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Abstract: A comprehensive spectral-biogeochemical database was developed for the Wabash River
and the Tippecanoe River in Indiana, United States. This database includes spectral measurements of
river water, coincident in situ measurements of water quality parameters (chlorophyll (chl), non-algal
particles (NAP), and colored dissolved organic matter (CDOM)), nutrients (total nitrogen (TN), total
phosphorus (TP), and dissolved organic carbon (DOC)), water-column inherent optical properties
(IOPs), water depths, substrate types, and bottom reflectance spectra collected in summer 2014. With
this dataset, the temporal variability of water quality observations was first analyzed and studied.
Second, radiative transfer models were inverted to retrieve water quality parameters using a look-up
table (LUT) based spectrum matching methodology. Results found that the temporal variability of
water quality parameters and nutrients in the Wabash River was closely associated with hydrologic
conditions. Meanwhile, there were no significant correlations found between these parameters and
streamflow for the Tippecanoe River, due to the two upstream reservoirs, which increase the settling
of sediment and uptake of nutrients. The poor relationship between CDOM and DOC indicates that
most DOC in the rivers was from human sources such as wastewater. It was also found that the
source of water (surface runoff or combined sewer overflow (CSO)), water temperature, and nutrients
were important factors controlling instream concentrations of phytoplankton. The LUT retrieved
NAP concentrations were in good agreement with field measurements with slope close to 1.0 and the
average estimation error was 4.1% of independently obtained lab measurements. The error for chl
estimation was larger (37.7%), which is attributed to the fact that the specific absorption spectrum of
chl was not well represented in this study. The LUT retrievals for CDOM experienced large variability,
probably due to the small data range collected in this study and the insensitivity of R;s to CDOM
change. It is concluded that the success of the LUT method requires accurate spectral measurements
and enough a priori information of the environment to construct a representative database for water
quality retrieval. Therefore, future work will focus on continuing data collection in other seasons of
the year and better characterization of the study area.
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1. Introduction

Remote sensing provides a practical means for synoptic and multi-temporal monitoring of water
quality. The water leaving signals that are captured by remote sensing instruments contain essential
information on the constituents in the water column, and if applicable, water column depths and
bottom properties. The potential of remote sensing to retrieve water quality parameters, bathymetry,
and substrate type/composition has been studied for over two decades and there are four main
approaches used: empirical, semi-empirical, analytical and radiative transfer methods. Significant
attention has been paid to the empirical approach, which focuses on developing best-fit correlational
models between remote sensing data (digital numbers, radiance, or reflectance) and measured water
quality parameters [1]. A summary of empirical models for water quality assessment can be found
in [2]. Instead of screening all wavelengths and finding the band combinations showing the highest
correlation, the semi-empirical approach incorporates the spectral characteristics of the interested
parameters into the statistical relationship development. For example, many previous studies have
shown that the reflectance trough at ~670 nm and the scattering peak at ~700 nm can be used to develop
successful models for chlorophyll (chl) estimation and that the scattering peak at ~700 nm is strongly
correlated with concentrations of total suspended sediments (TSS) [3,4]. The analytical approach is
based on the physical relationship between the inherent optical properties (IOPs) of the water column
and measured apparent optical properties (AOPs). The IOPs are the properties of the medium itself
and are not affected by the ambient light field. The AOPs are radiometric quantities that display
enough stability and can be used for approximately describing the optical properties of the water
body, e.g., the remote sensing reflectance. Remote sensing data can be inverted by using the analytical
modeling approach to retrieve water column properties and bottom depths [5,6]. In the radiative
transfer modeling approach, the software package HydroLight [7] is often required due to the heavy
computation required for simulating the complexities of underwater light transfer processes through
solving the full set of radiative transfer equations. While analytical models are typically developed
by simplifying the full radiative transfer equations based on a set of given assumptions, e.g., level
water surface or no internal light sources, the radiative transfer models do not have such constraints.
The radiative transfer models can be inverted to extract water column and bottom properties from
remote sensing data by using a look-up table based spectrum matching (LUT) methodology [8,9]. Such
models have been successfully applied to coral reef mapping in the work of Lesser and Mobley [10].

The empirical and semi-empirical models developed for water quality assessment are often highly
dependent on the data and limited to the locations where data are collected. In contrast, the analytical
and radiative transfer models provide physical insight into how environmental conditions (such as
water column properties, bottom properties, and sky and water surface conditions) quantitatively
affect the water leaving signals. Therefore these physics-based models have several advantages:
(1) they are repeatable given appropriate inputs from the sites studied; (2) they are easily transferrable
between data collected by a variety of sensors; and (3) sensitivity and uncertainty of the models
can be objectively determined [11]. The existence of optically complex waters [12] and those that
are so shallow that water-leaving reflectance includes interference from bottom conditions [13,14]
also necessitates these methods. Tan et al. [15] investigated the capabilities of Hyperion imagery for
mapping the water quality conditions in river plumes at Lake Michigan. By studying the physical
relationship between IOPs and AOPs, the spatial heterogeneity of water quality was adequately
captured, which would be challenging for traditional in situ sampling or empirical modeling given the
limited sample size and complex optical features.

Despite all the advantages described above, the success of these physics-based approaches
depends on two requirements: (1) remote sensing reflectance spectra must be accurately measured;
and (2) model inputs including the depth, bottom reflectance, and water IOPs must be accurate for
the sites of interest [9]. While much attention has been paid to collecting coincident measurements of
IOPs and AOPs for oceanic systems (e.g., NASA SeaWiFS Bio-optical Archive and Storage System,
http:/ /seabass.gsfc.nasa.gov/), inland waters, especially river systems, have been poorly observed,
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even though what happens in ocean and coastal waters is highly dependent on these systems [16].
It is therefore important and necessary to develop a similar database/archive for bio-optical data
of inland waters and make it accessible to the whole scientific community [17]. Such a database
will provide valuable data for improving satellite algorithm development and product validation.
In addition, the observations of IOPs in the database will also provide a fundamental linkage between
the optical properties and the biogeochemical state of inland waters. For example, the change in
beam attenuation is closely associated with particle size variations and can be used to study particle
composition [18]. Especially for rivers that experience nutrient and sediment loads from terrestrial
sources, the measurements of IOPs, when combined with climate and hydrologic flow regime, enable
a better understanding of the biogeochemical state of river systems.

