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Abstract: Optical and microwave images have been combined for land cover monitoring in different
agriculture scenarios, providing useful information on qualitative and quantitative land cover
changes. This study aims to assess the complementarity and interoperability of optical (SPOT-5 Take-5)
and synthetic aperture radar (SAR) (Sentinel-1A) data for crop parameter (basal crop coefficient (Kcb)
values and the length of the crop’s development stages) retrieval and crop type classification, with a
focus on crop water requirements, for an irrigation perimeter in Angola. SPOT-5 Take-5 images are
used as a proxy of Sentinel-2 data to evaluate the potential of their enhanced temporal resolution for
agricultural applications. In situ data are also used to complement the Earth Observation (EO) data.
The Normalized Difference Vegetation Index (NDVI) and dual (VV + VH) polarization backscattering
time series are used to compute the Kcb curve for four crop types (maize, soybean, bean and pasture)
and to estimate the length of each phenological growth stage. The Kcb values are then used to compute
the crop’s evapotranspiration and to subsequently estimate the crop irrigation requirements based on
a soil water balance model. A significant R2 correlation between NDVI and backscatter time series
was observed for all crops, demonstrating that optical data can be replaced by microwave data in the
presence of cloud cover. However, it was not possible to properly identify each stage of the crop cycle
due to the lack of EO data for the complete growing season.

Keywords: agriculture; land cover change; SPOT-5 Take-5; Sentinel-1A; evapotranspiration;
TIGER initiative

1. Introduction

Crop monitoring by satellite remote sensing requires high spatial and temporal resolution image
time series and ground campaigns to monitor the entire crop cycle with frequent ground acquisitions
over extensive areas. With the ever-increasing number of satellites and the availability of free data,
the integration of multisensor images in coherent time series offers new opportunities for land cover
and crop type classification [1]. In addition, satellites with a shorter revisit time (e.g., six days at the
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Equator for the Sentinel-1 constellation and five days at the Equator under cloud-free conditions for the
Sentinel-2 constellation) and reconfigurable acquisitions (different viewing conditions can be applied
for more frequent observation of a certain area) can be used to better identify the different growth
cycle stages that are often imperceptible when using more sporadic data.

Many studies have combined optical and microwave images to improve mapping accuracy in
agricultural scenarios [2–7]. SAR data are independent of solar illumination and depend on the
wavelength and on the roughness, geometry and material contents of the targeted surface. In contrast,
optical data are greatly influenced by cloud cover and represent the reflectance of solar energy from
a target area. The potential of Earth Observation (EO) techniques for the management of land and
water resources has also been widely acknowledged [8,9]. The repeatability of observations on a cyclic
basis and the availability of high spatial resolution multispectral data are particularly suitable for
cost-effectively mapping crops and irrigated areas with satisfactory accuracy [10].

The amount of water required to meet the cropped field’s water loss through evapotranspiration
is defined as the crop water requirement [11,12]. Water requirements vary from crop to crop and
throughout the growing season of an individual crop. The FAO Penman–Monteith method is the
standard method for the definition and computation of the reference evapotranspiration (ETo) [13,14].
Crop evapotranspiration (ETc) from crop surfaces under standard conditions is determined by crop
coefficients (Kc) that relate ETc to ETo. The dual crop coefficient approach separates Kc into two
separated coefficients, one for crop transpiration (Kcb, basal crop coefficient) and another for soil
evaporation (Ke).

EO methodologies have been used to estimate ETc due to the reflective properties of vegetation
and to the relationship of ETc with crop characteristics, such as the Leaf Area Index (LAI) and crop
coefficient (Kc). ETc can be estimated from EO data using physics-based methods based on the surface
energy balance [15–17] or using empirical methods based on the use of vegetation indices [10,18–20].
Physics-based methods estimate latent heat flow through the surface energy balance, but the difficulties
related to the measurement of its terms have led to a wider use of the empirical methods, in which the
crop coefficient is obtained through the vegetation indices approach. The estimation of ETc based on
vegetation indices, usually the NDVI, is a modification of the crop coefficients method [11,12], in which
ETo is calculated based on meteorological data, and the crop coefficient introduces information related
to the crop. In these methods, crop data are often obtained through tabulated values, which provide
general data for several crops [13,14]. To improve the accuracy of crop water requirement estimation,
the characterization of the Kc curves must be improved and can be done using EO data, because crop
characteristics are well correlated with the spectral reflectances [21]. Thus, as proposed by several
authors [10,18–20], the Kc-NDVI approach establishes an empirical relationship between Kc values
obtained through field measurements and NDVI values retrieved from EO optical data. The equations
used to estimate crop coefficient values based on vegetation indices, once calibrated and validated for
a given location, can accurately estimate crop evapotranspiration [10,21].

This study aims to assess the potential of multitemporal and multisensor EO data for crop
parameter (Kcb values and the lengths of the crop’s development stages) retrieval and crop type
classification at high spatial (10 m) and temporal (five days) resolution with a focus on irrigated
agriculture. For this purpose, EO data (Sentinel-1A + SPOT-5 Take-5) are evaluated for irrigation
requirement estimation based on a soil water balance model (IrrigRotation) [22]. The main goals are to
estimate crop parameters from NDVI and VV + VH backscattering time series and to calculate the crop
irrigation requirements. On the other hand, the integration of Sentinel-1A VV + VH polarized data
into the classification process is assessed and compared to the accuracies obtained only with spectral
information from SPOT-5. This permits the determination of: (1) band combinations that provide better
crop classification results; (2) the most critical dates for improved crop class discrimination; (3) and the
number of observations required within a given growing season for a good classification accuracy.
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2. Materials and Methods

2.1. Test Area

The test area covers an irrigation perimeter close to the town of Wako-Kungo (11˝25133”S,
15˝06110”E), which is located in the Cela Municipality, South-Kwanza Province, Angola (Figure 1).
The test area has an area of approximately 960 km2, with 40 km in the west-east direction and 24 km in
the north-south direction. The Wako-Kungo region is located on a plateau zone higher than 1200 m.
This region has a warm temperate climate with a marked wet season from October to April and an
average annual precipitation of approximately 1250 mm. The dry season (Cacimbo) occurs from
May to August. The average annual temperature is approximately 21 ˝C, ranging between 22 ˝C in
September and October and 18 ˝C in June [23–25].

