following sections.

2.6.1. Field Data

FPC was calculated from field measurements made at 76 sites across NSW, collected between
2009 and 2015 (Figure 3). Each field site was located away from disturbances (>100 m from roads
or buildings) and steep terrain, in a patch of homogeneous vegetation. They were measured during
other projects, and although they were not randomly distributed across all vegetation communities,
they cover a wide range of FPC values. At each site, the star transect method [62] was used to record
300 vertical sighting tube observations of the overstorey (woody vegetation >2 m height), midstorey
(woody vegetationď2 m height) and understorey (herbaceous plants <2 m height), from a circular area
with a radius of 50 m. The location of each centre point was recorded using differential GPS to less
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than ˘5 m. Overstorey FPC (FPCo) was calculated according to the following equation from Armston,
Denham, Danaher, Scarth and Moffiet [36]:

FPCo “
Po,g

`

1´ Po,b
˘ (3)

where Po,g was the proportion of overstorey green foliage observations and Po,b was the proportion
of overstorey branch observations (which are likely to occlude foliage from the observer). As the
satellite derived FPC model would likely be sensitive to both overstorey and midstorey foliage, we also
calculated the combined FPC of the overstorey and midstorey (FPCo+m) as:

FPCo`m “
Po,g

`

1´ Po,b
˘ ` Pm,g

`

1´ Po,g ´ Po,b
˘

(4)

where Pm,g was the proportion of midstorey green foliage observations.

2.6.2. Airborne Lidar Data

Many airborne discrete return lidar surveys have been acquired over NSW for government use,
covering over 46,000 km2 or 6% of the state (Figure 3D). The surveys were not randomly distributed,
as many lidar surveys were over rivers, wetlands and urban areas, where high resolution elevation
models were required for flood modelling. A stratified sample of tiles was taken, where a lidar tile was
randomly sampled from each of the 17 vegetation formation classes [63] within each of the 11 NSW
land management regions (LLS), excluding urban areas [64]. The lidar subset contained 119 tiles of
data, from 34 different surveys, covering around 347 km2, equivalent to more than 13.8 million pixels
at 5 m resolution. Most of the tiles were 2 km ˆ 2 km, though some were 1 km ˆ 1 km or rectangular
strips ~1.4 km2. The surveys were acquired throughout 2008–2013, by three lidar instruments. Flight
heights ranged from 500–2250 m above ground, footprints ranged from 0.23–1.21 m, and mean pulse
density ranged from 1.1–8.3 pulses/m2. Maximum scan angle averaged 16˝, with a maximum of 40˝

in one tile. More information on the lidar data is available in the supplementary material.
Lidar data was sourced in the LAS file format with ground and building returns classified using

industry standard methods. LAS files were converted to the Sorted Pulse Data (SPD) format [65]
and spatially sorted into bins aligning with the 5 m SPOT5 pixels. The height of each return above
the ground was calculated using natural neighbour interpolation [66]. Lidar plant projective cover
(PPC) was calculated as the proportion of first returns from the canopy, within a pixel area, using
Equation (5) [36]:

PPC “
Cv pzq

Cv p0q ` CG
(5)

where CV(z) is the number of first returns higher than z m above the ground, CG is the number of first
return counts from the ground. Following the method of Armston, Denham, Danaher, Scarth and
Moffiet [36], z was set at 0.5 m, as trees greater than 2 m in height often have foliage lower than 2 m
above the ground. Pixels where PPC > 0 and all returns were <2 m above the ground were considered
understorey and not classified as tree cover. Maximum height of the vegetation was also derived as
the 99th percentile of first return height. As each lidar tile created a spatially continuous map, the size
of each contiguous region, and the distance of each pixel to the nearest pixel of the opposite class was
also calculated.