Recent years have seen growing interest in the development of hyperspectral imagers and in
the application of hyperspectral data for water quality retrieval. Hyperspectral sensors typically
collect data in narrow, contiguous spectral bands and are expected to yield advantages in estimation
accuracy due to their ability to finely parse the visible spectrum. Lee and Carder [19] investigated
how the number of spectral bands affected the retrieval of water column and bottom properties from
remote sensing data and found that hyperspectral data performed much better for optically shallow
waters. Although not designed for water targets, the satellite borne Hyperion imager is valid for
adequately estimating water quality in coastal and estuary waters as well as the Great Lakes [15,20].
The Hyperspectral Imager for the Coastal Ocean (HICO) is the first hyperspectral sensor designed
specifically for the coastal ocean and estuarial, riverine, or other shallow-water areas with optimized
Signal-to-Noise Ratio (SNR) [21]. It has been successfully applied for the study of phytoplankton,
colored dissolved organic matter (CDOM), turbidity, and bathymetry in coastal waters [22-25].
Other hyperspectral sensors such as the Hyperspectral Infrared Imager (HyspIRI) [26] show great
potential for observing water quality of coastal and inland waters. However, the application of such
satellite products for Inland River monitoring has been hampered since most rivers are not able to be
appropriately resolved due to the coarse resolution. According to the work of Handcock et al. [27], the
width of the river channel must be at least three pixels for reliable water measurements from remote
sensing imagery. Although commercial satellites such as World View provide significantly higher
spatial resolutions (0.5-2 m), the spectral configuration of these sensors are not completely suitable for
remote sensing of inland waters [28]. Hyperspectral sensors mounted on airborne platforms provide
a way to collect data of sufficiently high spatial resolution that rivers can be appropriately resolved
and water quality parameters can be retrieved [3,29]. However, given the high cost in organization
and realization, these airborne platforms are not affordable for agencies with small budgets and
therefore regular monitoring of water quality using theses platforms is not realistic. Alternatively,
in situ sampling using a handheld spectrometer provides a cost-effective, convenient, and accurate
approach for measuring spectral signatures of rivers and streams. Although limited in spatial coverage,
it does help fill the gap of missing remote sensing data for rivers and streams. Furthermore, the more
samples taken, the more useful it will prove in making recommendations for future work on remote
sensing of water quality.

The overall goal of this study was to develop a comprehensive spectral-biogeochemical database
for the Wabash River and its tributaries and evaluate the ability of the radiative transfer modeling
approach by using the database for the retrievals of water quality parameters including concentrations
of chl, non-algal particles (NAP), and CDOM. To fulfill the goal, our specific objectives were to:
(1) collect extensive field data including in situ concentrations of water quality parameters and nutrients,
measurements of IOPs, water depths, bottom albedos, and spectral signatures of river water; (2) analyze
the temporal variability of water quality parameters, nutrients, and IOPs, as well as possible factors in
affecting the temporal variability; and (3) apply the LUT method to the collected dataset and evaluate
its capability for retrieving water quality parameters.
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2. Study Area

The primary study area includes the reach of the Wabash River between French Post Park (about
halfway between Delphi, Indiana, and Logansport, Indiana) and Attica, Indiana, and the reach of
the Tippecanoe River between Indiana State Road 18 and its confluence with the Wabash River
(Figure 1). Within the study area, the Wabash River has a length of about 90,000 m and ranges in width
from 100 m to over 150 m. The Tippecanoe River reach flows approximately 10 km before entering
the Wabash River. Two reservoirs, Lake Freeman and Lake Shafer, are located upstream from the
confluence 48,000 m and 29,000 m, respectively. The Wabash River, which has an average annual
flow of approximately 1000 m3-s~!, originates from west-central Ohio and is the largest drainage in
Indiana. It drains an area of over 8.5 x 10!° m? that covers two-thirds of Indiana’s 92 counties and had
a population of approximately 4,366,000 in 2010. In the basin, land cover is dominated by agricultural
row crops (62%) with approximately 20% forest and dispersed urbanization [30]. The Wabash River
flows a distance of over 650,000 m from its headwaters to its confluence with the Ohio River and is
the second largest tributary of the Ohio River. It is also the longest segment of free flowing river east
of the Mississippi River. The Tippecanoe River (average flow of 145 m3-s~!) is one of over 14 major
tributaries contributing flow to the main Wabash River. Lakes and swamps are the major source of
the Tippecanoe River and reduce the amount of sediments carried in the river. The river enters the
Wabash River 19,000 m northeast of Lafayette, Indiana and is one of the nation’s most biologically
diverse rivers. The drainage basin of the Tippecanoe River is in the north central part of Indiana and
drains approximately 4.92 x 107 km?. The land use in the basin is predominately agriculture, which
represents approximately 87% of the land area. The Wabash River and its tributaries are a vital source
for water supply and recreation in Indiana. Throughout the year water depth of the Wabash River
(USGS 03335500) ranges from 0.6 m to 6.0 m while the Tippecanoe River (USGS 03333050) is shallower
with typical depths of 0.6 m to 2.5 m. The riverbed of the Tippecanoe River is often visible through the
water during summer when flows are extremely low.