The Cela area has a dense hydrographic network that is limited by the River Nhia in the north
and the River Queve in the south. There is also the River Kusonhi and a large number of streams with
appreciable flow during the months of the rainy season that contribute to the available water in the
region. This region is dominated by ferralitic soils in association with para-ferralitic soils, which occur
in hilly areas, especially in foothills. The area climate conditions combined with the soil types present
in the region make the area soils fertile for agriculture. The main crops in the rainy season are maize,
rice, some vegetables and pasture, with dairy farming being the main activity. The crops and pastures
in this region require irrigation during the dry season [23–25].
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Figure 1. (a) Regional context of the test area (solid blue rectangle) with the location of the Kibala and
Wako-Kungo weather stations of the Southern African Science Service Centre for Climate Change and
Adaptive Land Management (SASSCAL) WeatherNet; (b) test area with the locations of the ground
truth areas (yellow polygons) collected in April 2015.
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2.2. Data and Field Work

2.2.1. Satellite Data and Preprocessing

To achieve a high temporal resolution, Sentinel-1A and SPOT-5 Take-5 images were requested
from ESA (European Space Agency) and from CNES (Centre National d’Études Spatiales), respectively,
within the scope of the ESA Alcantara initiative project (Ref: 14-P13) and the SPOT-5 Take-5 project
(ID: 29142) for the time period from March to September 2015.

A total of 37 satellite images were made available for this study: 28 SPOT-5 Take-5 images from
10 April to 12 September and 9 Sentinel-1A images from 26 March to 4 October (Table 1 and Figure 2).

Table 1. Sentinel-1A and SPOT-5 Take-5 acquisition dates (day of the year (DOY) 2015).

Satellite Acquisition Date DOY 2015

Sentinel-1A 26 March 85
SPOT-5 10 April 1 100
SPOT-5 15 April 1 105

Sentinel-1A 19 April 109
SPOT-5 30 April 120
SPOT-5 5 May 125
SPOT-5 10 May 130

Sentinel-1A 13 May 133
SPOT-5 15 May 135
SPOT-5 20 May 140
SPOT-5 25 May 145
SPOT-5 4 June 155

Sentinel-1A 6 June 2 157
SPOT-5 9 June 160
SPOT-5 14 June 165
SPOT-5 19 June 170
SPOT-5 24 June 175
SPOT-5 29 June 180

Sentinel-1A 30 June 181
SPOT-5 4 July 185
SPOT-5 9 July 190
SPOT-5 14 July 195
SPOT-5 19 July 200

Sentinel-1A/SPOT-5 24 July 2 205
SPOT-5 29 July 1 210
SPOT-5 8 August 220
SPOT-5 13 August 225

Sentinel-1A 17 August 2 229
SPOT-5 18 August 230
SPOT-5 23 August 1 235
SPOT-5 28 August 240

Sentinel-1A 29 August 241
SPOT-5 2 September 1 245
SPOT-5 7 September 250
SPOT-5 12 September 255

Sentinel-1A 4 October 277
1 Not used due to significant cloud cover; 2 lack of the northern part of the image.
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The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, operating day
and night and performing C-band synthetic aperture radar (SAR) imaging, enabling image acquisition
regardless of the weather. Sentinel-1A was launched on 3 April 2014, while Sentinel-1B was launched
on 25 April 2016. The Sentinel-1A mission includes SAR imaging in four exclusive imaging modes
with different resolutions (down to 5 m) and coverages (up to 400 km). This mission provides dual
polarization capability, very short revisit times and rapid product delivery. A single Sentinel-1 satellite
can potentially map the global landmasses in interferometric wide (IW) swath mode once every 12 days
in a single pass (ascending or descending). The two-satellite constellation offers a 6-day exact repeat
cycle at the Equator. Because orbit track spacing varies with latitude, the revisit rate is significantly
greater at higher latitudes than at the Equator.

All of the Sentinel-1A C-band SAR images were made available in IW mode with a dual
polarization scheme (VV + VH). These images were distributed as Level-1 products, as single look
complex (SLC), except for the first two acquisition dates, and as ground range detected (GRD) for
all dates. SLC image ground resolution is 5 m ˆ 20 m, while that for GRD images is 10 m. All of
the images were acquired in ascending mode with incidence angles ranging from 38.87˝ to 39.26˝.
Sentinel-1A Level-1 GRD products were used in this study due to their improved quality. However,
because typical SAR data processing, which produces Level-1 images, does not include radiometric
corrections and because significant radiometric bias remains, it is necessary to radiometrically correct
the SAR images. Moreover, radiometric correction is also required when comparing SAR images
acquired from the same sensor, but at different times, as in this study. Radiometric calibration was
applied using the following equation (Equation (1)) [26]:

γi “
pDN2

i ` bq
Ai

(1)

where Ai is the gamma calibration vector (i), b is a constant offset and DNi
2 is the intensity. Level-1

products provide four calibration look-up tables (LUTs) to produce β0
i, σ0

i and γi or a digital
number (DN). The LUTs apply a range-dependent gain, including the absolute calibration constant.
Independently of the selected LUT (in this case, σ0

i was chosen), for any pixel i that falls between
points in the LUT, the Ai value is found by bilinear interpolation.

A terrain correction was also applied to the images because, due to the topographical variations of
a scene and the tilt of the satellite sensor, distances can be distorted in SAR images. The range Doppler
orthorectification method was used to geolocate all of the SAR images using available orbit state vector
information in the metadata, radar timing annotations, slant-to-ground range conversion parameters
and reference DEM data. NASA’s Shuttle Radar Topography Mission (SRTM) DEM sampling at
3 arc-seconds was adopted.

The SPOT-5 Take-5 experiment consists of using SPOT as a simulator of the image time series that
ESA’s Sentinel-2 mission will provide. SPOT-5 Take-5 images were distributed both as Level-1C and
Level-2A in a 10-m spatial resolution, similar to Sentinel-2 products. In analogy to the previous SPOT-4
Take-5 experiment, on 5 April 2015, SPOT-5 was placed in a 5-day cycle orbit, acquiring data from
150 selected sites every 5 days under constant angles until 15 September 2015. These Sentinel-2-type
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time series were made available to the scientific community by ESA and CNES to support the
development of time series analysis in preparation for the exploitation of the Sentinel-2 mission.

Level-2A SPOT-5 images were used in this study due to their improved pre-processing level.
The highest quality product (ORTHO_SURF_CORR_PENTE) was chosen because it provides surface
reflectances corrected from atmospheric effects (top of atmosphere), including adjacency effects and
even terrain effects. Therefore, no further pre-processing steps were required for these images.

2.2.2. Field Work

Crop ground truth information was collected in the field from 15 to 30 April 2015. A total of
56 eligible parcels were mapped during the campaign (see Figure 1 for parcel location). The crop types
identified in the field were mainly maize, but soybean, common (dry) bean (hereinafter designated
as bean) and pasture were also observed (Table 2). Other crop types observed in the field were not
considered in this study due to the small number of plots. The size of the parcels differs significantly,
varying from a minimum of 0.43 ha to a maximum of 110.03 ha.

During the field campaign, for each parcel, the crop type and its phenological growth stage
according to the BBCH (“Biologische Bundesanstalt, Bundessortenamt und CHemischeIndustrie”)
scale [27] were registered. For maize, most of the parcels were in the senescence (Sen) stage, while
1 parcel was in the flowering (Fl) stage and another one in the leaf development (Lf) stage. All of the
soybean parcels were in the senescence phase, while for bean, 1 parcel was in Lf; 3 parcels were in Fl;
and 1 parcel was in the fruit development (Fr) stage. Pasture is harvested several times during the
growing season; therefore, this crop is always in the Lf stage. Whenever possible, the sowing date was
also collected for each parcel.

