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Abstract: Nitrogen is an essential nutrient element in crop photosynthesis and yield improvement.
Thus, it is urgent and important to accurately estimate the leaf nitrogen contents (LNC) of crops
for precision nitrogen management. Based on the correlation between LNC and reflectance spectra,
the hyperspectral LiDAR (HSL) system can determine three-dimensional structural parameters and
biochemical changes of crops. Thereby, HSL technology has been widely used to monitor the LNC
of crops at leaf and canopy levels. In addition, the laser-induced fluorescence (LIF) of chlorophyll,
related to the histological structure and physiological conditions of green plants, can also be utilized
to detect nutrient stress in crops. In this study, four regression algorithms, support vector machines
(SVMs), partial least squares (PLS) and two artificial neural networks (ANNs), back propagation
NNs (BP-NNs) and radial basic function NNs (RBF-NNs), were selected to estimate rice LNC in
booting and heading stages based on reflectance and LIF spectra. These four regression algorithms
were used for 36 input variables, including the reflectance spectral variables on 32 wavelengths and
four peaks of the LIF spectra. A feature weight algorithm was proposed to select different band
combinations for the LNC retrieval models. The determination coefficient (R2) and the root mean
square error (RMSE) of the retrieval models were utilized to compare their abilities of estimating the
rice LNC. The experimental results demonstrate that (I) these four regression methods are useful
for estimating rice LNC in the order of RBF-NNs > SVMs > BP-NNs > PLS; (II) The LIF data in
two forms, including peaks and indices, display potential in rice LNC retrieval, especially when
using the PLS regression (PLSR) model for the relationship of rice LNC with spectral variables. The
feature weighting algorithm is an effective and necessary method to determine appropriate band
combinations for rice LNC estimation.

Keywords: leaf nitrogen content; hyperspectral LiDAR; laser-induced fluorescence; feature weighting;
band combination

1. Introduction

Nitrogen is a crucial nutrient element for plant photosynthesis and it plays a key role in crop
yield improvement [1]. The leaf biochemical contents of crops, especially the leaf nitrogen contents
(LNC), was an important indicator of the photosynthetic status, which could be estimated to help
with illumination of the ecosystem changes over wide scales [2]. Thus, it is urgent and important for
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precision nitrogen management to accurately estimate the LNC of crops. Kergoat et al. [3] analyzed the
relationship between LNC and CO2 flux and concluded that LNC significantly influenced the canopy
light use efficiency and canopy photosynthesis rate of vegetation. In recent years, a real-time and
nondestructive technique of LNC monitoring of crops has been extensively investigated in the field
of remote sensing for precision nitrogen management [4–7]. These methods can overcome or reduce
the issues that passive remote sensing technologies have, such as data redundancy and the effect of
irradiation conditions.

Current multispectral remote sensing approaches can monitor the status of crops by analyzing the
relationship of canopy nitrogen content and chlorophyll-related spectral responses. However, these
passive systems are restricted by many factors, such as weather conditions and monitoring time [8]. To
overcome these disadvantages, it is necessary and urgent to develop an active system. Such a system,
hyperspectral LiDAR (HSL), can measure both canopy morphologic parameters and biochemical
changes using LNC-related reflectance spectra. Applications of HSL to monitor vegetation have been
widely conducted both at leaf and canopy levels [5,6]. However, Apostol et al. [9] pointed that the
reflectance-based remote sensing methods lack sensitivity for nitrogen detection in early growing
stages. Maxwell et al. [10] found that the yield of chlorophyll fluorescence (CF) was quantitatively
correlated with the plant photosynthetic system II (PS-II), which was very sensitive to stress from the
surrounding environment. During the process of PS-II, plant chloroplasts can harmlessly dissipate
residual light energy in the form of heat. Once this heat exceeds the needs of photosynthesis, it will
be released by the yield of CF, preventing the oxidative damage of chloroplasts [11]. Coupled with
a remote sensing method, the laser-induced fluorescence (LIF) is an attractive and early indicator in
detecting the nutrient stress of crops [12,13]. Thus, there is great potential in combining HSL and LIF
for crop detection. Although the reflectance spectra are related to the scattering and absorption of light
within leaves, the principle of LIF emission is different. Therefore, the challenge of LIF measurement
is to separate the apparent reflectance spectra from LIF in leaves [11]. In addition, the magnitude of
the time delay between the excitation laser pulse and LIF occurs in nanoseconds; thus, capturing LIF
before the deadline is another sufficiently complex challenge [14].

