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Abstract: The integration of the Global Positioning System (GPS) and the Inertial Navigation
System (INS) based on Real-time Kinematic (RTK) and Single Point Positioning (SPP) technology
have been applied as a powerful approach in kinematic positioning and attitude determination.
However, the accuracy of RTK and SPP based GPS/INS integration mode will degrade visibly
along with the increasing user-base distance and the quality of pseudo-range. In order to overcome
such weaknesses, the tightly coupled integration between GPS Precise Point Positioning (PPP) and
INS was proposed recently. Because of the rapid development of the multi-constellation Global
Navigation Satellite System (multi-GNSS), we introduce the multi-GNSS into the tightly coupled
integration of PPP and INS in this paper. Meanwhile, in order to weaken the impacts of the
GNSS observations with low quality and the inaccurate state model on the performance of the
multi-GNSS PPP/INS tightly coupled integration, the Helmert variance component estimation based
adaptive Kalman filter is employed in the algorithm implementation. Finally, a set of vehicle-borne
GPS + BeiDou + GLONASS and Micro-Electro-Mechanical-Systems (MEMS) INS data is analyzed
to evaluate the performance of such algorithm. The statistics indicate that the performance of the
multi-GNSS PPP/INS tightly coupled integration can be enhanced significantly in terms of both
position accuracy and convergence time.

Keywords: Global Navigation Satellite System (GNSS); Inertial Navigation System (INS);
Precise Point Positioning (PPP); Tightly Coupled Integration (TCI); Helmert Variance Component
Estimation (HVCE)

1. Introduction

Since the integration of the Global Positioning System (GPS) and the Inertial Navigation System
(INS) was proposed by Cox in 1978 [1], it has been used widely as an effective and precise tool
to obtain precise position, velocity, and attitude in many dynamic domains [2–4]. Especially, the
GPS Single Point Positioning (SPP) [5] based- and Real-time Kinematic (RTK) [6,7] based-GPS/INS
integration modes are applied successively because of the easy implementation of SPP and the high
accuracy of RTK [8–11] in recent decades. However, the SPP based integration system can only
provide meter level position accuracy [10,11], which can only be used in the regions without high
accuracy requirement. Although centimeter level position accuracy can be obtained by using RTK
based integration, its performance is highly influenced by the distance between users and base station
owing to the decreasing relationship of GPS observations for the station-pair [5]. For most of users,
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however, a system that can not only provide high accuracy location information, but also overcome
the disadvantages in RTK- and SPP- based integration system is urgently required, such as in mobile
mapping system and unmanned control system.

Prosperously, the rapid development of GPS Precise Point Positioning (PPP) technology [12]
and the ameliorating of satellite precise products [13] make such requirement possible. By adopting
the dual-frequency GPS pseudo-range and carrier-phase observations from a single receiver and the
satellite precise orbits and clocks provided by International Global Navigation Satellite System (GNSS)
Service (IGS), PPP can provide users centimeter position accuracy [12–14]. Due to such characters,
PPP has been used in some precise applications such as in displacement monitoring and kinematic
location determination [14–16]. In recent years, some researchers have focused on the integration of
GPS PPP and INS for the further performance improvement of PPP. According to previous studies,
the GPS PPP/INS tightly coupled integration can not only conquer the insufficiency of RTK- and
SPP- based integrations but also improve PPP’s performance in terms of the positioning accuracy and
aid GPS carrier-phase cycle slip detection [17–19].

However, as is well known, the performance of the PPP/INS tightly coupled integration is
determined visibly by that of PPP, especially in the challenging environments. Generally, the PPP
accuracy is mainly influenced by the available satellite numbers, the spatial geometry structure between
the station and satellites [20], and the quality of pseudo-range observations and the carrier-phase
continuity [21]. Usually, the observation quality and continuity have strong relationship with users’
observing condition and it is also hard to control. Therefore, many works were done by focusing on the
improvement of the spatial geometry structure in recent years [22]. Thanks to the rapid development of
the multi-constellation GNSS in recent years [23], the combination of the multi-GNSS data is considered
as a valid and direct way to improve significantly the accuracy of PPP [24–26]. According to the studies
of Jokinen et al. (2013) and Cai et al. (2013), much better positioning accuracy can be obtained by
using GPS and GLONASS data together in PPP calculation compared to that of using GPS only [24,25].
Besides, the study of Li et al. (2015) shows that the feasible performance improvement in terms of
position accuracy, availability, continuity, and convergence time of PPP can be obtained by using the
combination of GPS, GLONASS, BeiDou, and Galileo [26].

In order to further improve the performance of the GPS PPP/INS tightly coupled integration, the
multi-GNSS PPP/INS tightly coupled integration is employed and implemented in a unique Kalman
filter in this paper. Due to the reliable estimation accuracy of the Kalman filter [27] is impacted by
the accuracy of state model and the accuracy of observation’ a priori covariance [28–31], the Helmert
variance component estimation based adaptive Kalman filter [31–33] is applied in our study to weaken
the inappropriate the a priori covariance of observations and compensate the impact of the inaccurate
state model which can make the multi-GNSS PPP/INS integration solutions more robust. Then, a
set of vehicle-borne GPS, BeiDou, GLONASS, and INS data is processed and analyzed to assess the
performance of the multi-GNSS PPP/INS tightly coupled integration based on the adaptive Kalman
filter with Helmert variance component estimation.