Table 2. Crop type and number of parcels identified in the test area during the field work. Sen,
senescence; Fl, flowering; Lf, leaf development.

Crop Type No. of Parcels Min. Area (ha) Max. Area (ha) Phenological Growth Stage

Maize 28 4.48 110.03 1 Lf, 1 Fl and 26 Sen
Soybean 13 4.47 48.95 Sen
Pasture 5 9.64 14.79 Lf

Bean 5 0.43 42.31 1 Lf, 3 Fl and 1 Fr

In Figure 3, a crop calendar of the main crops observed in the Wako-Kungo irrigation perimeter
is presented. These dates are the most common dates for these crops in this region. The sowing and
harvesting periods for maize, bean and soybean are shown, while pasture is omitted because it is
always in the crop development stage. According to Figure 3, the period covered by the satellite
images does not cover the entire growing season.
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Figure 3. Crop calendar of the main crops for the Wako-Kungo irrigation perimeter.
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Additionally, the boundaries of each parcel were determined in the field using a GPS receiver,
which permitted the creation of a polygon vector file in the WGS84/UTM 33S coordinate reference
system. The local weather conditions were recorded at a local weather station (11˝1615711S, 14˝5915011E)
managed by the Instituto de Investigação Agrária (IIA). However, a few days after the end of the
campaign, the station went out of order and was able to register data again beginning 13 October.

2.2.3. Meteorological Data

Data from the SASSCAL (Southern African Science Service Centre for Climate Change and
Adaptive Land Management) WeatherNet [28] were used as input for the soil water balance model.
The station nearest to the test area is Wako-Kungo (11˝2414011S, 15˝0714511E, 1331 m in altitude),
approximately 20 km southeast of the IIA weather station. However, because data related to air
temperature and humidity are lacking until 20 May, data from Kibala (Catofe) station (10˝4411011S,
14˝5910411E, 1272 m in altitude, approximately 60 km north of the IIA weather station) were also
downloaded. The location of each station is displayed in Figure 1.

The weather parameters available to calculate the crop water requirements and that were common
to both stations were air temperature, precipitation, air humidity and solar radiation. Wind speed,
required for the soil water balance model, was only available for Wako-Kungo from 1 March to 18 June.
Monthly average air temperature, precipitation and solar radiation values are listed in Table 3 for the
Kibala and Wako-Kungo stations.

Table 3. Monthly average air temperature, precipitation and solar radiation values for the Kibala and
Wako-Kungo stations of the SASSCAL WeatherNet.

Month
2015

KIBALA (Catofe) WAKO-KUNGO

Average Air
Temperature

(˝C)

Precipitation
(mm)

Solar
Radiation
(W¨ m´2)

Average Air
Temperature

(˝C)

Precipitation
(mm)

Solar
Radiation
(W¨ m´2)

Mar 20.0 232.6 185.91 - 2.0 179.81
April 19.6 131.0 214.44 - 0.0 194.50
May 20.5 18.7 232.69 19.3 9.0 212.94
June 18.6 1.6 212.56 19.1 222.0 204.37
July 18.9 1.8 192.75 19.9 0.0 185.23

August 18.7 0.7 192.62 21.0 0.0 189.03
September 19.3 10.3 210.84 21.7 2.8 188.32

October 20.4 268.9 213.92 22.0 0.0 210.08

2.3. Method

2.3.1. NDVI and VV + VH Backscattering Time Series

SPOT-5 Bands B2 (Red) and B3 (NIR) were used to compute an NDVI image for each epoch [29].
Based on these NDVI images, it was possible to calculate the average NDVI and the standard deviation
values for each crop parcel. SPOT-5 Take-5 time series graphs for each crop type (pasture, maize,
soybean and bean) and for each epoch were generated to assess the behavior of each crop throughout
the entire growing season using the trend analysis of the NDVI values.

Likewise, the gamma VV + VH bands were used to determine the mean value for each crop type
and for each epoch. After calculating the mean values, they were converted from power scale values
into logarithmic scale values to correctly represent dB values using the following equation (Equation (2)):

γi pdBq “ 10 ˆ log10 pγi q (2)

where γi is the gamma-calibrated backscattering coefficient obtained from Equation (1) for each pixel
of the SAR images.
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2.3.2. Image Classification and Accuracy Assessment

Two supervised classification methods were used for image classification: support vector machine
(SVM) and neural network (NN).

SVM is a supervised classification method derived from statistical learning theory that often
yields good classification results from complex and noisy data [30–32]. It separates the classes with a
decision surface that maximizes the margin between the classes. The surface is often called the optimal
hyperplane, and the data points closest to the hyperplane are called support vectors. The support
vectors are the critical elements of the training set. SVM can be adapted using nonlinear kernels to
become a nonlinear classifier. While SVM is a binary classifier in its simplest form, it can function
as a multiclass classifier by combining several binary SVM classifiers (creating a binary classifier
for each possible pair of classes). SVM includes a penalty parameter that allows a certain degree
of misclassification, which is particularly important for non-separable training sets. The penalty
parameter controls the trade-off between allowing training errors and forcing rigid margins. It creates
a soft margin that permits some misclassifications, such as it allows some training points on the
wrong side of the hyperplane. Increasing the value of the penalty parameter increases the cost of
misclassifying points and forces the creation of a more accurate model that may not generalize well.

NN applies a layered feed-forward neural network classification technique. The NN technique
uses standard backpropagation for supervised learning [33,34]. You can select the number of hidden
layers to use and can choose between a logistic or hyperbolic activation function. Learning occurs by
adjusting the weights in the node to minimize the difference between the output node activation and
the output. The error is back propagated through the network, and the weight is adjusted using a
recursive method. NN classification can be used to perform non-linear classification.

To evaluate the potential of integrating microwave data with optical data into the classification
process, the following pairs of images were considered: (1) SPOT-5 30 April and Sentinel-1A 19 April
and (2) SPOT-5 15 May and Sentinel-1A 13 May. For the first pair, the SPOT-5 image of 15 April
would be more suitable; however, this image has an almost total cloud cover. Other possible pairs
between SPOT-5 and Sentinel-1A images were not used because most of the crops were all in the
senescence phase and because the northern part of the later images (6 June, 24 July and 17 August)
was lacking. Four band combinations were tested to evaluate which combination produced the best
results: (1) SPOT-5 bands; (2) SPOT-5 bands + Sentinel-1A VV band; (3) SPOT-5 bands + Sentinel-1A
VH band; and (4) SPOT-5 bands + Sentinel-1A VV + VH bands. All of the multispectral bands of
the SPOT-5 HRG2 sensor, e.g., B1 (green), B2 (red), B3 (NIR) and SWIR bands, were considered for
classification. A crop mask was created for use during classification to reduce misclassifications among
crops, surrounding natural/semi-natural vegetation, water and artificial areas.