Water quality impairment occurs on various segments of the Wabash River and the Tippecanoe
River. Issues include those related to Escherichia coli (E. coli), nutrients, pH, dissolved oxygen, and
impaired biotic communities, according to the Indiana and Illinois 2010, 2012, and 2014 Clean Water
Act (CWA) Section 303(d) listings. Major pollution sources in the watershed include nonpoint
sources from agricultural and urban run-off, and point sources from treated and untreated (from
combined sewer overflows) municipal wastewater. Both river play important roles in transporting
pollutants downstream. According to the Ohio River Valley Water Sanitation Commission (ORSANCO,
http:/ /www.orsanco.org/wabash-river-project), the Wabash River is one of the largest contributors of
nutrient loadings to the Mississippi River and the Gulf of Mexico. Approximately 1.0 x 107 kg of total
phosphorus and 1.39 x 10® kg of total nitrogen are estimated to be contributed by the Wabash River
watershed to the Gulf of Mexico each year [31]. Water quality conditions in the two river reaches within
our study area are quite different. Based on our previous sampling experience, water in the Tippecanoe
River carries significantly lower sediment loads than the Wabash River, likely due to the presence
of the two upstream reservoirs, Lake Freeman and Lake Shafer, which greatly reduce sediments in
the river. The water quality of the Wabash River is complex and dominated by both phytoplankton,
usually measured in terms of chl concentrations, and NAP otherwise known as inorganic sediments.
The water quality of the Wabash River is closely associated with flow and seasonal dynamics. During
spring, sediment and nutrient loads in the Wabash River are typically the highest as a consequence
of intense agricultural activities and high agricultural runoff, with lowest values occurring during
summer. However, a significant increase of sediments and nutrients is often found in the rivers after
summer storm events. These nutrients delivered from terrestrial environment, in return, cause algal
blooms in the river and turn the water to be visibly green.
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Figure 1. Main study area includes two reaches of the Wabash River, including the confluence with the
Tippecanoe River. Field spectrometer measurements and water samples (marked as red stars) were
collected through the summer of 2014. Triangles indicate United Stated Geological Survey (USGS)
real-time streamflow monitoring stations.

3. Materials and Methods

3.1. Field Data

Regular sampling was conducted using a boat platform on a total of 28 dates during May, June,
and July 2014, resulting in a total of 213 samples from the Wabash River and the Tippecanoe River.
Surface water samples of each site were collected and stored in brown polyethylene bottles until
returned to the laboratory for further analysis. Above-water measurements were taken with a GER
1500 field spectrometer (Spectral Vista Corporation, http:/ /www.spectravista.com/) and a Spectralon
panel at each station by following NASA’s standard operating protocols of satellite ocean color remote
sensing [32]. Spectral range of the spectrometer is 350-1050 nm with 1.5 nm sampling interval. To
avoid significant changes in illumination conditions, measurements between water target, sky, and
the Spectralon panel were done within a very short time period. Sky conditions were also recorded
for each station when spectral measurements occurred. For each site, water depths were measured
using an ultrasonic device and recorded. An YSI sonde (YSI, https://www.ysi.com) was used to
take instantaneous measurements of water temperature, conductivity, salinity, and dissolved oxygen.
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Water measurements were accompanied also by underwater video, which was used to determine
the substrate type. During low flow conditions when the streambed emerged, the albedo of various
river bottom types was collected and related back to the classification of streambed materials from the
video. Locations of all sampled sites were recorded using a handheld GPS device. In addition, daily
discharge data from the Wabash River and the Tippecanoe River were obtained from USGS stations
USGS 03335500 and USGS 03333050, respectively.

All field spectrometer measurements were processed to remove sky and sun glint by using a
constant water surface reflection coefficient [33]. Therefore, remote sensing reflectance, Rys, was
calculated using the following equation:

Ly —pLs

Rys = Ed

1)
where L, is the total upwelling radiance, Ls is the sky radiance, p is the water surface reflection
coefficient which is 0.028, and Eq is the measured downwelling solar irradiance.

3.2. Laboratory Measurements

All water samples were stored in the dark and on ice until returned to the laboratory for the
determination of the concentrations of water quality parameters and nutrients (total nitrogen (TN),
total phosphorous (TP), and dissolved organic carbon (DOC)), as well as spectral absorption properties
of chl, NAP and CDOM.

According to the standard methods of the American Public Health Association (APHA) [34],
a sub-sample was filtered onto Whatman GF/F filters, then extracted in 90% acetone solution and
analyzed spectrophotometrically to determine the concentration of chl (denoted as (chl), where “(X)”
indicates a concentration of X). The concentrations of TSS ((TSS)) were measured gravimetrically on
pre-weighted Whatman GF/F filters after rinsing with pure water. It should be noted that TSS includes
both organic and inorganic sediments, i.e., chl and NAP. The organic part of TSS can be converted from
(chl) using a ratio of 0.02 which is typical for mesotrophic and eutrophic systems [35]. With this ratio,
the amount of organic sediments was calculated for each sample collected in summer 2014 and it was
found that the organic sediments took up only a small part of the total mass (<10%). Therefore, the
concentrations of NAP ((NAP)) were assumed to approximate (TSS) in this study. The concentration
of DOC ((DOC)) was estimated by chemical analysis of a filtered 250 mL sample using the EPA
415.1 method. The concentrations of TP and TN ((TP) and (TN), respectively) were analyzed using an
autoanalyzer after subjecting unfiltered and filtered water samples to alkaline persulfate digestion.

CDOM absorption (4.4om(440)) was measured using a laboratory spectrophotometer after filtration
through 0.45 pm membrane filters. Total absorption of particulate matter (a,(A)) was acquired using
the quantitative filter technique by measuring the particles retained on to Whatman GF/F filters
spectrophotometrically. The filters were then bleached with hot methanol so that pigments were
extracted. The absorption spectra of NAP (anap(A)) were determined through measurements of particles
remaining on these bleached filters. The difference between ap(7\) and anap(A) gave an estimate
of the absorption of phytoplankton (a,,(A)). All spectral absorption measurements were made at
1 nm increments between 350 nm and 900 nm. The detailed lab procedure can be found in NASA
protocols [32].