2. Methods

In order to make the algorithm clear, the Kalman filter based multi-GNSS PPP/INS tightly coupled
integration model is introduced in detail at first. Then, the multi-GNSS PPP/INS tightly coupled
integration based on the adaptive Kalman filter of the Helmert variance component estimation will be
described particularly.

2.1. Multi-GNSS PPP/INS Tightly Coupled Integration Functions

As is well known, the Kalman filter has been widely used as an optimal estimator for state
parameter calculation in both GNSS and GNSS/INS integration system [28–30]. In this research,
the closed loop Kalman filter will be adopted to combine the multi-GNSS raw observations and
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INS navigation results. Briefly, the observation function model for Kalman filter can be given by
following equation

Lk “ HkXk `Zk ` ηk (1)

and the relative linear dynamic model of state parameters (Xk) can be given by following equation

Xk “ Φk,k´1Xk´1 ` εk (2)

with
E pηkq “ 0, Cov pηk,ηkq “ RZ,k

E pεkq “ 0, Cov pεk, εkq “ QX,k , Cov pηk, εkq “ 0
(3)

where Zk is the innovation vector at epoch k computed by making differences between the observed
GNSS and the predicted GNSS values computed by using the satellites information and INS updated
receiver information; Hk and Φk,k´1denote the state parameters’ designed matrix at epoch k and the
state transfer matrix from epoch k ´ 1 to epoch k, respectively; ηk and εk represent the observation
noise with the a priori covariance RZ,k and the process noise with the a priori covariance QX,k, and
both of them are considered to be Gaussian normal distribution; Cov p q is the covariance function.

For the ionospheric-free combination based GPS + BeiDou + GLONASS PPP/INS tightly coupled
integration, the innovation function consists of three parts as expressed as

Zk “

»

—

–

ZG
ZB
ZR

fi

ffi

fl

“

»

—

–

LG
LB
LR

fi

ffi

fl

´

»

—

–

LG
LB
LR

fi

ffi

fl

(4)

with the a priori covariance

RZ,k “ σ2
0 P´1

Z “

»

—

–

σ2
GP´1

Z,G 0 0
0 σ2

BP´1
Z,B 0

0 0 σ2
RP´1

Z,R

fi

ffi

fl

(5)

where the subscript G, B, R denote GPS, BeiDou, and GLONASS, respectively; σ2 and PZ are variance
of unit weight and weight matrix, assuming that the values of σ2

0 , σ2
G, σ2

B, and σ2
R are the same and all

of the observations are independent; RZ,k denotes the a priori variance matrix of innovation Zk; Lk and
Lk represent the observed- and the predicted- data of k GNSS system (k = G, B, R), and each of them
contains three types observations, namely pseudo-range (P) and carrier-phase (ϕ) of ionospheric-free
combination and Doppler (D), and generally the corresponding a priori variance values are 0.3 m,
0.003 m, and 0.1 m/s. Succinctly, the predicted LG, LB, and LR can be written as

LG “

»
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fi

ffi
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(6)
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(8)

where ||p q|| denotes the Euclidean norm; pr and pk represent receiver (r) position and satellite
(k = G, B, R) position; vr and vk are receiver velocity and satellite velocity; ∆ρP, ∆ρϕ, and ∆ρD
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denote the error corrections for pseudo-range, carrier-phase, and Doppler, respectively [12–14]; `p and
`v are the lever-arm corrections [34] of receiver position and receiver velocity, which are caused by the
inconsistent reference points of the GNSS receiver and Inertial Measurement Unit (IMU), expresses as

«

`p

`v

ff

“

«

Ce
nCn

b ι
b

´Ce
np
`

ωn
inˆ

˘

Cn
b ι

b ´Cn
b pι

bˆqωb
ibq

ff

(9)

where Cn
b is the transfer matrix to transform lever-arm values (ιb) in body frame (b-frame,

Forward-Right-Down) to navigation frame (n-frame, North-East-Down); Ce
n is used to transfer the

solutions from n-frame to Earth Centered Earth Fixed Frame (e-frame, World Geodesic System-84);ωn
in

andωb
ib denote the rotation angular rate of n-frame and the angular rate output from gyroscope with

respect to inertial frame (i-frame) projected in n-frame; ‘ˆ’ represents the cross-product operation.
Finally, the innovation vector of GPS + BeiDou + GLONASS can be obtained according to the

Equations (6)–(9). Meanwhile, the designed matrix Xk and state parameters Hk can be obtained by the
derivation operation of Equations (4), (6)–(8), and the concrete forms can be described as

Xk “
“

δp δv δθ δBg δBaδSg δSa δtr δTw δNIF
‰T (10)
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(13)

where the symbol δ denotes error; p, v, and θ represent position, velocity, and attitude, respectively;
B and S are the biases vector and scale factors vector of gyroscopes (g) and accelerometers (a);
tr “

”

t tB´G tR´G
.
t
ı

is receiver clock related parameter vector, here t and
.
t are basic receiver clock

offset and clock drift, tB´G and tR´G are the Inter-System Biases (ISB) of BeiDou and GLONASS with
respect to basic clock (GPS), and such ISBs are caused by the different signal structure and the different
hardware delay of each individual GNSS system in a same receiver and they are rather stable [26];
Tw is the wet component of the tropospheric zenith delay and NIF is the ionospheric-free combination
ambiguity vector; Hk

m,l represents the derived coefficient matrix of l parameter (l = p, v, θ . . . ) for m
(m = P, ϕ, D) observations in k (k = G, B, R) GNSS system.