After selecting which band combination and classifier to use, images were added cumulatively to
evaluate the improvement of the classification accuracies. Approximately 50% of the ground truth
parcels identified in the field per crop were randomly chosen to train the classifiers, while the rest
was used to validate the classification results (Table 4). For the classification, only 4 crop classes were
considered: maize, soybean, pasture and bean. Four other crop classes (sunflower, millet, cabbage and
potato) were excluded due to their limited number of ground truth parcels.

A confusion matrix was used to compute the overall accuracy (i.e., the correctly-classified sample
units) and the producer’s and user’s accuracies. The producer’s and user’s accuracies represent the
accuracy of an individual category. The kappa coefficient is used to determine whether the values in
an error matrix are significantly better than in a random assignment. Therefore, the kappa coefficient
is lower than the overall accuracy. Confusion matrices were generated for each combination and for
each image pair, as well as for the overall accuracy, the kappa coefficient and the producer’s and user’s
accuracies for each class.
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Table 4. Ground truth parcels used to train the classifier and to validate the classification results.

Crop Type No. of Training Parcels No. of Validation Parcels Total of Parcels

Maize 12 16 28
Soybean 5 8 13
Pasture 2 3 5

Bean 2 3 5

2.3.3. Crop Irrigation Requirement Modelling

Crop irrigation requirements (CIRs) are defined as the total amount of water, expressed in water
height (mm), applied to the crop throughout the entire irrigation season to fully satisfy the crop water
requirements. CIRs were computed in this study according to the FAO 56 approach [13] using the
IrrigRotation soil water balance simulation model [22].

The IrrigRotation (Figure 4) model simulates the soil water balance for crop rotations, performing
this simulation with a daily time step, and computes ETc according to the dual crop coefficient
approach proposed by [13,14,35], as defined in Equation (3):

ETc “ pKs ˆ Kcb ` Keq ˆ ETo (3)

where ETc is the crop evapotranspiration (mm¨day´1), Kcb is the basal crop coefficient, Ke is
the soil evaporation coefficient, Ks is the water stress coefficient and ETo is the reference crop
evapotranspiration (mm¨day´1). Ks describes the effect of water stress on crop transpiration. For soil
water-limiting conditions, Ks < 1, and when there is no soil water stress, Ks = 1. In this study, no
water stress is assumed when simulating the soil water balance. The Kcb-NDVI retrieved from EO data
provides Kcb values adjusted to the field conditions, already incorporating water stress, in contrast to
the standard tabulated Kcb values.
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ETo is computed from meteorological data using the FAO Penman–Monteith (FAO-PM)
method [13,14]. The required meteorological data variables include solar radiation (Rs) (MJ¨m´2¨day´1),
maximum air temperature (Tmax) (˝C), minimum air temperature (Tmin) (˝C), maximum relative humidity
(HRmax) (%), minimum relative humidity (RHmin) (%), average wind speed at a height of 2 m (u2) (m¨ s´1)
and precipitation (mm¨day´1).

The estimation of Ke requires a daily water balance computation for the calculation of the soil
water content remaining in the upper topsoil [13,14,35]. The soil water balance equation adopted in
IrrigRotation model is defined as [36]:

∆R “
`

P´ ETc ` Rg ´ Es ` Ac ´Dr
˘

∆t (4)

where ∆R is the variation of the volume of water stored in the root zone (mm), ∆t is the time step
(day), P is the precipitation (mm¨day´1), Rg is the irrigation (mm¨day´1), Ac is the capillary rise
(mm¨day´1), ETc is the crop evapotranspiration (mm¨day´1), Es is the runoff (mm¨day´1) and Dr is
the drainage and deep percolation (mm¨day´1). In this model, the soil profile is divided into three
different layers. In the top soil layer, soil evaporation occurs with plant transpiration. The second layer
corresponds to the portion of the soil that is occupied by the roots and where water is only withdrawn
by plant transpiration. The thickness of this layer increases during crop growth. The bottom layer lies
between the crop root depth Zr(t) on day t and the maximum root depth. The irrigation requirements
are calculated based on the values of the available soil water (ASW) in the second layer and on
the irrigation management options [22,37]. In the present study, an irrigation strategy of no water
restrictions was evaluated.

2.3.4. Basal Crop Coefficient and Crop Growth Stage Estimation from EO Data

In this study, the Kcb is determined empirically from the Kcb-NDVI relationships applied within
the Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural
Decision-Support (PLEIADeS) project using Equation (5) [10,38]:

Kcb “ 1.5625ˆ NDVI ´ 0.1 (5)

where NDVI is the mean value of a crop type for each acquisition date. The NDVI time series are used
to identify the lengths of crop growth stages (initial, crop development, mid-season and late-season)
and the corresponding Kcb coefficients for the initial, mid-season and late-season periods (Figure 5).
This methodology in several studies has shown good agreement between the estimated Kcb-NDVI
values and field measurements [10,21]. Kcb-NDVI is a simplified version, as more physically-based
approaches to estimate the crop water requirements from EO data are available [39]. A previous study
in the Lower Tagus Valley assessing the field applications for this methodology showed that it is
suitable for operational irrigation management [40].
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3. Results

3.1. NDVI and VV + VH Backscattering Time Series

The time series of mean NDVI and VV + VH backscattering for the selected crop types are shown
in Figure 6. As observed in this figure, the average VV backscatter is higher than the average VH
backscatter. The dynamic range of the VV backscatter is ´12.31 dB to ´5.49 dB, while the range of VH
backscatter is ´19.37 dB to ´11.97 dB. NDVI values range from 0.23 to 0.73.
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Figure 6. Mean NDVI (a) and gamma VV (b) and VH (c) backscattering time series for maize, soybean,
pasture and bean.

Because the crop parameters were estimated from the NDVI and VV + VH time series, it can be
seen in Figure 6 that the period covered by EO data corresponds to the second half of the growing
season. The lack of data for the beginning of the growing season prevents the estimation of the seasonal
crop irrigation requirements and its respective analysis. Due to this limitation, the focus of this study
was only on crop water requirement estimation.

The behavior of the Sentinel-1A signal was also analyzed as a function of the NDVI.
The backscattering coefficients were compared to the NDVI index calculated from SPOT-5 data with
acquisition dates close to those of the Sentinel-1A acquisitions (Table 5). Most of the image pairs used
have a gap of only one to two days, yet for the pair Sentinel-1A 19 April and SPOT-5 30 April, there
is a gap of 11 days. A square of the Pearson product-moment correlation coefficient (R2) of 79% was
obtained when comparing the VV backscatter with the NDVI values, while a slightly lower value of
approximately 71% was obtained when comparing the VH backscatter and NDVI values (Figure 7).
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Table 5. Image pairs used to compare optical and microwave observations.