As the lidar data were a stratified sample of the map area, the proportion of each stratum was
used when calculating the error matrix statistics [67]. The proportions were calculated from the final
classified map, for the 34 strata (tree and non-tree pixels from each of the 17 vegetation formations).
Standard errors of the accuracy measures were not calculated, as the sample was clustered, and not
representative of the entire study area.
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2.6.3. Visual Interpretation of High Resolution Imagery

High resolution imagery was available from a Leica ADS40 airborne digital camera (0.5 m) for
most of the state, from the NSW government’s standard capture program. The ADS40 sensor is
equipped with a SH52 sensor head with a field of view (swath angle) of 64˝ and multiple linear CCD’s
of 12000 pixels each, enabling the capture of four spectral bands of information [68]. The spectral
ranges are blue (0.428–0.492 µm); green (0.533–0.587 µm); red (0.608–0.662 µm); near infrared (NIR)
(0.833–0.887 µm). The sensor is flown in north-south direction and the resulting swaths are mosaicked
together and colour balanced. As ADS40 imagery was not available in western NSW, alternative 2.5 m
SPOT5 imagery from 2011 was used.

Validation points (6648 pixels) were selected across NSW using a stratified random approach,
ensuring that tree and non-tree pixels (determined by the previous Landsat derived map) from the
13 major catchments were sampled (Figure 3E). Each point was visually assessed against the high
resolution imagery and classified as either tree or not-tree. The proportion of each stratum, determined
from the Landsat map, was used when calculating the error matrix statistics, including the standard
errors [67].

3. Results

3.1. Foliage Projected Cover

3.1.1. Comparison to Landsat

To determine how the new SPOT5 FPC map compared to the previous Landsat FPC map, both
maps were degraded to 100 m pixels and a sample of areas selected using a regular 1 km grid across
NSW. These areas were then sampled using a stratified random approach, to ensure that each vegetation
formation class was evenly sampled, and only pixels classified as tree cover in both products were used.
An orthogonal distance regression model was fit between the SPOT5 and Landsat FPC values, resulting
in a very strong relationship (r2 = 0.93, RMSE = 6.27) (Figure 4). The results varied by vegetation
formation, with SPOT5 overestimating FPC compared to Landsat in some vegetation types (Dry
sclerophyll forests (Shrub/grass subformation), cleared, Semi-arid woodlands (Shrubby subformation),
Dry sclerophyll forests (Shrubby subformation)), and underestimating in Arid shrublands (Acacia
subformation). More information is available in the supplementary material.
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Figure 4. Density plot of foliage projective cover (FPC) derived from multi-temporal SPOT5 imagery
compared with that from multi-temporal Landsat imagery, after both maps were resampled to 100 m
pixels (darker points have a greater density of observations). The dashed line and equation represent the
line of best fit derived from orthogonal distance regression (appropriate when both x and y have error),
which shows an excellent agreement with low root mean square error (RMSE) and high correlation (r2).
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The results are useful as they indicate that the lower spectral resolution of the SPOT5 data was
capable of modelling FPC, although the close relationship is not surprising given the SPOT5 FPC model
was trained using the Landsat FPC data. However, the comparison does not assess the application of
the model at 5 m resolution, which assumes a linear relationship between FPC at the different scales.
This assumption is the focus of ongoing research.

3.1.2. Field Data

For each field site, the mean value of the SPOT5 FPC map was calculated from all pixels within
a 55 m radius, and compared to the field measurements. Ordinary least squares regression revealed
a weak positive linear relationship (r2 = 0.66) between SPOT5 FPC values and the field measured
overstorey FPC values, which improved to a very strong relationship (r2 = 0.90) when the midstorey
foliage was included in the field FPC values (Figure 5). In general, the model slightly underestimated
overstorey plus midstorey FPC, especially for values less than 40%. The validation of SPOT5 FPC
using field data presented here should only be considered preliminary, and the statistics presented
may not be representative of the statewide map due to the small sample size and the opportunistic
sampling design.
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Figure 5. A comparison of the modelled foliage projective cover (FPC) derived from the time-series
of SPOT5 imagery to field measured FPC at 76 sites across New South Wales, Australia. The dashed
lines and equations represent the line of best fit derived from ordinary least squares regression, which
confirmed that the SPOT5 FPC had a stronger relationship (lower RMSE and higher r2) to field data
when the midstorey component was included.