Null point corrections were performed to the lab measured absorption to remove residual offsets
due to filter manufacturing and scattering artifacts caused by particle loading. For a.4om(A) and ap(A)
correction, the average from 750 to 760 nm was forced to be null. The absorption of non-algal particles
anap(A) was corrected using the average absorption measured between 890 nm and 900 nm and a
pathlength amplification factor of 2 [36]. Specific absorption coefficients (absorption per unit of mass
concentration) of CDOM, chl and NAP were then estimated after corrections. The averaged values of
the specific absorption coefficients were further fitted to exponential functions and used to represent
the specific inherent optical properties (SIOPs) of the study area.
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The temporal variability of water quality parameters, nutrients, and IOPs in the Wabash River
and the Tippecanoe River were analyzed. Pearson’s correlation (r) analyses and significance tests
were performed to explore possible factors influencing the temporal variability of these parameters.
In particular, the daily distribution of (chl) sampled within the Wabash River was also evaluated
using box-plots and the Mann-Whitney-Wilcoxon test was performed to determine if significant
changes occurred.

3.3. Biophysical Characteristics

3.3.1. Water Quality Observations

The Mann-Whitney—Wilcoxon test shows that the Wabash River and the Tippecanoe River
experience different hydrologic regimes (p < 0.05). Since the Wabash River and the Tippecanoe River
also experience different optical properties, as shown in Section 3.3.4, they were analyzed separately.
A summary of water quality observations from the Wabash River and the Tippecanoe River during
the summer of 2014 is presented in Table 1. For the Wabash River, (chl) experienced large variability
ranging from 8.9 mg- m~2 to 175.3 mg- m~3, which spans three orders of magnitude. Concentrations
of TSS also experienced large variability ranging from 11.0 g- m~—3 to 102.0 g- m 3. In contrast, (chl)
and (TSS) in the Tippecanoe River were both lower and less variable, which is most likely due to
the two upstream reservoirs serving as a settling basin. The CDOM level (a.4om(440)) in both rivers
was similar and ranged from low to moderate (0.8 m~!-3.1 m~!, and 1.1 m~1-2.7 m~!, respectively).
This is consistent with (DOC) in the two rivers (Table 1). Values of (TN) were similar between the
Wabash River and the Tippecanoe River, but (TP) in the Wabash River was much higher with the
highest value exceeding the Indiana nutrient benchmark of 0.3 g m~3. Both (TSS) and (CDOM) varied
independently of phytoplankton (Figure 2). Therefore, the Wabash River and the Tippecanoe River are
optically complex with non-algal particles and organics competing with phytoplankton and belong to
the category of Case 2 waters [12]. The measured water depths of the Wabash River were generally
higher than those of the Tippecanoe River.
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Figure 2. Scatterplots of measured (a) concentrations of total suspended sediments ((TSS)] and
(b) concentrations of colored dissolved organic matter (a.4om(440)) versus chlorophyll concentrations
((chl)) for samples in the Wabash River (circles) and the Tippecanoe River (triangles) in summer 2014.
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Table 1. Summary of water quality observations of the Wabash River and the Tippecanoe River in
summer 2014.

(chl) (TSS) Acdom (440) (TP) (TN) (DOC) Depth
mg: m3 g m—3 m~! g m—3 g m—3 g m—3 m
Mean 56.0 42.2 1.7 0.10 5.9 27.1 2.0
Wabash Min 8.9 11.0 0.8 0.02 1.3 8.9 0.4
Max 175.3 102.0 3.1 0.47 10.0 41.5 44
Mean 34.2 135 1.6 0.05 6.3 25.8 1.3
Tippecanoe Min 8.3 8.5 1.1 0.01 2.0 8.2 0.3
Max 53.1 20.4 2.7 0.12 10.6 355 2.8

Figure 3 shows time series of the measured water quality parameters and nutrients for summer
2014. It was found that the overall pattern of daily averaged TSS concentrations in the Wabash River
followed that of streamflow (Figure 3a). High concentrations of TSS were typically found in the river
when streamflow increased. The bloom of phytoplankton in the Wabash River usually occurred after
streamflow peaked (Figure 3a). In addition, the changes in the level of TN, TP, and carbon in the Wabash
River were also associated with those of streamflow. However, such observations were not obviously
displayed for the Tippecanoe River. Pearson’s correlation coefficients (r) were further calculated
between each parameter and streamflow (Table 2). Results show that the concentrations of TSS, chl,
CDOM, and TN in the Wabash River were significantly correlated with streamflow. The Wabash
River watershed is dominated by agricultural land use, which means large amounts of sediments and
nutrients were delivered from terrestrial sources to the river during storm events. The increase of (TP)
in late July (Julian Day 209, 210, and 212) when streamflow was low coincided with the combined
sewer overflow (CSO) events which delivered significant amount of TP into the river [37]. In addition,
the relatively low (TP) on 20 and 22 May (Julian Day 140 and 142) was caused by the relatively low
amount of TP delivered into the river and the high streamflow up to 680 m3-s~! on 16 May (Julian
Day 136). When these points were removed from the analysis, the correlation between (TP) and
streamflow became significant (p = 0.025) and increased to 0.50. None of the observed water quality
parameters and nutrients showed significant correlation with streamflow for the Tippecanoe River,
except for the level of CDOM (Table 2). Such results indicate stream-based instead of runoff-based
sources of sediments and nutrients, even though the major land use type in the Tippecanoe River
watershed is also agriculture. This is mostly attributed to the two reservoirs located upstream of the
Tippecanoe River study reach, which increase the residence time of water increasing the settling of
sediment and uptake of nutrients.

There are two major sources of CDOM: (1) allochthonous—derived from the decomposition of
woody plants in terrestrial environments; and (2) autochthonous—derived from the decomposition
of algae and aquatic vegetation within the rivers. Since CDOM concentrations were significantly
correlated with streamflow in both rivers (Table 2), it is highly likely that autochthonous is the
dominant source in these rivers. It has to be noted that CDOM is only a portion of DOC that absorbs
light. Therefore, it is not surprising that DOC showed no significant correlation with streamflow
in both rivers, which means that most of DOC in the rivers is uncolored and from human sources
such as wastewater discharge or from CSO that are prevalent in our study area. For many remote
sensing of water quality studies (e.g., [38]), it is assumed that remote estimates of CDOM can be used
to predict (DOC). However, a weak relationship was observed between CDOM and (DOC) based on
our field measurements (Figure 4). This is common for water bodies affected by human activities ([39]).
Therefore, the use of CDOM for estimating (DOC) in inland water bodies should be cautioned and
field validation is needed unless more is known about the CDOM-DOC relationship.
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Figure 3. Time series of measured concentrations of water quality parameters and nutrients (circles)

versus streamflow (solid line) of: (a) the Wabash River; and (b) the Tippecanoe River.