Usually, the constant velocity (CV) model and constant accelerometer (CA) model are adopted to
describe the behavior of the position and velocity in the GNSS calculations [35]. For the GNSS/INS
integration system, another precise dynamic model is adopted to describe the behavior of the position,
velocity, and attitude with the expression [8,9]
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δ
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δ
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fl
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´ωn
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b δωb
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fi

ffi
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(14)

where ωn
en and ωn

ie denote the rotation angular rate of n-frame with respect to e-frame projected in
n-frame and the rotation angular rate of e-frame with respect to inertial frame (i-frame) projected
in n-frame; fb and gn are specific forces projected in b-frame from accelerometers and gravity vector
projected in n-frame.
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To enhance the INS performance during the GNSS outage periods visibly, the scale factors
and biases are also estimated along with other parameters [36] in the GNSS/INS tightly coupled
integration system. Generally, such errors in IMU data can be expressed as a constant part and a
random part [37,38]. The constant part can be compensated in the hardware calibration stage ordinarily,
but the random part cannot be calibrated accurately. Thus, it is usually modeled as the first order
Gauss-Markov procedure [27] and estimated by Kalman filter, and their discrete time models are
described by

δBk “ e´∆tk{τδBk´1 `wB,k´1 (15)

δSk “ e´∆tk{τδSk´1 `wS,k´1 (16)

where ∆tk and τ are interval of two adjacent IMU epochs and the correlation time determined by
IMU hardware accuracy level; w is the white driving noise with zero expectation and variance value
2σ2∆t{τ, here σ is the statistics square mean values of IMU hardware. In this paper, the σ values of the
gyroscope biases and scale factors are 0.5 ˝/h and 150 ppm/

?
h, and these of the accelerometer biases

and scale factors are 0.3 m/s2 and 150 ppm/
?

h.
Besides, some classic stochastic models as described in [27] are adopted to describe the behaviors

of the receiver clock offset and drift, the residual of the wet component of the tropospheric zenith delay
and the inter-system biases, and the ambiguity, which can be generally written as

δtk “ δtk´1 ` δ
.
tk´1 ` υt,k´1 (17)

δ
.
tk “ δ

.
tk´1 ` υ .

t,k´1 (18)

δISBk “ δISBk´1 ` υISB,k´1 (19)

δTw,k “ δTw,k´1 ` υTw,k´1 (20)

δNIF,k “ δNIF,k´1 ` υNIF,k´1 (21)

where υ is driving noise with different Power Spectral Density (PSD) value. It should be noticed
that these PSD are generally nonzero values except the ambiguity’s PSD. The process noise values of
Equations (17)–(21) are 0.19 m/

?
h, 0.37 m/s/

?
h, 0.005 m/

?
h, 0.01 m{

?
h and 0.0 m{

?
h, respectively.

According to the models mentioned above, the time update phase and measurement update
phase for the multi-GNSS PPP/INS tightly coupled integration can be finished by following equations

«

Xk.k´1
PX,k,k´1

ff

“

«

Φk,k´1Xk´1
Φk,k´1PX,k´1ΦT

k,k´1 `QX,k´1

ff

(22)

«

Xk
PX,k

ff

“

«

Xk,k´1 `Kk
`

Zk ´HkXk,k´1
˘

pI´KkqPX,k,k´1pI´Kkq
T
`KkRZ,kKT

k

ff

(23)

Kk “ PX,k,k´1HT
k

´

HkPX,k,k´1HT
k `RZ,k

¯

(24)

where Xk.k´1 and PX,k,k´1denote the predicted state parameter vector and the corresponding variance;
PX is the variance of state parameter vector; Kk and I are the gain matrix and unit matrix.

2.2. Helmert Variance Component Estimation Based Adaptive Kalman Filter

The observation quality of each individual GNSS is not the same due to the different signal
structures, frequencies, signal-to-noise ratios, and the signal transmission paths. It means that the
a priori variance value is different for each GNSS system, even for each satellite. Fortunately, the
variance for individual observations or for different grouped data can be estimated posteriorly by
the Helmert variance component estimation (HVCE) [31–33] based on the posterior measurement
residuals. In this research, we assume the component of each single GNSS system data is the same
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and the observations are divided into three groups (GPS, BeiDou, and GLONASS) at every epoch.
The corresponding residual groups can be obtained from Equations (1), (4), (23) and (24) with the
expression of

Vk “ HkXk ´Zk “

»

—

–

VG
VB
VR

fi

ffi

fl

“

»

—

–

HG
HB
HR

fi

ffi

fl

Xk ´

»