Several researchers focused on relating leaf spectra with several physiological and morphological
parameters, such as chlorophyll content [15], LNC [16] and canopy structure [17], which have been
proven to be highly correlated with spectral indices. These spectral indices are typically developed in
the forms of mathematical formulae. Compared with these spectral indices, LIF indices in blue, green,
red and far-red bands can provide significantly more information about the photosynthetic conversion
of plants under stress conditions. The study of Lichtenthaler et al. [18] showed that CF indices at
440 nm, 520 nm, 690 nm and 740 nm were highly sensitive to changes in growing and stress conditions.
More specifically, under the condition of high light exposure, drought and temperature stress, the
fluorescence ratio at blue (440 nm), red (690 nm) and far-red (740 nm) increased significantly [19]. In
our study, the LNC of rice was initially estimated based on reflectance spectra and then combined with
the LIF spectral data which was regarded as the extra input variable of LNC estimation models.

Several studies have been undertaken to estimate the nitrogen contents of plants using partial
least squares regression (PLSR) [20–22]. PLSR can be applied to reduce collinear spectral variables to a
few non-correlated latent variables (LVs) [23], thereby avoiding overfitting problems. Unlike PLSR,
artificial neural networks (ANNs), which are commonly used in remote sensing to predict vegetation
parameters and crop yields [24,25], inevitably suffer from overfitting problems. Moreover, the design
and implementation of ANNs require complex and time-consuming processes, and their performance
can be weakened when low-dimensional datasets are used [21]. Nonetheless, this approach is preferred
by many researchers because of its several advantages; for instance, ANNs require neither assumptions
concerning the statistical frequency distribution of data nor the measurement scales of the features used
in analysis [26,27]. The commonly used models and architectures of ANNs in regression processes are
back propagation neural networks (BP-NNs) and radial basic function neural networks (RBF-NNs),
which are both employed in this study to estimate the rice LNC. Compared with these methods,
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the performance of support vector machines (SVMs) seems to be better suited for remote sensing
applications than ANNs because of its greater generalizability [28,29]. SVMs reported by several
researchers can resolve the problem of overfitting associated with high-dimensional data. ANNs
mainly differ from SVMs in terms of the principle of risk minimization (RM) which aims to improve
the generalization performance. In using SVMs, an upper bound is minimized by the principle of
structural risk minimization (SRM) whereas in using ANNs, traditional empirical risk minimization
(ERM) is employed [30]. Recently, SVMs have been applied to estimate soil moisture [31], leaf area
index, leaf chlorophyll density [32] and leaf infections [33].

The objectives of this study are mainly (I) to model the relationship between the spectra data
(reflectance and LIF) and rice LNC by using four different regression algorithms that are commonly
used for data analysis in the field of remote sensing; and then (II) to assess the potential of reflectance
spectra combined with LIF spectra on the estimation of rice LNC in booting and heading stages.
Additionally, a process of band ranking and feature selection were conducted to optimize LNC-sensitive
band combinations before the LNC retrieval models were used.

2. Materials and Experiments

2.1. Reflectance Spectrum of Rice Leaf

Reflectance spectra of rice have been collected in the laboratory by a HSL system which has been
introduced in detail in the study of Du et al. [34]. The laser emission component of HSL is a wide-band
supercontinuum laser with a frequency of 20–40 kHz and a pulse duration of 1–2 ns. The diameter
of this laser spot is about 10 mm and the divergence angle is less than 3 mrad when the laser beam
is transmitted to the target. The wavelength range of this HSL system is from 538 nm to 910 nm.
Additionally, the multi-detector of this system has 32 channels with a spectral response being 300 nm
to 920 nm. By capturing a reference spectrum with the white panel (10 cm ˆ 10 cm, >99% reflectance,
Spectralon, Labsphere, Inc., North Sutton, NH, USA), several influential factors, such as the dark
current of the instrument, can be weakened. The reflectance spectrum RL for each measurement is
calculated as,

Rλ “ RL pλq{RR pλq (1)

where RL is the leaf radiance and RR is the reference standard radiance at wavelength λ.