3.2. Binary Tree Cover

3.2.1. Visual Assessment

The binary tree cover map achieved an overall accuracy (calculated as the total proportion of
correctly classified pixels as a percentage of all pixels [67]) of 88% (˘0.51% standard error), when
compared to the 6648 visually attributed reference pixels (Table 1). Prior to editing and sub-tile
thresholding the overall accuracy was 87%. Although the increase in accuracy due to manual editing
appears small, it was not uniform across the state, as some areas required little or no editing while
others required extensive revisions. For example, four of the catchment areas improved by 3%–4% in
overall accuracy due to the manual editing. For the full accuracy assessment by catchment area see the
supplementary material. The manual editing was particularly effective in reducing the commission of
false positive tree pixels. This was measured by the user’s accuracy for tree cover pixels (calculated as
the proportion of correctly classified tree pixels as a percentage of the all classified tree pixels), which
increased from 85% (˘0.99%) to 90% (˘0.73%) after editing (Table 1).
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Table 1. Validation matrices for the binary tree cover map using high resolution imagery and airborne
lidar validation data. The “tree cover with threshold map” represents the binary classification of the
probability surface using manual thresholds, while the “final tree cover map” represents the map after
manual editing. As the lidar data was only sampled from the areas of NSW for which it was available
it is not representative of the entire state. Also, as the lidar points are clustered the standard errors of
the accuracy measures were not calculated.

High Resolution Imagery Validation of the Tree Cover with Threshold Map (n = 6648)

Reference
Total User’s Accuracy

Tree Not Tree

Classification
Tree 25.4 4.6 30.0 85 (0.99)

Not tree 8.6 61.4 70.0 88 (0.65)
Total 34.0 66.0 100.0

Producer’s accuracy 75 (1.21) 93 (0.49) Overall = 87 (0.56)

High Resolution Imagery Validation of the Final Tree Cover Map (n = 6648)

Reference
Total User’s Accuracy

Tree Not Tree

Classification
Tree 24.9 2.8 27.7 90 (0.73)

Not tree 9.1 63.2 72.3 87 (0.64)
Total 34.0 66.0 100.0

Producer’s accuracy 73 (1.21) 96 (0.32) Overall = 88 (0.51)

Airborne Lidar Validation of the Tree Cover with Threshold Map (n = 13,884,067)

Reference
Total User’s Accuracy

Tree Not Tree

Classification
Tree 24.5 5.5 30.0 82

Not tree 8.4 61.6 70.0 88
Total 32.9 67.1 100.0

Producer’s accuracy 75 92 Overall = 86

Airborne Lidar Validation of the Final Tree Cover Map (n = 13,884,067)

Reference
Total User’s Accuracy

Tree Not Tree

Classification
Tree 24.1 3.0 27.1 89

Not tree 8.7 64.2 72.9 88
Total 32.7 67.3 100.0

Producer’s accuracy 74 95 Overall = 88

The producer’s accuracy for tree cover pixels (also known as the true positive rate or TPR,
calculated as the percentage of reference tree pixels that are correctly classified), was reduced after
editing from 75% (˘1.21%) to 73% (˘1.21%). Although some of the manual editing targeted these
omission errors, through sub-tile thresholding and digitising, it is clear that most were not corrected.
This reflects the difficulty in mapping tree cover in fragmented landscapes.

The final binary tree cover classification performed well for most of the catchment areas, with
eight of the 13 catchments having overall accuracies greater than 90%. The least accurate catchments
were Western (82% ˘ 1.41%) and the Lower Murray-Darling (82% ˘ 1.69%).

3.2.2. Lidar

Validation of the final binary tree cover map against the lidar derived reference revealed very
similar accuracies to the visual assessment (Table 1), with an overall accuracy of 88% a TPR of 74%,
a user’s accuracy of 89%, and a false positive rate (FPR) of 5%. FPR is the percentage of reference pixels
incorrectly classified as tree cover. The lidar derived accuracies have more errors from false positive
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tree pixels and the omission of tree pixels, however the errors were not uniformly distributed across
the state. The greatest omission errors were observed in arid shrublands, semi-arid woodlands and
grasslands in the west, as well as cleared landscapes. The greatest commission errors were observed
in, heathlands and wet sclerophyll forests, in the east. For the full accuracy assessment by vegetation
formation see the supplementary material.