—

–

ZG
ZB
ZR

fi

ffi

fl

(25)

where Vk is the multi-GNSS’s posterior residual vector including the GPS residuals (VG), BeiDou
residuals (VB), and GLONASS residuals (VR). According to the HVCE theory, the formula for
estimating independent measurements’ components can be defined as

»

—

–

σ2
G

σ2
B

σ2
R

fi

ffi

fl

“

»

—

–

sG,G sG,B sG,R

sB,G sB,B sB,R

sR,G sR,B sR,R

fi

ffi

fl

´1 »

—

–

VT
GPZ,GVG

VT
BPZ,BVB

VT
RPZ,RVR

fi

ffi

fl

(26)

sk,k “ nk ´ 2tr
`

N´1Nk
˘

` tr
`

N´1NkN´1Nk
˘

sk,j “ sj,k “ tr
`

N´1NkN´1Nj
˘

N “ HTP´1
Z H, k, j “ pG, B, Rq

,

/

.

/

-

(27)

where ‘tr’ denotes the trace operation for matrix; n is the available GNSS satellite number. The values
in right part of Equation (26) can be calculated by Equations (5), (25) and (27). It is clear that the
function numbers are the same to the state parameters, which means the variance components can be
estimated exclusively. Then the estimated components are utilized to redefine the weight matrix in
Equation (5) by

PZ,k “
PZ,kc0

σ2
k

, k “ G, B, R

RZ “

»

—

–

σ2
GP´1

Z,G 0 0
0 σ2

BP´1
Z,B 0

0 0 σ2
RP´1

Z,R

fi

ffi

fl

(28)

where c0 is an arbitrary constant, which is usually selected from one of the estimated variance
components (σ2

G is used in this paper). The redefined weight matrix will be used to calculate the
refined covariance matrix RZ which will be applied for the state parameter re-estimation (Xk) in
Equations (23) and (24). Then, an iterative operation from Equations (23) and (24) to
Equations (26)–(28) will be worked at each GNSS epoch until the differences among σ2

G, σ2
B, and

σ2
R each other is less than a certain given threshold. Then, the GNSS system providing higher accuracy

observations will be entrusted bigger weight and have more effects on the state estimation via the
Kalman gain matrix in Equation (24).

Besides the effects of observations, the inaccurate state model can also influence the performance
of the PPP/INS integration. Such effect can be detected by the differences between re-estimated state
parameter Xk and that of the predicted value Xk.k´1 with the formulation of

∆rXk “
ˇ

ˇXk ´Xk.k´1
ˇ

ˇ {

b

tr
`

PX,k´1
˘

(29)

α “

$

’

’

&

’

’

%

1 ∆rXk ď c1
∆rXk
c1

´

c2´c1
c2´∆rXk

¯2
c1 ă ∆rXk ď c2

8 ∆rXk ą c2

(30)

where α is the adaptive factor; c1 “ 1.0 „ 1.5 and c2 “ 3.0 „ 4.5 are the threshold constants [31].
From Equations (26)–(30), the final form of the gain matrix can be written as

Kk “ αPX,k,k´1HT
k

´

HkαPX,k,k´1HT
k `RZ,k

¯

(31)
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and the corresponding measurement update phase of HVCE based adaptive Kalman filter can be
redefined as

«

Xk
PX,k

ff

“

«

Xk,k´1 `Kk
`

Zk ´HkXk,k´1
˘

pI´KkqPX,k,k´1pI´Kkq
T
`KkRZ,kKT

k

ff

(32)

where these symbols are the same as these given in Equation (23). From the above expressions, the
HVCE based adaptive Kalman filter will make the multi-GNSS PPP/INS integration solutions more
optimal. On one hand, the redefined posteriori RZ,k will allot bigger weight for better quality GNSS
system observations and limit the effect of the lower quality measurements. On the other hand, by
using the adaptive factor, the contribution of the current measurements and the previous epochs’ state
information can be adjusted.

2.3. Implementation of Multi-GNSS PPP/INS Tightly Coupled Integration

According to the algorithm description above, the implementation of the HVCE based adaptive
Kalman filter for the multi-GNSS PPP/INS tightly coupled integration is briefly depicted in Figure 1.
Sententiously, when the attitude alignment and initialization of the parameter vector and the
corresponding covariance matrix are finished, the INS mechanization, the Kalman time update phase,
and the GNSS availability checking functions will work. If the GNSS is unavailable, the whole system
will return to next IMU epoch for INS data processing. Otherwise, the Kalman measurement update
phase (including the HVCE and adaptive factor operation) will be activated. Then, the estimated
parameters will be output and feedback by a closed loop to compensate the IMU data hardware errors.
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To evaluate the application of the HVCE based adaptive Kalman filter in the multi-GNSS 
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Table 1. Parameters of the IMU sensors used in the data processing. 