Image/Month April May June July August

SPOT-5 30 15 4; 29 24 18; 28
Sentinel-1A 19 13 6; 30 24 17; 29

Based on this linear regression, two equations are proposed to compute the Kcb values for epochs
for which no optical images are available due to the existence of clouds. One equation uses the VV
backscatter instead of the NDVI values (Equation (6)), while the other uses the VH backscatter values
(Equation (7)):

KcbpVVq “ 0.116875ˆ γVVpdBq ` 1.757031 (6)

KcbpVHq “ 0.087813ˆ γVHpdBq ` 1.984063 (7)

where γi is the gamma-calibrated backscattering coefficient in dB obtained from Equation (2) for each
pixel of the SAR images.

Basal Crop Coefficient Estimation from EO Data

The Kcb values obtained from the Kcb-NDVI approach are listed in Table 6 for the four crops that
were used in this study. These values were used to estimate the crop water requirements in Section 3.3.
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Table 6. Kcb values obtained from the Kcb-NDVI approach.

Date DOY Maize Soybean Pasture Bean

30 April 120 0.9 0.7 0.9 1.0
5 May 125 0.9 0.6 0.9 1.0

10 May 130 0.8 0.6 0.9 1.0
15 May 135 0.8 0.5 0.8 1.0
20 May 140 0.8 0.5 0.8 0.9
25 May 145 0.7 0.5 0.7 0.8
4 June 155 0.6 0.5 0.7 0.7
9 June 160 0.6 0.5 0.6 0.7
14 June 165 0.5 0.5 0.6 0.6
19 June 170 0.5 0.5 0.6 0.6
24 June 175 0.5 0.4 0.5 0.5
29 June 180 0.4 0.4 0.5 0.5
7 July 185 0.4 0.4 0.5 0.5
9 July 190 0.4 0.4 0.5 0.5

14 July 195 0,4 0.4 0.5 0.4
19 July 200 0.4 0.4 0.5 0.4
24 July 205 0.3 0.3 0.4 0.4

8 August 220 0.3 0.4 0.4 0.4
13 August 225 0.3 0.4 0.4 0.3
18 August 230 0.3 0.3 0.4 0.3
28 August 240 0.3 0.3 0.5 0.3

7 September 250 0.3 0.3 0.5 0.3
12 September 255 0.3 0.4 0.5 0.3

3.2. Image Classification and Accuracy Assessment

Analyzing the results of the SVM and NN classifiers for April and May 2015 using the four image
combinations, the NN results exhibit, in general, a slight improvement compared to those from SVM
(Table 7). For these two acquisition dates (late season both for maize and soybean), the addition of
the gamma backscattering bands did not increase the overall accuracy. The highest value obtained for
the overall accuracy (87.5%) was obtained for the results of an NN classification using just the four
spectral bands of the SPOT-5 image for 15 May.

Table 7. Overall accuracy (OA) and kappa coefficient (KC) values for the 4 data combinations for
2 acquisition dates.

SPOT SPOT + VV SPOT + VH SPOT + Dual

Pair A 30 April (SPOT-5) and 19 April (Sentinel-1A)

SVM
OA (%) 78.3 78.2 78.3 78.3
KC (%) 57.4 57.2 57.3 57.1

NN
OA (%) 79.8 77.9 78.3 78.7
KC (%) 58.3 56.9 57.3 58.5

Pair B 15 May (SPOT-5) and 13 May (Sentinel-1A)

SVM
OA (%) 84.5 84.4 84.5 84.4
KC (%) 68.4 68.2 68.4 68.1

NN
OA (%) 87.5 85.7 81.6 83.1
KC (%) 73.2 70.4 64.3 66.3

Figure 8 shows the classification overall accuracies and kappa coefficients when SPOT-5 bands
are added cumulatively into the classification process. The accuracy peaked in early June (91% for the
overall accuracy and 81% for the kappa coefficient) considering just the first 7 SPOT-5 Take-5 images
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of the time series. No more images were added from late July, as the overall accuracies decreased and
stabilized their values to approximately 85%.
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The producer´s and user’s accuracies for the best multitemporal classification results are shown
in Figure 9. The producer’s accuracies were high for all crops, except for bean, while a low user’s
accuracy was verified for pasture. According to Figure 9 and Table 8, bean is slightly underestimated
in the map as maize, whereas pasture is considerably overestimated in the map, mainly as maize, but
also as soybean.
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Figure 9. Individual class producer’s (PA) and user’s (UA) accuracies (%) for the best result from a
multitemporal classification of the SPOT-5 bands using the neural network classifier.

Table 8. Confusion matrix for the best result from a multitemporal classification of the SPOT-5 bands
using the neural network classifier.

Ground Truth (pixels)

Crop Bean Maize Pasture Soybean Total
Bean 3580 309 85 15 3989

Maize 1027 71,145 68 1480 73,720
Pasture 23 2711 3643 227 6604

Soybean 4 3461 51 19,489 23,005
Total 4634 77,626 3847 21,211 107,318
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In Figure 10 is shown a detailed late-season map derived from the multitemporal classification of
a SPOT-5 Take-5 time series using the NN classifier including images from 30 April to 4 June.

Remote Sens. 2016, 8, 525 15 of 20 

 

In Figure 10 is shown a detailed late-season map derived from the multitemporal classification 
of a SPOT-5 Take-5 time series using the NN classifier including images from 30 April to 4 June. 

 

Figure 10. Extract of a map corresponding to the best result from a multitemporal classification of the 
SPOT-5 bands using the neural network classifier. 

3.3. Crop Water Requirement Modelling 

The ETo and ETc values for each crop type over the time series of this study are shown in  
Figure 11. 

 
Figure 11. Reference evapotranspiration (ETo) and crop evapotranspiration (ETc) for each crop (mm). 

The crop water requirements were calculated for the crop parcels identified in situ during the 
field work. The total volume of water consumed by the crops in the test area was estimated by 
multiplying the crop water requirements for the total area occupied by each crop type that is listed 
in Table 9. The water volume (m3·day−1) consumed by each crop is shown in Figure 12.  
  

Figure 10. Extract of a map corresponding to the best result from a multitemporal classification of the
SPOT-5 bands using the neural network classifier.

3.3. Crop Water Requirement Modelling

The ETo and ETc values for each crop type over the time series of this study are shown in Figure 11.
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The crop water requirements were calculated for the crop parcels identified in situ during the field
work. The total volume of water consumed by the crops in the test area was estimated by multiplying
the crop water requirements for the total area occupied by each crop type that is listed in Table 9.
The water volume (m3¨day´1) consumed by each crop is shown in Figure 12.
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Table 9. Total area of all of the parcels identified in the field for each crop type (ha).