Analysing the errors according to various lidar-derived vegetation categories revealed that
omission errors decreased with increasing PPC and increasing height (Table 2). This explains the
omission errors observed in the west of the state, where the arid and semi-arid vegetation is generally
shorter, has thinner canopies and greater spacing between trees. Commission errors increased as the
maximum vegetation height approached 2 m (Table 2), explaining the commission errors that were
observed in areas of tall shrubs, such as heathlands, saline wetlands and dry sclerophyll forests with
shrubby understory. Both omission and commission errors were more common for pixels on the edges
of tree cover regions (Table 2), which may have partly been caused by differences in georeferencing
between the SPOT and lidar imagery, or the presence of tree shadows.

Table 2. Accuracy statistics for the binary tree cover map derived from multi-temporal SPOT5 imagery
using lidar derived products as reference data. Tree cover with threshold represents the binary
classification of the probability surface using manual thresholds, while final tree cover represents the
edited map. The statistics reveal that the manual editing was focused on removing tree commission
errors, which were significantly reduced.

Pixels Tree Cover
with Threshold

Final
Tree Cover

Omission of tree cover

Plant projective cover (%)

1–25 714,532 41.7 46.2
25–50 903,057 20.4 22.3
50–75 1,437,294 9.2 9.8
75–100 4,780,430 2.2 2.2

Maximum height (m)

2–10 1,596,934 22.3 24.3
10–20 2,996,969 9.4 10.7
20–30 2,339,621 3.1 2.8
>30 901,789 0.7 0.5

Distance to edge (m)

<10 1,497,545 35.8 39.0
10–20 1,477,179 9.3 10.8
20–30 911,927 2.1 2.2
>30 3,948,662 0.6 0.4

Size of region (ha)

<1 377,132 57.8 61.1
1–2 77,433 43.5 45.8
2–3 40,860 33.0 36.2
>3 7,339,888 6.2 6.8

Commission of tree cover

Maximum height (m)

0–0.5 5,414,758 12.9 6.2
0.5–1 216,872 49.5 36.8
1–1.5 175,094 55.1 46.9
1.5–2 242,030 63.0 41.6

Distance to edge (m)

<10 1,174,146 37.6 33.2
10–20 969,622 18.3 12.3
20–30 583,010 12.7 5.7
>30 3,321,976 11.0 1.8

Size of region (ha)

<1 279,703 63.8 59.0
1–2 38,068 45.1 39.3
2–3 33,729 43.3 32.5
>3 5,697,254 14.9 7.2

The size of continuous regions containing errors was also found to have an effect, where omission
and commission were more likely in smaller regions (Table 2). This indicates that the SPOT5 tree cover



Remote Sens. 2016, 8, 515 15 of 23

map has more errors in landscapes with fragmented, patchy tree cover, than in landscapes with large
regions of similar vegetation.

Validation was also conducted on the tree cover with threshold prior to manual editing (Table 1).
This revealed that the manual editing increased the overall accuracy from 86% to 88%, and reduced the
FPR for tree cover pixels from 8% to 5%. The editing decreased FPR across all vegetation formations,
with some vegetation formations such as dry sclerophyll forests (grassy) showing large reductions
(6%). These improvements in accuracy were most significant for pixels with low maximum height
(0.0–0.5 m), that were greater than 20 m from a true tree cover pixel, and which were within large
non-tree cover regions (>3 ha), where commission rates were more than halved (Table 2).

4. Discussion

4.1. Map Accuracy

The high resolution binary tree cover map was found to have an accuracy of 88%, compared to
lidar derived products and visually interpreted high resolution imagery. Visually comparing the map
to the source SPOT5 imagery shows that it does a remarkably good job delineating the distribution of
tree cover across the wide variety of landscapes present across NSW (Figures 6 and 7).
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Figure 6. The final 5 m foliage projective cover (FPC) map for New South Wales, Australia. The
locations of the examples shown in Figure 7 are labelled (A–D).