IMU Grade Dimensions (mm) Weight (kg) Gyro Bias (°/h) Angular Random Walk °/√ࢎ
POS830 Navigation 190 × 191 × 183 9.0 0.005 0.002 
POS1100 MEMS 81.8 × 68 × 70 0.5 10.0 0.33 

3.1. Data Processing Strategies and Models  

In the data processing phase, the dual-frequency (GPS: L1/L2; GLONASS: L1/L2; BeiDou: B1/B2) 
GNSS pseudo-range, carrier-phase, Doppler, and increments of angular and velocity are used. The 
interval of GNSS observations and IMU data are 1.0 s and 0.005 s respectively. The satellites with 
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3. Experiment Data

To evaluate the application of the HVCE based adaptive Kalman filter in the multi-GNSS PPP/INS
tightly coupled integration, we analyzed a set of GPS, BeiDou, GLONASS, INS data collected by a
land vehicle test arranged around Wuhan City in China and equipped with POS1100 (Micro Electro
Mechanical Sensor grade IMU, MEMS), POS830 (navigation grade IMU) and Trimble NetR9 (geodetic
receiver) multi-GNSS receiver. The POS1100 and POS830 were provided by Wuhan MP Space Time
Technology Company (Wuhan, China). The corresponding main performance parameters of such
two IMU sensors are shown in Table 1.

Table 1. Parameters of the IMU sensors used in the data processing.

IMU Grade Dimensions (mm) Weight (kg) Gyro Bias (˝/h) Angular Random Walk ˝/
?

h

POS830 Navigation 190 ˆ 191 ˆ 183 9.0 0.005 0.002
POS1100 MEMS 81.8 ˆ 68 ˆ 70 0.5 10.0 0.33

3.1. Data Processing Strategies and Models

In the data processing phase, the dual-frequency (GPS: L1/L2; GLONASS: L1/L2; BeiDou:
B1/B2) GNSS pseudo-range, carrier-phase, Doppler, and increments of angular and velocity are used.
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The interval of GNSS observations and IMU data are 1.0 s and 0.005 s respectively. The satellites with
elevation angle less than 10˝ are eliminated. The precise satellite orbit and clock products from GNSS
Research Center (GRC), Wuhan University are adopted to weaken the effects of the satellite orbit and
clock on the GNSS precise positioning accuracy. Besides, the classical error models of the troposphere
delay, ionosphere delay, earth rotation effect, relativity effect, phase center offset (PCO) and variation
(PCV) of satellite and receiver, phase wind-up, solid and ocean tide, pole tide, etc. are used for the
GNSS observation errors correction [12,13,25,26]. The INS error compensation models such as the
coning correction model, the rotational and sculling motion models [8,9] are applied to remove the
influences of the axis motion of the IMU sensors on INS velocity and attitude update. In the PPP/INS
tightly coupled integration, the position, velocity, and attitude of receiver, the IMU biases and scale
factors, the receiver clock and drift, the wet component residual of the zenith tropospheric delay, the
inter-system biases and inter-frequency biases, and the ambiguities are estimated as parameters.

3.2. Dynamic Property and Satellites Availability

Figure 2 shows the velocities and attitudes of vehicle platform in the experiment. Accordingly, the
average velocities are about 13.4 m/s, 7.2 m/s, and 0.1 m/s in North, East, and Up directions,
respectively. From the attitudes results in heading component, it is mainly around 160˝ and 340˝,
which means the platform almost moved along the North-West to the South-East direction. When the
vehicle turned back to the next route, the heading angle changed frequently (around about 215,000 s,
23,000 s, 25,000 s, and 27,000 s). It is noted that the road is uneven according to the vertical velocity
(shown in purple box) and pitch attitude. The trajectory of this test is shown in the subfigure in Figure 3.
The distances are about 9.7 km along the East-West direction and about 3.5 km along the North-South
direction. The red point shown in the trajectory subfigure of Figure 3 is a GNSS partial outage, and the
corresponding available satellites number are depicted in the red dashed box of Figure 4.
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Figure 2. Velocities (top) and attitudes of land vehicle experiment on June 19, 2013 in Wuhan, China
(the middle subfigure shows roll and pitch components, and the bottom subfigure shows heading
direction); the purple box shows the enlarged velocity time series of Up direction in the top subfigure.

The sky plot of the GNSS satellites during the experiment is depicted in Figure 3. As is well known,
currently the constellation of GPS and GLONASS consists of Medium Earth Orbit (MEO) satellite only
and BeiDou constellation consists of MEO satellites (did not be tracked in this test), Geostationary
Earth Orbit (GEO) satellites (B01, B02, B03, and B04 in Figure 2), and Inclined Geo-Synchronous Orbit
(IGSO) satellites (B07, B08, and B10 in Figure 2). For this experiment arranged in China, BeiDou system
can provide better satellite continuity than both GPS and GLONASS own to its GEOs and IGSOs
constellation, which is shown clearly in Figure 4. Meanwhile, it is visible that there are more available
satellites in view while using the multi-GNSS observations compared to use GPS only, which can be
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obtained directly from the availability of GPS (G), BeiDou (B), GLONASS (R) satellites as shown in
Figure 4. More satellites will lead to better continuity and availability of satellite and better positioning
dilution of precision (PDOP), which can be seen clearly in Figure 5. According to the statistics, the
average satellite numbers for GPS, G + R, G + B, and G + R are 8.6, 14.3, 15.0, and 20.7, respectively
and the corresponding mean PDOP values are 2.1, 1.5, 1.7, and 1.3.Remote Sens. 2016, 8, 553 9 of 19 
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Figure 3. Sky-plot of available GPS (G) satellites (Blue), BeiDou (B) satellites (Red), and GLONASS
(R) satellites (Green) of land vehicle experiment on 19 June 2013 in Wuhan, China, respectively; the
lower-left subfigure is the trajectory of this test.