Table 2. Pearson’s correlations between concentrations and streamflow of the Wabash River and the
Tippecanoe River. The values in bold text represent those correlations that were significant (p < 0.05).

(chl) (TSS) Acdom (440)
Wabash —0.68 0.82 0.68
Tippecanoe  0.02 0.36 0.72

As we closely examine the measured (chl) in the Wabash River (Figure 5), it is found that variability
of (chl) increased between sampled sites when (chl) increased. Significant increases of (chl) were found
around early June (Day 149-160), middle June (Day 169-170), middle July (Day 190-195), and late July
(Day 209-210). Specifically, the phytoplankton blooms on Day 149-160, 169-170, and 190-195 followed
increases of (TN) and (TP). Following the algae blooms there were decreases of (TN) and (TP) due to
biological uptake and transformations. The increase of (chl) on Day 209-210 is believed to be a result
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of increased (TP) due to CSO input (Figure 3a). The magnitude of the (chl) increase was relatively
lower in early June as compared to the other bloom events, which might be caused by the relatively
lower amount of TP delivered into the river as well as the relatively lower water temperature (ranged
approximately 21 °C-23 °C). The decrease of (chl) on Day 196-197 when (TP) and streamflow were
relatively stable is believed to be a result of decreased water temperature, which dropped from 26 °C
to 23 °C as shown by our field data. Therefore, it is concluded that the source of water (surface
runoff or CSO) to a river, water temperature, and nutrients are important factors controlling instream
concentrations of phytoplankton.
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Figure 4. Scatterplot showing measured DOC concentrations ((DOC)) versus concentrations of colored
dissolved organic matter (a.4om(440)) for samples collected for the Wabash River (circles) and the
Tippecanoe River (triangles) in summer 2014.
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Figure 5. Boxplots of measured chlorophyll concentrations ((chl)) for samples collected in the Wabash
River during the summer of 2014. Boxes filled with yellow color indicate that there is a statistically
significant different (p < 0.05) between observations on the highlighted day and the previous day.
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3.3.2. Inherent Optical Properties

Absorption by phytoplankton at 676 nm (a,,(676)) as estimated from the collected water samples
closely paralleled changes in extracted (chl) in the Wabash River with r equal to 0.90 (Figure 6a). The
temporal variability in chl absorption was dominated by algal blooms, which were caused by increased
nutrients delivered from terrestrial sources during runoff events. Significant increases in chl absorption
were found on days when (chl) increased. Significant correlation between a,,(676) and (chl) were
also found in the Tippecanoe River (r = 0.93, p < 0.05), although absorption by chl was lower and less
variable (Figure 6b).
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Figure 6. Scatterplots of measured inherent optical properties (filled squares) versus water quality
parameters (circles) of the Wabash River (left panel) and the Tippecanoe River (right panel):
(a,b)—absorption of phytoplankton at 676 nm (a,,(676)) vs. chlorophyll concentrations ((chl));
(c,d)—absorption of non-algal particles at 440 nm (anap(440)) vs. concentrations of total suspended
sediments ((TSS)).

The observed changes in absorption by NAP at 440 nm (anap(440)) corresponded strongly to
the variation in (TSS) in the Wabash River (Figure 6c). The absorption coefficient of NAP at 440 nm,
increased from about 1 m~! to > 3 m~! during summer runoff events. In July (after Day 180) when
no rainfall was observed, anap(440) was low and much less variable since the residence time of water
in the river channel was longer and most of the sediment had settled to the bottom of the channel.
The Tippecanoe River experiences much lower absorption caused by non-algal particles, ranging from
0.9m~!to 1.6 m~! (Figure 6d), primarily because the amount of sediment in the Tippecanoe River is
much lower than that in the Wabash River. No significant correlation existed between an,p(440) and
(TSS) in the Tippecanoe River and r only equaled to 0.35, which indicates that non-algal particles only
constituted a part of TSS.

The spectral absorption of CDOM, a.4om(A), can be described using an exponential function,

Acdom(N) = Acdom (440) x eiSCdo"l()‘fMO) o)

with the exponential slope S.qom estimated by non-linear regression. The derived values of S.qom
had a narrow range (0.0157-0.0207 nm '), which is in good agreement with those reported for inland
and coastal waters [40—42]. The specific absorption of CDOM, a*.4om(A), was acquired by fitting the
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ensemble mean of lab estimated specific absorption using Equation (2), with the corresponding S.qom
equal to 0.018 nm~! (Figure 7a).
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Figure 7. Specific inherent optical properties for the Wabash River and the Tippecanoe River:
(a) absorptions; and (b) backscattering.

Similarly, an exponential function was fit to the spectral absorption of non-algal particulate matter,
(nap M),
nap(N) = (TSS) x a%,, (440) x ¢~ Snap(A—440) ©)

nap

where a*nap (440) is the specific absorption coefficient at 440 nm for NAP and (TSS) equals (NAP). The
exponential slopes of NAP, Snap, were estimated by non-linear regression and ranged from 0.0076 nm ™~
to 0.01 nm~!. These values are also similar to those reported for inland and coastal waters [40,41]. The
@*nap(A) was retrieved following the same method as for the Snap and the corresponding measurement
was 0.089 nm ! (Figure 7a).

There were no systematic differences between the two rivers in the mean spectral shape of
phytoplankton absorption, ap (7). Coefficients of variations of ap(A) ranged from 14% to 51% for all
wavelengths over the spectral range from 400 nm to 700 nm, with high variations observed at around

400-420 nm and 600-650 nm. The high variations could be ascribed to the different compositions of
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chlorophyll b, chlorophyll ¢, and other accessory pigments in the Wabash River and the Tippecanoe
River. The small bump around 480 nm and 645 nm is likely to be caused by the comparatively high
concentrations of chlorophyll b and chlorophyll ¢ for some sampled sites (Figure 7a).