Omission of trees was more common in arid shrublands and semi-arid woodlands, where the
trees are shorter, have thinner canopies and are spaced further apart. Commission errors (false positive
trees) were more common in areas containing tall shrubs, such as saline wetlands, heathlands, and
dry sclerophyll forests (shrubby). Revealing this distribution of errors was only possible through
the careful sampling of validation data, and the use of lidar derived products related to tree canopy
density and height.
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Figure 7. Examples of the final 5 m foliage projective cover (FPC) map compared to pan-sharpened
false colour SPOT5 imagery. (A) Remnant trees in a cleared agricultural landscape; (B) Semi-arid open
woodland; (C) Dry sclerophyll forest with natural and human controlled clearing; (D) Dry sclerophyll
forest fragmented by cleared agricultural land. Example locations and FPC colour bar are shown in
Figure 6.



Remote Sens. 2016, 8, 515 17 of 23

The probability scores over wetland areas were highly variable due to fluctuations in inundation
and vegetation growth, making it difficult to apply appropriate sub-tile thresholds. The lower
accuracies in arid shrubland vegetation types were caused by difficulties in detecting scattered trees
with open canopies.

Over half the errors were identified as being close to the edges of tree pixels. These errors may
be due partly to the difficulty in mapping thinner canopies around the edges of forest, but may have
been caused by differences in georeferencing between the satellite and lidar data, or the influence of
tree shadows. The size of regions containing errors was also found to have an effect, where omission
and commission were more likely in smaller regions. This indicates that the SPOT5 tree cover map
has more errors in landscapes with fragmented, patchy vegetation, and in clearings within large
continuous regions of trees.

The SPOT5 FPC map showed an excellent agreement with the previous Landsat based map, when
both maps were degraded to 100 m pixels. It also correlated very strongly with field measurements
of FPC (overstorey and midstorey), made at 100 m diameter sites. These results confirm that the
inclusion of multi-temporal data in the method reduced the influence of ground cover on the FPC
map. Comparing to these field measurements, the SPOT5 tree cover map had a RMSE of around
9%, which is very similar to that observed in the QLD Landsat FPC model [36]. Future work will
focus on acquiring further field and lidar measurements of FPC to allow further analysis of these
errors. Deriving FPC from airborne lidar by correcting for bias due to non-foliage canopy elements
and varying survey-sensor parameters is the subject of ongoing research.

4.2. Statewide Distribution of Tree Cover

Overall, tree cover accounted for 27.11% of the area of NSW when mapped at the spatial resolution
of 5 m. The spatial variability in tree cover reflects the ecology and disturbance history of the state.
The most common vegetation mapped as tree cover was dry sclerophyll forest, with 8.67% of the
State’s tree cover even though it is only 10.14% of the state. Also common are semi-arid woodlands,
which contain 6.23% of the State’s tree cover, although they cover a greater area (52.85% of the state),
revealing the scattered distribution of trees. The most common of the vegetation formations mapped
by Keith and Simpson [63] was cleared vegetation (37.03% of the state), which was found to have
9.96% tree cover, much of which occurs as scattered remnants and paddock trees. A full table of tree
cover statistics is presented in the supplementary material.

4.3. Future Research

The high accuracy of the tree cover map derived from SPOT5 data with 5 m pixels supports
previous research that images with pixels less than or equal to 10 m are required to accurately map
small patches of remnant vegetation [29]. The use of multi-temporal data also contributed to the
accurate mapping of tree cover and FPC, through distinguishing persistent overstorey tree cover from
fluctuating understorey vegetation. Despite this, manual editing (selection of thresholds and local
digitising) was still required to improve the utility of the final maps, mainly to reduce the commission
of false positives due to persistent understorey vegetation. This editing was a time-consuming
process, which future research should look at reducing. Two main options are apparent: increasing
the temporal frequency of the imagery, or combining the multi-spectral data with information on
vegetation structure derived from L-Band radar [69–71].

Firstly, using more than four images across four years to model tree cover probability would
capture more variation in understorey vegetation growth and senescence across the seasons and so
improve the model accuracies. However, some vegetation types with no tree cover, such as evergreen
pastures and wetlands, have grasses that rarely senesce and additional multi-spectral data may not
improve the results. Furthermore, purchasing dense time-series of high resolution data for large areas
would be prohibitively expensive. Free data from the Sentinel-2 satellite constellation will avoid this
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problem, and may provide the required spatial (10 m multispectral), spectral (13 bands), and temporal
(5-day revisit cycle) characteristics to improve the current method.