Remote Sens. 2016, 8, 553 9 of 19 

 

 
Figure 3. Sky-plot of available GPS (G) satellites (Blue), BeiDou (B) satellites (Red), and GLONASS 
(R) satellites (Green) of land vehicle experiment on 19 June 2013 in Wuhan, China, respectively; the 
lower-left subfigure is the trajectory of this test. 

 

Figure 4. Availability of GPS (defining as PRN < 35), BeiDou (defining as 35 < PRN < 70), and 
GLONASS (defining as 70 < PRN < 105) of land vehicle experiment on 19 June 2013 in Wuhan, China; 
the red dashed box shows a GNSS partial outage caused by users’ observing environment. 

 
Figure 5. Available satellite numbers (top) of GPS, G + R, G + B, and G + B + R, and the corresponding 
PDOP values (bottom) of the vehicle-borne experiment. 

20000 21500 23000 24500 26000 27500 29000
0

20

40

60

80

100

Second of Day (s)

Sa
te

ll
it

e 
P

R
N

 N
um

be
r

70<GLONASS<105
35<BeiDou<70

0<GPS<35

GNSS Partial outage

21,500 23,000 24,500 26,000 27,500

5

10

15

20

25

S
at

el
li

te
 N

um
b

er

 

 

20000 21500 23000 24500 26000 27500 29000
1

2

3

4

Second of Day(s)

P
D

O
P

 

 
GPS G+R G+B G+B+R

9.7 km 
3.5 

Figure 4. Availability of GPS (defining as PRN < 35), BeiDou (defining as 35 < PRN < 70), and
GLONASS (defining as 70 < PRN < 105) of land vehicle experiment on 19 June 2013 in Wuhan, China;
the red dashed box shows a GNSS partial outage caused by users’ observing environment.
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Figure 5. Available satellite numbers (top) of GPS, G + R, G + B, and G + B + R, and the corresponding
PDOP values (bottom) of the vehicle-borne experiment.

4. Validation of Multi-GNSSPPP/INS Tightly Coupled Integration

In order to give an evident expression for the method adopted in this paper, the whole data are
processed in three modes: the GNSS PPP mode, the Kalman filter based GNSS PPP/INS (POS1100)
tightly coupled integration mode, and the HVCE adaptive Kalman filter based mode, respectively.
To evaluate their performances, the multi-GNSS based RTK/INS (POS830) loose coupled integration
results are used as the reference values. In addition, the differences between the references values
and the solutions of such three modes in e-frame are transformed into North-East-Up (N, E, and U)
directions. Meanwhile, since the convergence time is needed, all of the first 15-min solutions were
neglected in calculating the Root Mean Square (RMS) values.

4.1. Dynamic Position Accuracy of Multi-GNSS PPP and PPP/INS Tightly Coupled Integration

As mentioned in the introduction part, the previous works about the influence of the multi-GNSS
on PPP mainly focused on the static mode [24–26]. Therefore, it is necessary to have a brief view
about the impact of the multi-GNSS on PPP performance in the dynamic mode. The corresponding
position offsets time series calculated by single-system (GPS) PPP, two-type-satellite-system (G + R
and G + B) PPP, and three-type-satellite-system (G + R + B) PPP are shown in Figure 6. The solutions
indicate that the multi-GNSS can enhance the performance of PPP by increasing available satellites
number and optimizing the spatial geodetic structure in term of PDOP (as shown in Figure 5), which
is very important for the dynamic applications in urban environments. According to the statistics in
top-subfigure of Figure 7, the RMSs have been improved from 21.9 cm, 27.7 cm, and 15.2 cm of GPS
PPP to 6.2 cm, 7.6 cm, and 6.2 cm of G + R + B PPP with the improving percentages of 71.6%, 72.7%,
and 59.3% in North, East, Up components, respectively. When adopt G + R or G + B data, similar
conclusions can also be obtained by comparing GPS PPP solutions and the average improvement for
position are about 37.0%, 45.2%, and 34.0% (Shown in Table 2). Besides the RMS, the continuity of PPP
can be also ameliorated appreciably. It is very useful, especially in the challenging environments (users’
observing condition leading to the satellite signals loss as the red dashed box shown in Figure 4).
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Figure 6. Position offsets time series in navigation frame (North-East-Up) calculated by making
differences between the references values and the PPP solutions using the single- (GPS) and the
multi-GNSS (G + R, G + B, and G + R + B) data.Remote Sens. 2016, 8, 553 11 of 19 

 

 
Figure 7. RMS of position offsets from PPP mode (top), the PPP/INS tightly coupled integration mode 
without (middle) and with the HVCE and adaptive schemes (bottom) using GPS, G + R, G + B, and 
G + R + B GNSS data. 