The retrieved average backscattering coefficients are shown in Figure 7b, with b*;, ,(550) equal
t0 0.0.012 m?- g~ ! and 7 equal to 1.3. There were no significant differences between the two rivers’
backscattering properties. The retrieved b, ,(550) values lied between 0.006 and 0.02 m? g~! and
the power exponent 7 ranged from 0.5 to 2.0, typical for Case 2 waters as reported by previous
literature [43]. The temporal variability of particulate backscattering at 550 nm (bb,p (550)) was closely
associated with (TSS) and showed weak correlation with (chl) (Figure 8), implying the dominance of
the backscattering by non-algal particles.
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Figure 8. Variability of the retrieved backscattering coefficients of particles at 550 nm (bb,p(SSO)/
filled squares) with measured (a) concentrations of total suspended sediments ((TSS)) (circles) and
(b) concentrations of chlorophyll ((chl)) (circles) in the Wabash River and the Tippecanoe River.

3.3.3. Bottom Properties

The measured bottom depths of sampled sites ranged from 0.3 m to 4.4 m, including both optically
deep and shallow water (Table 1). Substrate type was categorized into six types based on the sediment
size: boulder (>256 mm), cobble (255 mm-64 mm), gravel (63 mm-2 mm), sand (1 mm-0.25 mm), fines
(<0.24 mm), and hardpan (mixture of fines and clay), based on definitions from [44]. As observed, major
substrate types for our study area consisted of fines, sand, gravel, and cobble with sand predominating
(Figure 9). Cobbles and gravels were mostly found in the upstream portions of the Wabash River reach
from French Post to Delphi and in the Tippecanoe River. The bottom of the Wabash River from Delphi
to Attica was dominated by sand with fines occasionally found near the bank.

Figure 10 shows the measured albedo for different substrate types. The spectral shapes of
the albedos are similar and it is hard to exactly discern each type since the ranges of measured
albedos overlap with each other. Therefore, in this study, averaged albedo was used as the bottom

reflectance spectrum.

3.3.4. Spectral Characteristics

The measured spectra can be categorized into two types: (1) phytoplankton dominated and
(2) sediment dominated, as shown by Figure 11. Spectra from phytoplankton dominated water
experienced low reflectance in blue (400-500 nm) and red (600-700 nm) wavelengths due to the
absorption by chl and other pigments. In particular, the local minimum at 677 nm and peak at 704 nm
were caused by the decreasing absorption of chlorophyll and increasing absorption of water as well as
the fluorescence of chl [45]. For the sediment dominated spectra, the reflectance values of these waters
are relatively high in the green and red wavelengths, especially from 560 to 700 nm, and they lack the
reflectance trough and peak in the red region caused by the absorption characteristics of chl.
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Figure 9. Bottom types identified for the Wabash River and the Tippecanoe River: (a) fines; (b) sand;
(c) gravel; and (d) cobble.
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Figure 10. Albedo measured for different bottom types of the Wabash River and the Tippecanoe River.
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Figure 11. Examples showing phytoplankton dominated (solid lines) and sediment dominated (dotted
line) spectra.

3.4. Look-Up-Table Approach

The LUT methodology was used for the retrieval of water quality parameters [8]. The remote
sensing reflectance, Ry, can be computed exactly by solving the radiative transfer equation, as long
as the environmental inputs including the water-column IOPs (the water absorption and scattering
properties), the sky and water surface conditions, and water depths and bottom boundary conditions
are known [46]. Therefore, the LUT methodology includes two major steps: (1) assemble a database of
Rys corresponding to different environmental inputs; and (2) compare the field measured Ry to the
spectrum in the database and find the closest match. The environmental inputs corresponding to the
closest match are then considered to be the real conditions that generate the field measured Rys.

No direct measurements of the backscattering coefficients of particles were available as part of this
study. A subset of the samples collected in summer 2014 was selected to calibrate the backscattering
properties and the remaining samples were used for model validation. Backscattering coefficients of
suspend particles (including both chl and NAP) were lumped into one variable, by, ,(A), which can be
expressed using a power function,

. 5507
by,py(A) = (TSS) x b™,,(550) x (}\) 4)
where b, , (550) is the specific backscattering coefficient at 550 nm, A is the wavelength, and ~y
is the spectral shape parameter. The two unknowns b*, , (550) and <y of the selected sites were
determined by using the LUT methodology. The specific backscattering spectra were then estimated
by normalizing the backscattering to the measured (TSS) and the average was used to represent the
specific backscattering properties of the Wabash River and the Tippecanoe River.

Together with the lab measured absorption and bottom albedo collected in the field, the retrieved
backscattering coefficients were used to construct the R;s database using the HydroLight-EcoLight
5.2.2 radiative transfer model [7]. Since the Wabash River and the Tippecanoe River could be optically
shallow during low flow conditions, water depth was also considered as a parameter. Therefore, to
simulate Ry spectrum, four main parameters are needed: (chl), (TSS), the absorption of CDOM at
440 nm, ac4om (440), and water depth. For the initial LUT, (chl) ranged from 2 mg- m~2 to 180 mg- m—3
at increments of 2 mg-m~3, (TSS) ranged from 2 g- m~3 to 180 g- m 2 at increments of 2 g- m~—3, and
Acdom (440) ranged from 0 to 5 m~! with increments of 0.25 m~!. Water depths were set to start from
0.25 m with increments of 0.25 m according to [9]. During the iteration of water depths, no further
simulations were executed if the R,s spectrum showed no change, which means all light has been
absorbed and/or scattered at this depth. This depth is referred as the maximum depth, Dmax, and
was recorded. If the retrieved depth is less than the maximum depth, it indicates optically shallow
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water; otherwise, it suggests that the water depth of the specific site is equal to or greater than Dmax.
All simulations were run using the Case 2 IOP model from 400 nm to 750 nm with 5 nm interval and
assumed clear sky condition. Fluorescence of chl and CDOM were included. Only one solar zenith
angle was used: 65 = 30°. The wind speed was set to be 5 m-s~!. Details of the parameters used in
HydroLight-EcoLight simulations are listed in Table 3.