2.2. Laser-Induced Fluorescence of Rice Leaf (LIF)

According to the previous studies [35,36], the LIF intensity of rice leaf can be presented as,

I f pλi, λeq “ ϕλ I0 pλeq α pλeq

ż

exp r´ pk1 ` k1q xsdx (2)

which depends on the absorption of the leaf chlorophyll α pλeq at the excitation wavelength λe. By
integrating over the whole leaf thickness x, I f pλi, λeq can be calculated with Equation (2) where I0 pλeq

is the intensity of the excitation wavelength, and λi is the fluorescence emission wavelength. The
parameter ϕλ represents the fluorescence efficiency. A LIF system [37] with a wavelength of 355 nm
was used in this work to analyze and monitor the fluorescence spectrum of the rice leaf. This excitation
laser source was generated by a 1064 nm Nd:YAG and its second and third harmonic generation. The
repetition frequency was 20 Hz. The output power was 1.5 mJ and the width per pulse was 5 ns. The
fluorescence spectrum range is 300 nm to 800 nm with a resolution of 0.5 nm, which is collected by
an ICCD camera. Peak fitting with four Gaussian models was conducted to derive the fluorescence
intensities at 450 nm, 510 nm, 685 nm, and 740 nm of the fluorescence spectrum. An example is shown
in Figure 1.
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Figure 1. Example of a fluorescence spectrum and its approximation by a Gaussian model. 
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second leaves from the rice top, which were collected on 16 July 2014 (in booting stage) and 1 August 
2014 (in heading stage). The samples size in each stage was 120 in this experiment. Six levels of urea 
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completely. The characteristic spectra of each sample, including the reflectance and LIF, were measured 
along the major axis of the leaf base at approximately one fourth, one half, and three fourths. At the same 
measurement position, five waveforms were collected. Thus, there are 15 waveforms were conducted in 
one leaf. The characteristic spectra of each sample were the average of these 15 waveforms. After spectra 
collection each sample was cut into pieces and then weighted as the fresh matters. Part of the fresh matter 
was put into a stove to dry at 105 °C for half an hour and then at 70 °C until it acquired the constant weight. 
The dry leaves were then used for LNC measurement with a chemical extraction solvent called the 
Kjeldahl analysis method [39]. Results were expressed as mg·nitrogen·g−1 leaf dry matter. 

3. Data Analysis 

A total of 36 input variables were used to model the relationship between the LNC and the 
spectra. Among them, 32 reflectance intensity values measured by a 32-channel HSL system [34] and 
four LIF peaks found in the fluorescence spectrum were included [37]. Several variables of these 32 
reflectance intensities might be poorly related to LNC and could thus be removed without decreasing 
the regression accuracy. By using an iteration process and a feature extraction method (Section 3.2), it is 
necessary and feasible to select useful band combinations for LNC estimation based on the determination 
coefficient R2. Furthermore, four LIF discrete peaks were used to model the relationship with rice LNC 
in two forms: one is four LIF peaks (around 450 nm, 510 nm, 685 nm and 740 nm) as direct inputs and 

Figure 1. Example of a fluorescence spectrum and its approximation by a Gaussian model.

2.3. Materials and the Design of Experiments

Experimentation in this study was conducted in Suizhou City, Hubei Province, China
(113˝13126.52”E, 31˝3910.94”N). This area is a part of the Jianghan Plain which belongs to the subtropical
monsoon zone. Its climate is mild and has a mean precipitation of 856 mm to 1070 mm and a
temperature of 15.5 ˝C [38]. The type of cultivated land is paddy soil which contains abundant organic
matters useful for plant growth. The rice variety was Yongyou 4949 which was seeded on 27 April
2014 and then transplanted into the experimental fields on 1 June 2014. Samples were the second
leaves from the rice top, which were collected on 16 July 2014 (in booting stage) and 1 August 2014 (in
heading stage). The samples size in each stage was 120 in this experiment. Six levels of urea fertilizer
(0 kg/ha, 189 kg/ha, 229.5 kg/ha, 270 kg/ha, 310.5 kg/ha, and 351 kg/ha) were applied. Identical
cultivation conditions were repeated in three fields. The fields were randomly designed and fertilized
as follows: the total fertilizer of 30% as basic fertilization, 20% in booting stage, 25% in tillering stage,
and 25% in heading stage.