Crop Type Total Area (ha)

Maize 1311.47
Soybean 302.87
Pasture 62.72

Bean 97.22

4. Discussion

In the NDVI time series in Figure 6, the maize crop decreased from the end of mid-season until
harvesting (senescence stage). This results from the fact that most of the maize parcels were sown in
September/October 2014, while the first EO acquisition date was 26 March 2015 (DOY 85). The same
trend was also observed in the VV + VH backscatter time series, indicating that both types of EO data
are correlated. Although only half of a crop growth cycle is retrieved from the EO data, the results are
promising because they demonstrate that this correlation is also possible for the late season period.

Bean parcels, sown in late February 2015, exhibited higher NDVI values in the beginning of the
curve corresponding to the leaf development stage (Figure 6). At the senescence stage, the bean crop
presented the same trend as that of maize. Because soybean was sown in December 2014, the lower
NDVI values in the beginning of the curve are explained by the crop growth stage (senescence) and by
the typical short height of soybean (approximately 0.45 m). Pasture showed a smoother curve for the
three time series, in agreement with the fact that pasture is always in the leaf development stage due
to it being cut several times during the growing season.

From the NDVI single-plot curves, it is possible to distinguish the two different stage plots for
maize (one leaf development stage plot and one flowering stage plot) from the remaining 26 senescence
stage plots. For bean, there is also a clear distinction among the three different phenological stages
(one leaf development plot, one fruit stage plot and three flowering stage plots). However, using the
VV + VH backscatter curves, it is not possible to distinguish among different stage crop plots because,
due to the lack of the northern part of the Sentinel-1A images for three epochs, 14 maize plots and two
bean plots were not considered for the analysis (the excluded plots included the leaf development and
the flowering stage plots for maize and the leaf development and fruit stage plots for bean).
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In Figure 7, a significant correlation is observed, especially between the VV backscatter and the NDVI
values, demonstrating the consistency of both optical and microwave time series and that optical data
affected by clouds can be replaced by microwave data. This overcomes one of the main limitations of these
type of studies, i.e., the reduced amount of EO data due to meteorological conditions. This result agrees
with those of [41], in which the potential of different TerraSAR-X incidence angles and polarizations
for mapping sugarcane harvests, where a high correlation between the radar signal and NDVI index,
calculated from SPOT-4/5, was observed. However, our results differ from those obtained during the
AgriSAR campaign [42], in which gamma VH backscatter correlated strongly with NDVI for canola and
field pea throughout the entire growth cycle. In AgriSAR, it was verified that among cereal crops, the
correlation with NDVI is much weaker when analyzed over the entire growth cycle, exhibiting only a
strong correlation for the initial vegetative growth stages until booting/inflorescence.

According to the overall accuracy and kappa coefficient values in Table 7, the NN classification
results were more accurate than those of the SVM classifier (~8% for the overall accuracy and ~15%
for the kappa coefficient). SVM applied in [43] for land cover characterization using MODIS time
series data was compared to two conventional non-parametric image classification algorithms: NN
and classification and regression trees (CART). SVM generated an overall accuracy of 80% compared
to 76% and 73% for NN and CART, respectively. However, some other studies reported that NN
outperformed SVM and decision trees [44–46].

The addition of the gamma backscattering bands to the SPOT-5 optical bands did not reveal any
improvement in the results of the SVM and NN classifications (Table 7). In a previous study [47]
of the Lower Tagus Valley, the use of a Sentinel-1A VH band together with the optical bands of a
Landsat-8/OLI image enabled only a slight increase in the overall accuracy (1.6%) and in the kappa
coefficient (2.5%) compared to the results of an SVM classification of the optical bands. Moreover, when
adding only the Sentinel-1A VV band or both SAR bands to the optical bands, the overall accuracies
and kappa coefficients were always lower than those obtained under the best band combination.
Moreover, in [48], the addition of backscatter intensity derived from Radarsat-2 images to the surface
reflectances derived from Landsat-8/OLI images for crop classification in Ukraine slightly improved
the overall classification accuracy from 1.5% to 4.0%.

The use of multitemporal C-band Sentinel-1A images along with multitemporal SPOT-5 Take-5
images for crop classification in Wako-Kungo revealed an improvement of the overall classification
accuracy when images are added cumulatively into the classification process. An overall accuracy of
91% (with a kappa coefficient of 81%) was obtained with a set of images from April 30 until June 4
(a total of 28 optical bands corresponding to the first 7 SPOT-5 Take-5 images of the time series), as
expected, because they were acquired during and a few weeks after the field work when the crops
were relatively vigorous. From that date on, classifications returned lower overall accuracies because
there was a substantial decay in the NDVI and VV + VH backscatter values, indicating that the cultures
are all in the last stage of senescence, having wilted and sometimes been already harvested.

In Table 8, one can observe a significant misclassification between maize and pasture for the
beginning of the time series, while a clear separation between soybean and bean seems to be evident,
as expected from the analysis of Figure 6. Pasture is the culture with the highest commission error
(approximately 45%), meaning that the area occupied by this crop in the final map is significantly
overestimated mainly due to misclassifications with maize, but also with soybean and bean. Bean has
the highest omission error (approximately 23%), meaning that the area occupied by this crop in the
final map is underestimated mainly due to misclassifications with maize.

ETo values present a small variability throughout the growing season, in agreement with the
air temperature and solar radiation values shown in Table 3, which present only small changes over
time (Figure 11). ETc values decayed with the decreased Kcb, consistent with the senescence stage
shown by most crops. Only crop water requirement values are presented because during the late
season, irrigation is interrupted for crop maturation. Additionally, in this study, the harvesting dates
were unknown for all crop types. Thus, it was not possible to distinguish between the late season
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and the off season. Hence, without a through characterization of the complete growing season and
of the cultural and irrigation practices in the region, it is difficult to accurately estimate the irrigation
water requirements. From the analysis of the calculated volumes (Figure 12), it is possible to verify the
decrease in the values over time, again due to the senescence stage shown by most crops.

Better classification results would have been obtained if EO data were available for the entire crop
growing season; thus, it would have been possible to estimate the crop irrigation requirements for the
Wako-Kungo irrigation perimeter.

5. Conclusions

The purpose of this study was to assess the potential of multitemporal and multisensor EO
data (Sentinel-1A and SPOT-5 Take-5) for crop parameter retrieval and crop type classification for
agricultural water management in Angola.

The integration of microwave data (Sentinel-1A) with optical data (SPOT-5 Take-5) did not reveal
any improvement in land cover mapping. From the two supervised classification methods used,
NN had the highest accuracy of approximately 88% (with a kappa coefficient of approximately 73%)
compared to that of the SVM classifier (85% and 68% for the overall accuracy and kappa coefficient,
respectively). Higher classification accuracies were expected when using SAR data; however, the
unavailability of images for more than half of the crop cycle (only the end of mid-season until harvesting
was available) did not permit a better discrimination among crops. A multitemporal NN classification
using just the first seven SPOT-5 Take-5 images produced a late mid-season map with an overall
accuracy of 91% (with a kappa index of 81%).