Table 3. List of specifications of all the parameters for HydroLight-EcoLight simulations.

Parameters Specifications

(chl) 2 mg-m~3 to 180 mg- m~3, 2 mg- m~3 increment

(TSS) 2g m~—3 to 180 g m=3,2 g m~3 increment

Acdom (440) 0 m to 5 m, 0.25 m increment

Bottom reflectance Value obtained in field (Section 3.3.3)

Water depth Start from 0.25 m, 0.25 increment

Wavelength 400 nm to 750 nm, 5 nm increment
Case 2 model

1OPs Absorption of pure water from Pope anfi Fry [47] .
Values of acp, Acdom, and anap obtained in lab (Section 3.3.2),
Values of bb/p calibrated from collected data (Section 3.4)

Wind Speed 5m/s (default)

Solar zenith angle 30°

Real index of efraction of water

1.34 (default)

Sky model

A semi-empirical model (based on Radtran, default)
Sun-earth distance based on sampling dates
Ozone climatology based on lat/long of sampling locations

Cloud cover

0

Fluorescence

Fluorescence of chlorophyll and CDOM included

The closest matching spectrum is defined as the one in the database showing minimum difference
with field measured Rys spectrum. A term, err, is used to describe the difference

] ~
err = 3 [Rys(\) = Ris\)T° )
j=1

where ﬁrs (?\j) is the database spectrum at band j, Rrs()\j) is the field measured spectrum at band j, and |
is the total number of band.

To better quantitatively describe the retrieval results for NAP and chl, two metrics were adopted:
(1) concentration difference; and (2) percent difference. The concentration difference is defined as

1

concentration difference = N
i

Mz

[C(LUT;i) — C(field;1)] (6)
1

and percent difference between the LUT retrieved and field measured concentrations is computed as

percent difference =

100 & C(LUT;i) — C(field; ) ,
WZ; 7)
1=

C(field;1)

In Equations (6) and (7), C(LUT; i) is the LUT retrieved concentration for site i, C(field; i) is the
field measured concentration at site i, and N is the total number of sampled sites.
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Although theoretically a given Ry spectrum corresponds to a particular set of
environmental /water quality conditions, incorrect information may be retrieved when inverting Ry
due to errors in the field measurements. Therefore, to investigate the non-uniqueness problem of the
LUT retrieval, a subset of 100 Rs spectra in the database based on a priori information of the study
area was randomly selected. Random errors of £1%, +2.5%, 4%, and £5% were then added to the
selected Rys spectra and the retrieved results of the subset were evaluated.

3.5. Database Distribution

All the data collected in this study, including in situ water quality, nutrient level, IOPs, and
spectral measurements, as well as all additional associated data (e.g., bottom albedos, water depth,
date, time of day) and the LUT, were integrated into a database using Microsoft Access and distributed
online through the Purdue University Research Repository (PURR—http:/ /purr.purdue.edu/). This
dataset will be assigned a Document Object Identifier (DOI) from the Purdue Library and published.
Purdue University will maintain the dataset for at least 10 years after the completion of this project.
This published database will provide useful ground truth data for remote sensing of water quality in
inland waters and valuable sources for further investigation of the relationship between optical and
biogeochemical properties.

4. Results

A total of 550,054 spectra were generated using HydroLight-EcoLight. Before we applied the
entire database of Rys spectra to the analysis of the field collected spectrometer data for the Wabash
River and the Tippecanoe River, we first resample the field measured R;s spectra (1.5 nm) with a
cubic spline fit to correspond to the LUT wavelengths (5 nm). The database of R, spectra was created
using a specialized version of HydroLight (i.e., EcoLight) and it took about six days to complete all
of the simulations. Although it is time consuming to build the R.s database, it is one-time effort and
water quality parameters can be retrieved much more quickly by searching through the database
than by completing the EcoLight simulations. This searching was implemented in C++ and it took
approximately 15 s to find the closest match for each field measured spectrum.

Figure 12 shows the results of using a subset of R;s spectra in the database for testing the ability
of the LUT method for water quality retrieval. The water quality conditions corresponding to the
selected Ry spectra are referred to as test measurements here. As seen from the figure, when the error
level of Rys is within +4%, the LUT retrieved (chl), (NAP), and a.4om(A) are all in good agreement with
the values of the test measurements. However, when the error level increased to +5%, the estimated
values were completely different from what was expected, in this case optically deep turbid water
was retrieved as optically shallow clear water. Therefore, accurate field measurements of R are very
important for the success of the LUT method. To avoid such non-uniqueness problems in this study,
we constrained the inversion by restricting water depths for sites that were optically shallow. This was
implemented by searching a subset of the database limited to locations where the water depths were
within 0.25 m of the field measured values. The results of constrained inversions are similar to those of
the unconstrained inversions, which are discussed below.

Values for (NAP), (chl], and a.4,m(440) were simultaneously retrieved by finding the closest
matching LUT spectra to the field measurements (Figure 13). It is clear that the resulting points
fall close to the 1:1 line for (NAP) estimates. The average percent difference calculated for (NAP)
estimation is 4.1% and the concentration is —1.0 g- m~3. It is thus concluded that the LUT retrieved
(NAP) values are in close agreement with coincident in situ measurements. The LUT estimates of (chl)
tend to be higher than field measured values with the regression slope of 1.26. As compared to the
(NAP) estimates, the average error for (chl) estimation is larger, which is 37.7% or 18.0 mg: m~—3. No
statistically significant relationship was found between modeled and measured 4.4, (440) (Figure 13c).
Although the points for CDOM comparison visibly cluster near the 1:1 line, the high variability restricts
us from making any conclusion.
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Figure 12. Comparison between test and look-up table estimated concentrations of: (a) non-algal
particles (NAP)); (b) chlorophyll ((chl)); and (c) colored organic matter (a.4om(440)), for the Wabash
River and the Tippecanoe River. The dotted line represents 1:1 line.
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Figure 13. Comparison between measured and look-up table estimated (unconstrained inversion)
concentrations of: (a) non-algal particles (NAP)); (b) chlorophyll ((chl)); and (c) colored organic matter
(2cdom (440)) for the Wabash River and the Tippecanoe River. The dotted line represents 1:1 line and the
dashed lines represent 95% confidence interval.