In order to strictly control the laboratory conditions during the measurement, the laboratory was
constructed as a dark room with little light except for that coming from the computer. Additionally,
the incident angle of the laser beam was perpendicular to the leaf surface and kept constant along
with the measuring distance. Moreover, the laser spot with a diameter of 10 mm resided on the leaf
surface completely. The characteristic spectra of each sample, including the reflectance and LIF, were
measured along the major axis of the leaf base at approximately one fourth, one half, and three fourths.
At the same measurement position, five waveforms were collected. Thus, there are 15 waveforms
were conducted in one leaf. The characteristic spectra of each sample were the average of these
15 waveforms. After spectra collection each sample was cut into pieces and then weighted as the fresh
matters. Part of the fresh matter was put into a stove to dry at 105 ˝C for half an hour and then at
70 ˝C until it acquired the constant weight. The dry leaves were then used for LNC measurement
with a chemical extraction solvent called the Kjeldahl analysis method [39]. Results were expressed as
mg¨nitrogen¨g´1 leaf dry matter.

3. Data Analysis

A total of 36 input variables were used to model the relationship between the LNC and the
spectra. Among them, 32 reflectance intensity values measured by a 32-channel HSL system [34]
and four LIF peaks found in the fluorescence spectrum were included [37]. Several variables of
these 32 reflectance intensities might be poorly related to LNC and could thus be removed without
decreasing the regression accuracy. By using an iteration process and a feature extraction method
(Section 3.2), it is necessary and feasible to select useful band combinations for LNC estimation based
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on the determination coefficient R2. Furthermore, four LIF discrete peaks were used to model the
relationship with rice LNC in two forms: one is four LIF peaks (around 450 nm, 510 nm, 685 nm and
740 nm) as direct inputs and the other is two LIF indices (developed integrating bands of blue/red
and blue/far-red) such as the normalized difference vegetation index (NDVI) describe in Equation (3).
The latter was utilized to fuse more fluorescence properties into the regression models of rice LNC.

NDVI f luorescence “
Fblue ´ Fred or f ar_red

Fblue ` Fred or f ar_red
(3)

Datasets from each growing stage were randomly separated into two parts: 80% for the calibration
set and 20% for the validation set. During the process of data analysis, LNC was first associated with
spectral data, including HSL and LIF, and then the models that performed well (with a larger R2) in
LNC estimation would be tested based on the validation sets.

3.1. Regression Methods

3.1.1. Support Vector Machines (SVMs) Regression

According to Vapnick’s theory [40], SVM was actually to find a hyper-plane which could separate
all classes. The final function of this plane was described as Equation (4):

f pxq “ sign
”

ÿ

viK px, yq ` b
ı

(4)

K px, yq “ exp
´

´γ|x´ y|2
¯

(5)

where vi was the parameter which determines the support vector. Parameter b was a scalar threshold.
Instead of calculating a dot product, the kernel function (K(x, y)) was used in Equation (4). In this study,
the commonly used radial basis function (RBF, Equation (5)) was adopted as a kernel function of SVMs.
To use a SVM for regression problems, Vapnick then specified a limitation of the regression error by a ε

function. A small ε corresponded to a small regression error. The accuracy of SVM regression mainly
depended on optimizing the penalty parameter (c) and the kernel parameter (γ), which were selected
from the following sets: (´5, ´4, . . . , 0, . . . , 4, 5) and (´10, ´9, . . . , 0, . . . , 9, 10). The selection of
these two parameters was based on the gridding method. They were optimized successively until a
high R2 of estimation models was obtained.

3.1.2. Partial Least Squares (PLS)

PLS, based on principal component analysis (PCA), was first introduced by Wold et al. [41]. PLSR
was the PLS approach in its simplest form to relate two data matrices, namely the input variables
(X) and the responding variables (Y). PLSR could determine a linear relationship between X and
Y by decomposing and screening data matrices simultaneously with a few independent principal
components (PCs). These data matrices could be noisy, collinear, and incomplete.

Yλ “ a0 ` a1S1λ ` a2S2λ ` ...` anSnλ (6)

where an was the regression coefficient obtained by the linear regression of Snλ versus Yλ in a calibration
iteration process, and Snλ was the score of the nth principal component at spectral band λ. The basic
principle of PLSR will not be introduced in this paper, but further information can be found in
Wold S. et al. [23].