The improved temporal resolution of the SPOT-5 Take-5 images, used in this study to simulate
the ESA Sentinel-2 time series, is relevant for a better identification of the different crop growth cycle
stages that are often imperceptible when using more sporadic data. Higher temporal resolution
time series allow the retrieval of realistic values for Kcb instead of the standard values proposed by
FAO 56 [13] and, consequently, a better estimation of the crop’s irrigation requirements. However,
this aspect was not fully exploited for the same reason mentioned previously, i.e., the lack of EO
data for the complete growing season. Moreover, the consistency observed between the optical and
microwave time series for all crop types enables the replacement of optical data affected by clouds with
microwave data to increase the temporal resolution of the time series, providing a proxy measurement
of crop development.

Acknowledgments: This study was developed in the scope of the ESA Alcantara initiative project (Ref: 14-P13)
and the SPOT-5 Take-5 project (ID: 29142).

Author Contributions: Ana Navarro and João Rolim designed the study and did most of the writing. Irina Miguel
performed most of the pre-processing steps. João Catalão contributed to the results analysis and to the writing.
Joel Silva, Marco Painho and Zoltán Vekerdy reviewed the paper.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Waldner, F.; Lambert, M.-J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.;
Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved
from multi-sensor high-resolution time series. Remote Sens. 2015, 7, 10400–10424. [CrossRef]

2. Brisco, B.; Brown, R.J. Multi-date SAR/TM synergism for crop classification in Western Canada.
Photogramm. Eng. Remote Sens. 1995, 61, 1009–1014.

3. Le Hegarat-Mascle, S.; Quesney, A.; Vidal-Madjar, D. Land cover discrimination from multitemporal ERS
images and multispectral Landsat images: A study case in an agricultural area in France. Int. J. Remote Sens.
2000, 21, 435–456. [CrossRef]

4. Ban, Y. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops.
Can. J. Remote Sens. 2003, 29, 518–526. [CrossRef]

5. Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time
series. Remote Sens. Environ. 2005, 96, 352–365. [CrossRef]

http://dx.doi.org/10.3390/rs70810400
http://dx.doi.org/10.1080/014311600210678
http://dx.doi.org/10.5589/m03-014
http://dx.doi.org/10.1016/j.rse.2005.03.010


Remote Sens. 2016, 8, 525 19 of 20

6. Michael, J.H.; Ticehurst, C.J.; Lee, J.S.; Grunes, M.R.; Donald, G.E.; Henry, D. Integration of optical and radar
classifications for mapping pasture type in Western Australia. IEEE Trans. Geosci. Remote Sens. 2005, 43,
1665–1681.

7. McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic
Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm.
Remote Sens. 2009, 64, 434–449. [CrossRef]

8. FAO. Use of remote sensing techniques in irrigation and drainage. In Proceedings of the Expert Consultation
FAO-Cemagref, Montpellier, France, 2–4 November 1993; Food and Agriculture Organization United
Nations: Rome, Italy, 1993.

9. Schultz, G.A.; Engman, E.T. Remote Sensing in Hydrology and Water Management; Springer-Verlag Inc.:
New York, NY, USA, 2000.

10. D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Hanich, L.; Perdigão, A.;
Tapia, J.B.; Vuolo, F. Earth Observation products for operational irrigation management in the context of the
PLEIADeSproject. Agric. Water Manag. 2010, 98, 271–282. [CrossRef]

11. Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and drainage
paper No. 24; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977; p. 179.

12. Pereira, L.S.; Allen, R.G. Crop water requirements. In CIGR Handbook of Agricultural Engineering: Land and
Water Engineering; Van Lier, H., Pereira, L.S., Steiner, F., Eds.; American Society of Agricultural Engineers:
St. Joseph, MI, USA, 1999; Volume 1, pp. 213–262.

13. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water
Requirements; FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United
Nations: Rome, Italy, 1998.

14. Allen, R.G.; Wright, J.L.; Pruitt, W.O.; Pereira, L.S.; Jensen, M.E. Water requirements. In Design and Operation
of Farm Irrigation Systems, 2nd ed.; ASABE: St. Joseph, MI, USA, 2007; pp. 208–288.

15. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. Remote sensing surface energy balance
algorithm for land (SEBAL): 1 Formulation. J. Hydrol. 1998, 212–213, 198–212. [CrossRef]

16. Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.;
Robison, C.W. Satellite-based energy balance for mapping evapotranspiration with internalized calibration
(METRIC)—Applications. J. Irrig. Drain. E 2007, 133, 395–406. [CrossRef]

17. Eldeiry, A.A.; Waskom, R.M.; Elhaddad, A. Using remote sensing to estimate evapotranspiration of irrigated
crops under flood and sprinkler irrigation systems. Irrig. Drain. 2016, 65, 85–97. [CrossRef]

18. Neale, C.M.; Bausch, W.C.; Heerman, D.F. Development of reflectance-based crop coefficients for corn.
Trans. ASAE 1989, 32, 1891–1899. [CrossRef]

19. Calera Belmonte, A.; Jochum, A.M.; Cuesta Garía, A.; Montoro Rodríguez, A.; LópezFuster, P. Irrigation
management from space: Towards user-friendly products. Irrig. Drain. Syst. 2005, 19, 337–353. [CrossRef]

20. Osann Jochum, M.A.; Calera, A.; DEMETER partners. Operational space-assisted irrigation advisory services:
Overview of and lessons learned from the project DEMETER. In Proceedings of the Earth Observation for
Vegetation Monitoring and Water Management, Naples, Italy, 10–11 November 2005; D’Urso, G., Osann
Jochum, M.A., Moreno, J., Eds.; American Institute of Physics: Melville, NY, USA, 2006; pp. 3–13.

21. Toureiro, C.; Serralheiro, R.; Shahidian, S.; Sousa, A. Irrigation management with remote sensing: Evaluating
irrigation requirement for maize under Mediterranean climate condition. Agric. Water Manag. 2016. [CrossRef]

22. Rolim, J.; Teixeira, J. IrrigRotation, a time continuous soil water balance model. WSEAS Trans. Environ. Dev.
2008, 4, 577–587.

23. Diniz, A.C. Angola o Meio Físico e Potencialidades Agrárias; Instituto da Cooperação Portuguesa (ICP), Fundação
Portugal-África: Lisbon, Portugal, 1998.

24. Diniz, A.C.; Aguiar, F.B. Zonagem Agro-Ecológica de Angola, 2nd ed.; Instituto da Cooperação Portuguesa
(ICP), Fundação Portugal-África: Lisbon, Portugal, 1998.

25. Russo, A.T.; Oliveira, P.B.; Bisca, F.R. Reabilitação e modernização de aproveitamentos hidroagrícolas em
Angola. A engenharia dos aproveitamentos hidroagrícolas: Actualidade e desafios futuros. In Proceedings
of the Jornadas Técnicas APRH, LNEC, Lisbon, Portugal, 13–15 October 2011.