5. Discussion

Our lab results show that the measured absorption coefficients of chl (@*pn(A)) exhibited high
variations at around 400-420 nm and 600-650 nm. This is consistent with numerous laboratory and
field studies of a*;(A) in case 2 water over the last two decades [48-50]. Such variability can be
attributed to pigment composition [51] and packaging [52]. Given the dynamic physical and chemical
conditions of inland rivers, the structure of phytoplankton community is highly variable. It is thus
most likely that the robust relationship between (chl) and a*,,(A) found in open oceans may not work
well in inland river systems due to the contribution of accessory pigments to absorption and pigment
packaging [50]. To confirm this, we reanalyzed our samples by selecting those where the measured
a*pn(A) experienced fewer features related to other pigments (Figure 14). By limiting the analysis
to more uniform samples, we found that the regression slope became 1.15 and the average error
dropped to 24.8%. Therefore, in order to improve the accuracy of (chl) retrieval, future work should
include studying the pigment composition and phytoplankton cell size for better quantification of the
relationship between (chl) and %, (A) in our study area.

Based on our observations the change in d.gom(440) was within 3 m~! (Table 1), while the value
can be as high as 40 m~! for inland water [38]. In [14] we also found that R, is not sensitive to the
observed changes in a.4om (440), therefore it is highly likely that the small observed changes cannot be
adequately captured by the LUT methodology. It is also possible that the LUT retrievals for a.qom(440)
display large uncertainties at low CDOM levels [39], but produce an overall good 1:1 fit with a wider
data range than the CDOM levels in the Wabash River and the Tippecanoe River sampled in summer
2014. This needs further investigation with more data collected for the rivers during other seasons of
the year, for example, in spring when agricultural activities are intense and streamflow is high.
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Figure 14. Comparison between measured and look-up table estimated (unconstrained inversion)
values of chlorophyll concentrations ((chl)) for selected samples showing fewer features of accessory
pigments. The dotted line represents 1:1 line and the dashed lines represent 95% confidence interval.

6. Conclusions

In this study, a comprehensive spectral-biogeochemical database of the Wabash River and the
Tippecanoe River, Indiana, was developed. This database mainly includes remote sensing reflectance
spectra of river water taken using a hand-held spectrometer, IOPs, concentrations of water quality
parameters (chl, NAP, and CDOM) and nutrients (TP, TN, DOC), water depths, substrate types, and
bottom reflectance spectra collected in summer 2014. Our results show that the temporal variability
of water quality parameters and nutrients of the Wabash River in summer 2014 were significantly
associated with hydrologic regime. Summer runoff events and CSOs that were prevalent in our study
area played an important role in delivering nutrients and sediments to the Wabash River. In contrast,
none of the water quality parameters and nutrients showed significant correlation with streamflow
for the Tippecanoe River except for CDOM, due to the two upstream reservoirs which increase the
residence time of water. It is highly likely that most of DOC in the rivers is uncolored and from
human sources such as wastewater discharged from CSOs. Nutrients inputs, water temperature
and the intensity of major runoff events are important factors controlling instream concentrations
of phytoplankton. The LUT methodology was further applied to the dataset for inversion of field
measured Rys spectra. Significant linear relationships existed between the LUT retrieved and field
measured values of (NAP) with a slope close to 1.0. The average percent difference of (NAP) estimates
was 4.1% and the concentration difference was —1.0 g-m~3. The average error between the LUT
retrieved and field measured (chl) values was larger (37.7% or 18.0 mg-m_3). However, after reselecting
samples that were less likely to be influenced by other pigments, the average error decreased to
24.8% and the regression slope was close to 1.0. It is concluded that the specific absorption spectrum of
chl was not well characterized, which affects the accuracy of (chl) retrieval. No significant relationship
was found between the LUT retrieved and field measured CDOM values. The large variability of the
LUT retrieved CDOM values could be due to the fact of small data ranges and the insensitivity of Ry
to the change in CDOM.

The initial evaluation of the database gives us reason to believe that the LUT method will prove
to be a general and robust way of retrieving water quality parameters in our study area. The success of
the LUT method depends on the accurate and appropriate measurements of IOPs and R;s. Therefore,
further improvements in the retrievals can be implemented by continuing data collection of the rivers
in other seasons of the year, improving the characterization of water IOPs, and adding additional
reflectance spectra and water IOPs as well as other environmental information (e.g., wind speed,
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cloud cover efc.) to the existing database. Although the LUT method is best suited for specific
local environments with enough a priori environmental information, as was done here, there are still
limitations. For example, it is not universally applicable because it would be impractical to develop a
database that is big enough to cover any range of water quality conditions. In addition, the retrieval of
water quality parameters in such a database would be too computationally intensive. As we noticed,
the inherent granularity (i.e., discrete increments), in the database affects the estimates of errors in
the retrievals as well as the time for database building and searching. Therefore, in order to extend
the LUT method to a larger area, for example, the entire Wabash River in Indiana, it is necessary to
find the optimal inherent granularity that produces water quality estimates within acceptable error
limits while maintaining reasonable computing times. To handle shallow water conditions, it would
be beneficial to determine if bottom contributions exist at given depths before building the database so
that the computing time can be further reduced, as opposed to simply constraining the inversion.
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The following abbreviations are used in this manuscript:

Chl chlorophyll

NAP non-algal particles

TSS total suspended solids

CDOM colored dissolved organic matter
DOC dissolved organic carbon

N total nitrogen

TP total phosphorus

LUT look-up table

CSO combined sewer overflow
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