Table 2. Position improvement percentages of the PPP mode, the PPP/INS tightly coupled integration 
mode without and with the HVCE and adaptive schemes using G + R, G + B, and G + R + B data by 
comparing with the corresponding GPS based solutions. 

Items 
PPP PPP/INS HVCE Adaptive PPP/INS 

North East Up North East Up North East Up 
G + R (%) 24.8 35.8 45.1 24.2 30.3 57.5 39.6 49.6 69.5 
G + B (%) 49.1 54.6 23.0 46.9 45.1 58.9 51.4 59.5 68.8 

G + R + B (%) 71.6 72.7 59.3 60.4 53.7 68.7 64.3 58.7 70.6 

Then, the experiment data were computed in the PPP/INS tightly coupled integration mode by 
using GPS, G + R, G + B, and G + R + B data, respectively without HVCE adaptive schemes being 
applied. The corresponding time series of position offsets compared to the references values are 
depicted in Figure 8 and the RMS values are shown in middle subfigure of Figure 7. Significantly, 
comparing the results as shown in Figure 8 with these as shown in Figure 6, we can see that the 
position accuracy of PPP is improved visibly with the aids of the INS information. The average 
position ameliorating percentages are about 21.2%, 27.7%, and 16.5% in North, East, Up directions, 
respectively, except that about 1.3 cm position accuracy is lost in vertical when use GPS data. 
However, as shown in Table 3, such improvements seems to decrease from about 10 cm to less than 
1 cm along with the increasing the GNSS systems. It may be caused by the fact that the absolute 
position accuracy of the GNSS/INS integration depends heavily on the accuracy of GNSS. Hence, 
when three-type-satellite-system (G + R + B) GNSS data are adopted together, the G + R + B PPP can 
provide good enough position accuracy. In this case, even the INS information is utilized in G + R + 
B PPP calculations, the effectiveness would also be inconspicuous. Besides the improvements in 
continuity and accuracy, the enhancing in position stability is also remarkable. The main cause could 
be the strong constraint for the two adjacent epochs, which is due to the high interdependency of the 
INS information in short-term period. Besides, compared to the GPS based solutions, when use the 
multi-GNSS data (G + R, G + B, and G + R + B) the average improvement percentages are about 43.8%, 
43.0%, and 61.7% in the three position components (shown in Table 2). 

1 2 3 4

10

20

30

 

 

North East Up

1 2 3 4

10

20

30

P
os

it
io

n
 R

M
S

 (
cm

)

GPS G+R G+B G+R+B
0

10

20

30
PPP/INS TCI based on HVCE and adaptive

PPP

16.016.515.6

21.9
16.5

11.8

12.711.2 11.7
7.6 6.26.2

7.4 5.2

4.5

6.2

6.95.6

15.215.5 16.6

17.7

8.4

27.7

15.2

11.2
7.0

9.4 8.4
4.6

8.3 8.8
6.8

6.77.5
4.7

PPP/INS TCI

Figure 7. RMS of position offsets from PPP mode (top), the PPP/INS tightly coupled integration mode
without (middle) and with the HVCE and adaptive schemes (bottom) using GPS, G + R, G + B, and
G + R + B GNSS data.

Table 2. Position improvement percentages of the PPP mode, the PPP/INS tightly coupled integration
mode without and with the HVCE and adaptive schemes using G + R, G + B, and G + R + B data by
comparing with the corresponding GPS based solutions.

Items
PPP PPP/INS HVCE Adaptive PPP/INS

North East Up North East Up North East Up

G + R (%) 24.8 35.8 45.1 24.2 30.3 57.5 39.6 49.6 69.5
G + B (%) 49.1 54.6 23.0 46.9 45.1 58.9 51.4 59.5 68.8

G + R + B (%) 71.6 72.7 59.3 60.4 53.7 68.7 64.3 58.7 70.6

Then, the experiment data were computed in the PPP/INS tightly coupled integration mode
by using GPS, G + R, G + B, and G + R + B data, respectively without HVCE adaptive schemes
being applied. The corresponding time series of position offsets compared to the references
values are depicted in Figure 8 and the RMS values are shown in middle subfigure of Figure 7.
Significantly, comparing the results as shown in Figure 8 with these as shown in Figure 6, we can
see that the position accuracy of PPP is improved visibly with the aids of the INS information.
The average position ameliorating percentages are about 21.2%, 27.7%, and 16.5% in North, East,
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Up directions, respectively, except that about 1.3 cm position accuracy is lost in vertical when use
GPS data. However, as shown in Table 3, such improvements seems to decrease from about 10 cm
to less than 1 cm along with the increasing the GNSS systems. It may be caused by the fact that the
absolute position accuracy of the GNSS/INS integration depends heavily on the accuracy of GNSS.
Hence, when three-type-satellite-system (G + R + B) GNSS data are adopted together, the G + R + B
PPP can provide good enough position accuracy. In this case, even the INS information is utilized in
G + R + B PPP calculations, the effectiveness would also be inconspicuous. Besides the improvements
in continuity and accuracy, the enhancing in position stability is also remarkable. The main cause
could be the strong constraint for the two adjacent epochs, which is due to the high interdependency
of the INS information in short-term period. Besides, compared to the GPS based solutions, when use
the multi-GNSS data (G + R, G + B, and G + R + B) the average improvement percentages are about
43.8%, 43.0%, and 61.7% in the three position components (shown in Table 2).Remote Sens. 2016, 8, 553 12 of 19 
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Figure 8. Position offsets time series in navigation frame (North-East-Up) calculated by making
differences between the references and the solutions of the Kalman filter based PPP/INS tightly
coupled integration using the single- (GPS) and the multi-GNSS (G + R, G + B, and G + R + B) data.