3.1.3. Artificial Neural Networks (ANNs)

In this study, feed forward neural networks (NNs) were used. The NNs consisted of an input
layer, a hidden layer and an output layer. The nodes in the input layer represented the reflectance
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and LIF spectrum gained by using the HSL and LIF system. The ANNs were created, trained, and
implemented by using the BP-NN and RBF-NN toolbox of Matlab software. The ANNs were trained
iteratively to minimize the mean square error (MSE) between the network outputs and the rice LNC. In
each BP-NN iteration, the network weights (wi) and biases (βi) were adjusted along with the gradient
decrease of the MSE. The transformation T in Equation (7) was a nonlinear activation function which
could process this iteration and provide an output value y of this network.

y “ T

˜

n
ÿ

i“1

wiXi ` βi

¸

(7)

In the present work, a minimum MSE of 10´3, a minimum gradient of 10´6 and a maximum
iteration number (epochs) of 50 were adopted. Meeting any of these conditions, the ANN’s training
process would stop. The spread of the radial basis network was 5. The larger the spread was, the
smoother the function approximation would be [30,42].

3.2. Re-Ranking Wavelength Method

According to the algorithm of Huang, R. and M. He [43], a feature weighting method could
remove the low correlation bands with the LNC. This method was based on a pairwise reparability
criterion and matrix analysis. There were mainly two steps to conduct. The first step was to assume
that the spectral data could be separated into m classes (c “ 1, 2, 3...m), and the criterion of subset D
was called the divergence of the cth class. Given that the first principal components contain the most
information of the data, the modified D was calculated by Equation (8), as follows:

D “

n
ÿ

i“1

αˆDpiq (8)

where α was the function related to the ith eigenvalue of the correlation matrix of the cth class. An
eigenvector matrix element of the correlation matrix of the cth class was Eλj. A significant coefficient
of the band λ corresponding to class c (denoted by ηcpλq) could be presented as follows:

ηc pλq “
1
n

n
ÿ

j“1

µj
`

Eλj
˘2
pj “ 1, 2, ..., nq (9)

The coefficient ηcpλqwas ranked in a descending sequence. Parameter µj represented a divergence
ratio of the jth channel (the number of the channel was n), which could be calculated using
Equation (10),

µj “
Dpjq

D
(10)

The second step of this method was to calculate the feature weight w pλq of wavelength λ. The
weight could be obtained by seeking the channel position pλ

c in the sequence ηcpλq according to
Equation (11)

w pλq “
1
n

m
ÿ

c“1

´

n´ pλ
c ` 1

¯

(11)

Spectral data was re-ranked based on feature weight w pλq. Then optimal channel combinations
were selected for the LNC estimation by comparing the determination coefficient R2.
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4. Results and Discussion

4.1. LNC Estimation Using Reflectance Spectra Based on Different Regression Methods

Figure 2 shows the coefficient of determination (R2) and the 1:1 relationship by using different
regression methods between the observed and estimated LNC based on reflectance spectra. The
maximum R2 of each method is plotted in the figures. The results show that these regression methods
are useful for estimating rice LNC. Generally, the R2 values of regression models with different methods
are greater than 0.7, that is, >0.9 with SVMs and RBF-NNs, >0.8 with BP-NNs and >0.7 with PLS.
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Figure 2. R2 of estimation models and the 1:1 relationship between the observed LNC and those
estimated using SVMs, ANNs (RBF-NN and BP-NN) and PLS in the (a) booting and (b) heading stages
based on the reflectance spectra.

Whether in booting or heading stages, SVM shows great potential in rice LNC estimation, whose
maximum R2 can be more than 0.9 (0.963 in the booting stage with RMSE = 0.093 and 0.932 in the
heading stage with RMSE = 0.1). The RMSE can be calculated by Equation (12), where Xobserved,i is the
measured LNC, Xmodeled,i is the retrieved LNC, and N is the number of samples.

RMSE “

g

f

f

f

e

N
ř

i“1

`

Xobserved,i ´ Xmodeled,i
˘2

n
(12)