26. MDA (MacDonald, Dettwiler and Associates Ltd.). Sentinel-1 Product Definition; Ref: S1-RS-MDA-52-7440;
MacDonald, Dettwiler and Associates Ltd.: Richmond, BC, Canada, 2011.

27. Meier, U.; Bleiholder, H. Growth Stages of Mono-and Dicotyledonous Plants; Agrimedia GmbH: Clenze,
Germany, 2006.

http://dx.doi.org/10.1016/j.isprsjprs.2008.07.006
http://dx.doi.org/10.1016/j.agwat.2010.08.020
http://dx.doi.org/10.1016/S0022-1694(98)00253-4
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
http://dx.doi.org/10.1002/ird.1945
http://dx.doi.org/10.13031/2013.31240
http://dx.doi.org/10.1007/s10795-005-5197-x
http://dx.doi.org/10.1016/j.agwat.2016.02.010


Remote Sens. 2016, 8, 525 20 of 20

28. SASSCAL WeatherNet. Available online: http://www.sasscalweathernet.org/ (acessed on 2 December 2015).
29. Rouse, J.; Haas, R.; Schell, J.; Deering, D.; Harlan, J. Monitoring the Vernal Advancement of Retrogradation of

Natural Vegetation; Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974.
30. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. Available online: http://www.csie.

ntu.edu.tw/~{}cjlin/papers/libsvm.pdf (accessed on 25 May 2016).
31. Wu, T.-F.; Lin, C.-J.; Weng, R.C. Probability estimates for multi-class classification by pairwise coupling.

J. Mach. Learn. Res. 2004, 5, 975–1005.
32. Hsu, C.-W.; Chang, C.-C.; Lin., C.-J. A Practical Guide to Support Vector Classification; National Taiwan

University: Taipei, Taiwan, 2010.
33. Rumelhart, D.; Hinton, G.E.; Williams, R.J. Learning internal representation by error propagation. In Parallel

Distributed Processing; MIT Press: Cambridge, MA, USA, 1987; Volume 1, pp. 318–362.
34. Richards, J.A. Remote Sensing Digital Image Analysis; Springer-Verlag: Berlin, Germany, 1999.
35. Teixeira, J.L.; Fernando, R.M.; Pereira, L.S. RELREG: A model for real time irrigation scheduling.

In Crop-Water-Simulation Models in Practice; Pereira, L.S., van den Broek, B.J., Kabat, P., Allen, R.G., Eds.;
WageningenPers: Wageningen, The Netherlands, 1995; pp. 3–15.

36. Rolim, J.; Catalão, J.; Teixeira, J.L. The influence of different methods of interpolating spatial meteorological
data on calculated irrigation requirements. Appl. Eng. Agric. 2011, 27, 979–989. [CrossRef]

37. Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating
evaporation from soil and application extensions. J. Irrig. Drain. E 2005, 131, 2–13. [CrossRef]

38. D’Urso, G.; Calera Belmonte, A. Operative approaches to determine crop water requirements from Earth
Observation data: Methodologies and applications. In Proceedings of the Earth Observation for Vegetation
Monitoring and Watermanagement, Naples, Italy, 10–11 November 2005; D’Urso, G., OsannJochum, M.A.,
Moreno, J., Eds.; American Institute of Physics: Melville, NY, USA, 2006; pp. 14–25.

39. Vuolo, F.; D’Urso, G.; de Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services:
A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–95.
[CrossRef]

40. Vilar, P.; Navarro, A.; Rolim, J. Utilização de imagens de deteção remota para monitorização das culturas
e estimação das necessidades de rega. In Proceedings of the VIII Conferência de Cartografia e Geodesia,
Ordem dos Engenheiros, Lisbon, Portugal, 29–30 October 2015.

41. Baghdadi, N.; Cresson, R.; Todoroff, P.; Moinet, S. Multitemporal observations of sugarcane by TerraSAR-X
images. Sensors 2010, 10, 8899–8919. [CrossRef] [PubMed]

42. MDA (MacDonald, Dettwiler and Associates Ltd.). AgriSAR2009: Final Report—Vol. 1 Executive Summary;
Ref: RX-RP-53-1382-001; MacDonald, Dettwiler and Associates Ltd.: Richmond, BC, Canada, 2011.

43. Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for
the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70,
78–87. [CrossRef]

44. Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple classifier system for remote sensing image
classification: A review. Sensors 2012, 12, 4764–4792. [CrossRef] [PubMed]

45. Gallego, J.; Kravchenko, A.; Kussul, N.; Skakun, S.; Shelestov, A.; Grypych, Y. Efficiency assessment of
different approaches to crop classification based on satellite and ground observations. J. Autom. Inf. Sci.
2012, 44, 67–80. [CrossRef]

46. Gallego, F.J.; Kussul, N.; Skakun, S.; Kravchenko, O.; Shelestov, A.; Kussul, O. Efficiency assessment of using
satellite data for crop area estimation in Ukraine. Int. J. Appl. Earth Observ. Geoinf. 2014, 29, 22–30. [CrossRef]

47. Saraiva, C.; Navarro, A. Avaliação do potencial das imagens Sentinel-1 para identificação de culturas
agrícolas. In Proceedings of the VIII Conferência de Cartografia e Geodesia, Ordem dos Engenheiros, Lisbon,
Portugal, 29–30 October 2015.

48. Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency assessment of multitemporal
C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in
Ukraine. IEEE J. Sel. Top. Appl. 2015. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.sasscalweathernet.org/
http://www.csie.ntu.edu.tw/~{}cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~{}cjlin/papers/libsvm.pdf
http://dx.doi.org/10.13031/2013.40625
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)
http://dx.doi.org/10.1016/j.agwat.2014.08.004
http://dx.doi.org/10.3390/s101008899
http://www.ncbi.nlm.nih.gov/pubmed/22163387
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.001
http://dx.doi.org/10.3390/s120404764
http://www.ncbi.nlm.nih.gov/pubmed/22666057
http://dx.doi.org/10.1615/JAutomatInfScien.v44.i5.70
http://dx.doi.org/10.1016/j.jag.2013.12.013
http://dx.doi.org/10.1109/JSTARS.2015.2454297
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Materials and Methods 
	Test Area 
	Data and Field Work 
	Satellite Data and Preprocessing 
	Field Work 
	Meteorological Data 

	Method 
	NDVI and VV + VH Backscattering Time Series 
	Image Classification and Accuracy Assessment 
	Crop Irrigation Requirement Modelling 
	Basal Crop Coefficient and Crop Growth Stage Estimation from EO Data 


	Results 
	NDVI and VV + VH Backscattering Time Series 
	Image Classification and Accuracy Assessment 
	Crop Water Requirement Modelling 

	Discussion 
	Conclusions 