Secondly, data from L-Band radar satellites, such as the Advanced Land Observing Satellite 2
(ALOS-2) Phased Array type L-band Synthetic Aperture Radar (PALSAR), are able to map differences
in vegetation structure relating to the presence of tree trunks and branches [69–71]. The combination of
PALSAR and Landsat data has previously improved vegetation mapping in QLD [69–71], and future
research should investigate methods of combining with Sentinel-2 data.

5. Conclusions

The objective of this work was to develop a method to map the heterogeneous patterns of
fragmented forest and open woodland across the Australian state of NSW. This was achieved through
combining multi-temporal high spatial resolution data from the SPOT5 satellite, automated image
processing methods developed for continental scale Landsat projects, and manual image processing
methods developed for regional scale vegetation mapping. The result is a tree cover map with 5 m
pixels, which will be used for natural resource management at a variety of scales, from state-wide
reports to local planning.

Overall accuracy for the binary tree cover map was 88%, determined through comparison with
high resolution imagery and airborne lidar data. Errors were not uniformly distributed, with omission
of trees more common in the arid and semi-arid regions, and commission of false positive trees more
common in areas of tall shrubs, such as heathlands and wetlands. Although the use of multi-temporal
imagery allowed the classification to separate persistent tree cover from temporary fluctuations in
ground cover, it proved too difficult in some areas. A preliminary assessment of the FPC tree cover
map using a sample of 76 non-randomly selected field plots resulted in an RMSE of around 9%. Future
work will examine methods of deriving FPC from airborne lidar data, to allow a larger validation
sample. The validation of the map products, using field data, high resolution imagery and airborne
lidar, was as thorough as possible, and provides extra information to map users who can determine
practical limitations based on their knowledge of local vegetation. The lidar products were particularly
informative, providing quantitative data on vegetation cover, height, and fragmentation.

As expected, the use of multi-temporal SPOT5 data over such a large area proved more
computationally intensive than previous Landsat based projects. The fewer spectral bands that
were available in the SPOT5 data proved capable of modelling FPC, and the smaller pixel size allowed
much better depiction of the fragmented nature of the vegetation. Comparison of the SPOT5 and
Landsat FPC maps showed excellent agreement, when both were degraded to 100 m pixels. Future
tree cover maps based on 10 m multi-spectral Sentinel-2 data may provide greater accuracy due to the
increased spectral and temporal resolution, and will hopefully require less manual editing to reduce
the commission of false positives due to persistent understorey vegetation.

The high degree to which Australian forests have been cleared and fragmented has created an
imperative for the conservation of existing primary forest patches. It also highlights the importance
of possible regeneration of areas between fragments to increase native habitat area, connectivity and
ecosystem functions [7]. The SPOT5 tree cover map presented here will facilitate better management
and conservation across the fragmented vegetation of NSW.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/6/515/s1 in a
supplementary document: Figure S1: Predicted SPOT5 FPC compared with the predicted Landsat FPC, for the
17 vegetation formation classes listed in Table S1, Table S1: Tree cover area for NSW grouped by vegetation
formation, Table S2: Specifications of the lidar surveys sampled as part of the tree cover validation, Table S3:
SPOT5 tree cover accuracy statistics using visually interpreted data as reference, grouped by catchment, Table S4:
SPOT5 tree cover accuracy statistics using lidar products as reference, grouped by vegetation formation.
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ALOS-2 Advanced Land Observing Satellite 2
DEM digital elevation model
FPC foliage projective cover
FPR false positive rate
JRSRP Joint Remote Sensing Research Program
NIR near infrared
NSW New South Wales
PALSAR Phased Array type L-band Synthetic Aperture Radar
PPC plant projective cover
QLD Queensland
RMSE root mean square error
SLATS Statewide Landcover and Trees Study
SPOT5 Satellite pour l’Observation de la Terre 5
SRTM Shuttle Radar Topography Mission
SWIR shortwave infrared
TPR true positive rate
VPD vapour pressure deficit
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