Moreover, the estimated LNCs using the SVM at a low nitrogen content level (with a boundary
of about 3.3 mg/g) are located at the left of the 1:1 line, which means that SVMs model higher
values of LNC than the observed values. However, this phenomenon does not appear any more at a
high nitrogen content level, where, conversely, the estimated LNC is lower than the observed LNC.
Compared with the SVM method, the estimated LNC values modeled by RBF-NNs are dispersed over
both sides of the 1:1 line, and some estimated values are even located on the 1:1 line. These results
indicate that retrieval models with RBF-NNs are more reliable in LNC estimation. The estimated LNC
values regressed by BP-NNs are distributed separately on the 1:1 line, and they show a relatively
weaker relationship between the observed LNC and the estimated values, as does the PLS method.
Additionally, the maximum R2 values of regression models obtained by using BP-NNs (0.889 in
the booting stage and 0.856 in the heading stage) are lower than those obtained by using RBF-NNs
(R2 = 0.979 in the booting stage and R2 = 0.957 in the heading stage). The maximum R2 values of
PLS models in the booting and heading stages are 0.845 and 0.811, respectively. We find that the
reflectance spectrum becomes insensitive in predicting chlorophyll concentrations when the LNC
is high. This result is consistent with the findings of Eitel et al. [44], who fused the structural and
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biochemical information obtained from the green terrestrial LiDAR (light detection and ranging)
scanning (TLS) to estimate the nitrogen status of winter wheat. Erdle et al. [45] also compared the active
and passive sensors which were used to discriminate nitrogen status, and they found that a saturation
effect with the increase of the LNC exists. The saturation effects may be caused by the changes of the
photosynthetic photon flux density, by which several pigments of the plant can be affected.

In the study of Du et al. [34], SVMs were adopted to retrieve rice LNC, and they found that the
R2 values of LNC retrieval models could become greater than 0.7 when all wavelengths were used
as the input variables. In this study, all wavelengths were ranked on the basis of the corresponding
feature weights before the LNC estimation. Then some of these wavelengths were chosen as the model
inputs through an iteration process. For SVMs, RBF-NNs, BP-NNs and PLS, the retrieval models can
be used to estimate the LNC in the validation set at a high precision in the order of RBF-NNs > SVMs
> BP-NNs > PLS. Using SVMs for LNC retrieval, a kernel function called RBF was adopted, which
was also used in the RBF-NNs. This result indicated that SVMs and RBF-NNs with a RBF function
performed well in mapping rice LNC; thus, they are potentially effective methods in remote sensing
techniques for rice LNC monitoring. The result also indicated that a non-linear relationship might
exist between the LNC and reflectance spectra at different wavelengths. In addition, the running times
exhibited a different order. We analyzed the data with a computer with an Intel (R) Core (TM) i7-3770,
CPU @ 3.4 GHz (Lenovo, Wuhan, China). The RAM was 8 GB, and the system was Windows 7 (32 bit).
In particular, the SVM-based model required the longest running time (5358.2 s), and PLSR was the
fastest method (72.2 s). These results suggested how to find a suitable method for LNC estimation in
practice, such as the design of a portable instrument with high accuracy and the development of a
computer software program.

4.2. LNC Estimation Using Reflectance Spectrum and Reflectance + Fluorescence Spectrum

As mentioned in Section 2.3, the spectrum of LIF was closely correlated with the LNC and
the chlorophyll contents in green plants; thus, it could be an essential indicator for biochemistry
parameters. Fluorescence ratios (F740/F685 and F685/F525) were widely utilized for the estimation of
the nitrogen status and for the diagnosis of crop growth because of their simplicity in measurement
and interpretation [11,46]. However, studies of Yang Jian et al. [47] indicated that these fluorescence
ratios were insensitive to the rice LNC. On the contrary, the rice LNC was closely correlated with
the intensity of the fluorescence peaks (F450, F685 and F740). In this study, LIF spectra were utilized
to estimate rice LNC in two forms: one was four peaks at wavelengths of 450 nm, 610 nm, 685 nm
and 740 nm and the other was two indices calculated like the NDVI, such as (F450 ´ F685)/(F450 + F685)
and (F450 ´ F740)/(F450 + F740). The maximum R2 values and the wavelengths applied to the LNC
estimation with four regression algorithms in two growing stages were listed in Table 1.

The RBF-based SVM regression for LNC estimation relies on two parameters (c and γ), which
are selected through the grid screening method. This method is a long, time-consuming process, but
it can obtain a relatively good result in these two different stages. Namely, the SVM method can
yield a maximum R2 (> 0.9) and the RMSE is approximately 0.1 when using the reflectance spectra.
Combined with the fluorescence spectral data in the form of four peaks directly, the maximum R2 can
reach 0.966 in the booting stage and 0.937 in the heading stage; however, these values almost remain
unchanged when the reflectance-based spectrum is considered. In addition, both fluorescence indices
(F450 ´ F685)/(F450 + F685) and (F450 ´ F740)/(F450 + F740) have not improved the R2 and have even
decreased in the process of LNC estimation while SVMs are used. Apart from the fact that BP-NNs
have a lower R2 than SVMs and RBF-NNs, ANNs (BP-NNs and RBF-NNs) yield the same results which
are consistent with SVMs when they are used for rice LNC estimation on the basis of fluorescence data
in two stages.
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Table 1. The maximum R2 and the wavelengths applied to LNC estimation with four regression algorithms in two growing stages of rice.

Models Stages
Reflectance Reflectance + Fluorescence (Peaks or Index)

Rmax
2 RMSE Parameters Wavelengths (nm) Rmax

2 RMSE Parameters Wavelengths
(nm)

SVMs
booting 0.963 0.093

c 1 = 0.707 754 694 742 814 790 634 874 886
610 718 706 778 622 586 550

Peaks 3 0.966 0.092 c = 0.707 γ = 0.008 450 685
γ 2 = 1024 Index 4 - - - -

heading 0.93 0.104
c = 0.707 910 634 562 886 706

550 874 826 646
Peaks 0.937 0.099 c = 0.5 γ = 0.000977 685 740

γ = 1024 Index 0.899 0.103 c = 0.707 γ = 1024 450 & 740

BP-NNs
booting 0.889 0.115 l 5 = 10

682 766 754 742 826 862 634 898
598 610 718

Peaks 0.882 0.129
l = 10

510
Index 0.893 0.09 450 & 740

heading 0.856 0.099 l = 10
910 802 670 538 706 550 874 898

586 862 658 574
Peaks 0.853 0.117

l = 10
450 740

Index - - -

RBF-NNs
booting 0.979 0.052 s 6 = 5

682 766 850 754 742
826 814 790 898

Peaks 0.959 0.076
s = 5

685
Index 0.948 0.079 450 & 685

heading 0.957 0.063 s = 5 910 634 598 886 538 790
622 898 646 586

Peaks 0.918 0.068
s = 5

450 510
Index 0.927 0.071 450 & 685

PLS
booting 0.845 0.296 PCs 7 = 6

682 850 754 838 802
634 658 730 646

Peaks 0.832 0.279 PCs = 4 450 685
Index 0.887 0.26 PCs = 5 450 & 740

heading 0.811 0.203 PCs = 6 910 589 802 838 706 622 874 646
586 682 658 610 694

Peaks 0.867 0.196 PCs = 5 450 685
Index 0.874 0.194 PCs = 5 450 & 740

1,2 Parameters in order to optimize the accuracy in SVM regression; 3 The LIF peaks at 450 nm, 510 nm, 685 nm and 740 nm; 4 The LIF indices developed with blue, red, and far-red
bands using Equation (3); 5 The number of layers in BP-ANN analysis; 6 The spread of RBF in RBF-NN analysis; 7 The number of principal component (PCs) in PLSR analysis.
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PLSR is a method focused on modeling a linear relationship between the rice LNC and spectral
variables. Among these four regression algorithms, PLSR is the weakest method in the LNC estimation
of rice, and it exhibits a poorer performance, yielding R2 values of 0.845 and 0.811 in the booting and
heading stages, respectively. However, PLSR links rice LNC and the spectral inputs with a relatively
higher R2 by adding the fluorescence variables instead of using reflectance-based data only. In the
booting stage R2 = 0.845, RMSE = 0.296 by using reflectance spectra; and R2 = 0.887, RMSE = 0.26
by combining the LIF index (F450 and F740). In the heading stage R2 = 0.811, RMSE = 0.203 by using
reflectance spectra; and R2 = 0.874, RMSE = 0.194 by combining the LIF index (F450 and F740). Although
the model performance has been improved slightly in this way, these results suggest that the LIF
data, which is related to the chlorophyll contents in leaves, may be a reliable indicator to monitor the
photosynthesis of crops, especially the index developed by integrating fluorescence intensities of 450
and 740 nm.

4.3. Band Combinations Based on HSL Data for Rice LNC Estimation

Although more wavelengths can provide additional informative features about the crops’ status,
some of these wavelengths and input variables may be poorly correlated with rice LNC. Thus, the
selection of key inputs of LNC retrieval models is an essential task in the remote sensing of crops’
growing stages and biochemistry parameters, such as nitrogen. In Section 3.2, all of the 32 wavelengths
were re-ranked on the basis of their corresponding feature weights. Different band combinations
(wavelengths showed in Table 1) were then conducted to estimate the rice LNC. Figure 3 shows the
results obtained by using four regression methods, respectively, which indicate that for these methods,
the values of R2 generally exhibit an increasing trend while the number of bands increases. Figure 3
also illustrates that approximately less than 17 variables (bands) with an R2 of >0.7 are sufficient to
estimate the rice LNC. These 17 bands lie in the visible and near-infrared range (538 nm to 910 nm),
which composes the working wavelength of the HSL system. In some bands of this spectral range, the
light is strongly absorbed by chlorophyll in green plants, which is a sensitive indicator of the LNC.
More details about the bands’ range and their corresponding channels can be found in the study of
Du et al. [34].
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Furthermore, in these two stages, the higher values of R2 for a few bands (approximately 0.86
for two bands in the booting stage and, nearby, 0.9 for two bands in the heading stage) are gained by
SVMs. With an increase of the band numbers, the values of R2 will increase correspondingly but the
effect is not very evident. The solid lines in Figure 3 showed the increasing tendency. Compared with
other methods, SVMs showed higher stability on modeling the relationship between the LNC and the
reflectance spectra. Nevertheless, as discussed in Section 4.1, the modeling process of SVMs requires a
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long time to determine the optimal regression parameters. Therefore, SVMs are not a suitable choice
for spectra collection in the field experiments.

Consistent with the results of Xia Yao et al. [4], our study revealed that the most informative
feature wavelengths could vary in different growth stages and experimental conditions. Thus, further
works need to be conducted in selecting and explaining new wavelengths for various experiments
of LNC estimation, including different sites, experimental conditions and species. Xia Yao et al. [4]
and Tian, Y.C. et al. [48] revealed that LNC models exhibited better and more stable performances
in later stages than at the early stages. However, our study demonstrated that a better performance
of the LNC estimation could be obtained in the early stage by using different methods. Except for
BP-NNs, the R2 value in the later stage was lower than that in the early stage. The reason for such
a result was mainly because the metabolism process of green plants in later stages became complex
and nitrogen was greatly accumulated and remobilized by that point. These results were consistent
with those demonstrated by the studies of Novoa, R. et al. [49] and Hamid et al. [50]. They found
that the maximum nitrogen fertilization was accumulated in the tillering stage. Then, the metabolism
process of green plants remained complex until the heading stage, when this complexity became even
more obvious.

Obviously, the experiment in this study was conducted in the laboratory. Field measurements
would be helpful and significant for farmers to manage nitrogen fertilization efficiently in practice. In
the future, HSL and LIF data with high spatial and temporal resolutions might be collected from an
airborne or satellite platform, as the passive remote sensing technology has been applied in practice,
such as in the sensors MODIS and AVHRR.

5. Conclusions

Four different regression methods were applied to monitor rice LNC on the basis of reflectance
and fluorescence spectra. The R2 and RMSE were utilized to demonstrate the performance, advantages
and robustness of these algorithms for LNC estimation. Results demonstrated that these four methods
could be applied with high potential in rice LNC retrieval. SVMs and RBF-NNs exhibited a more
accurate and stable capability than PLS and BP-NNs in modeling LNC with the reflectance and LIF
spectra. LIF information, including fluorescence peaks and indices, was used as a potential indicator
for the monitoring of rice LNC. Given that the forms of LIF spectra used in this study were simple, and
the improvement of R2 in the LNC estimation models was not evident, more effective LIF index forms
for LNC estimation should be found. As this study was performed with just one species and under
strictly controlled laboratory conditions, limitations certainly existed regarding wider application in
other sites and varieties. Thus, a simulation research based on a physical radiative transfer model
or the principle of LIF of chlorophyll should be considered. In addition, except for the parametric
regression analysis, the non-parametric and even hybrid methods of both of them may be additional
good choices for LNC estimation in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

LNC Leaf Nitrogen Content
LIF Laser-induced Fluorescence
HSL Hyperspectral LiDAR
SVMs Support Vector Machines
PLSR Partial Least Squares Regression
PLS Partial Least Squares
ANNs Artificial Neural Networks
RBF-NNs Radial Basis Function Neural Networks
BP-NNs Back Propagation Neural Networks
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