Table 3. Improvements of the GNSS PPP/INS tightly coupled integration using GPS, G + R, G + B, and
G + R + B data by comparing with the corresponding PPP solutions.

Items GPS G + R G + B G + R + B

North +6.4 cm/+29.1% +4.7 cm/+28.5% +2.9 cm/+26.1% +0.1 cm/+0.9%
East +11.6 cm/+42.0% +6.6 cm/+37.0% +3.8 cm/+29.9% +0.1 cm/+1.9%
Up ´1.3 cm/´8.5% +1.3 cm/+15.9% +4.9 cm/+42.1% +1.0 cm/+16.5%

4.2. Position Aaccuracy of Multi-GNSS PPP/INS Tightly Coupled Integration Using HVCE Based Adaptive
Kalman Filter

As mentioned in the ”Methods” part, the observation quality for each individual GNSS system
maybe not exactly the same. Thus, there could be accuracy loss in the multi-GNSS PPP and/or the
multi-GNSS PPP/INS tightly coupled integration if there were no suitable methods for applications
to make the observation quality of each individual GNSS system to match the real situation as close
as possible. Shown in Figure 9 are the position offsets of the PPP/INS tightly coupled integration
of the Helmert variance component estimation based adaptive Kalman filter, and the corresponding
statistics are listed in bottom subfigure of Figure 7. Accordingly, the improvements mainly appear as
stability and accuracy. According to the results listed in Table 4, the maximum increase percentages are
20.4%, 24.8%, and 34.3% in North, East, and Up directions, respectively, and the average improvement
percentage values are 9.8%, 12.9%, and 21.8%. The position RMS of the HVEC based adaptive Kalman
filter G + R + B PPP/INS tightly coupled integration solutions are 5.6 cm, 6.9 cm, and 4.5 cm with the
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improvements of 10.0%, 7.2%, and 13.9% compared to the corresponding ones of the Kalman filter
based G + R + B PPP/INS integration. It means that when the HVEC based adaptive scheme is applied
to the multi-GNSS data process, appreciable improvements will be obtained. In addition, as listed in
Table 2, the solutions of the multi-GNSS is better than these solutions of GPS only. Meanwhile, by
comparing the two-type-satellite-system position solutions in Figures 6, 8 and 9, it is visible that the
results calculated by GPS and BeiDou data are a little better than those by GPS+GLONASS data.Remote Sens. 2016, 8, 553 13 of 19 
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Figure 9. Position offsets time series in navigation frame (North-East-Up) calculated by making
differences between the references and the solutions of the Helmert variance component based adaptive
Kalman filter based PPP/INS tightly coupled integration using the single- (GPS) and the multi-GNSS
(G + R, G + B, and G + R + B) data.

Table 4. Improvements of the GNSS PPP/INS tightly coupled integration with the aids of the Helmert
variance component estimation based adaptive Kalman filter by using GPS, G + R, G + B, and G + R + B data.

Items GPS G + R G + B G + R + B

North +0.0 cm/+0.1% +2.4 cm/+20.4% +0.7 cm/+8.6% +0.6 cm/+10.0%
East ´0.6 cm/´3.9% +2.8 cm/+24.8% +2.1 cm/+23.3% +0.5 cm/+ 7.2%
Up +1.4 cm/+8.4% +2.4 cm/+34.3% +2.1 cm/+30.5% +0.7 cm/+16.5%

4.3. Performance of Velocities and Attitudes

Besides the positions, the PPP/INS integration can also provide users high accuracy velocity and
attitude solutions. As plotted in Figure 10, the average RMSs of PPP velocity are 4.3 cm/s, 3.2 cm/s,
and 4.4 cm/s in three directions, and the differences of velocity solutions calculated by the single- and
the multi-GNSS data in PPP mode are less than 0.7 cm/s. Similarly, the results differences of the
PPP/INS tightly coupled integration using different GNSS data are less than 0.3 cm/s, except that
the velocity accuracy is enhanced to better than 1.1 cm/s, 1.1 cm/s, and 1.6 cm/s in North-East-Up
components, respectively. In addition, visibly, there are little improvements (less than 0.1 cm/s) in
velocity when using the HVCE based adaptive Kalman filter in the multi-GNSS PPP/INS tightly
coupled integration mode. For attitude solutions, similar conclusions can also be obtained from the
statistics as shown by Figure 11. The average RMS of attitudes are about 0.139˝, 0.099˝, and 0.675˝

in roll, pitch, and heading components with the differences no more than 0.009˝, 0.001˝, and 0.017˝.
It means that the enhancing values in velocity and attitude are limited no matter using the single- or
the multi-GNSS data in the PPP/INS tightly coupled integration mode with or without the HVCE
based adaptive scheme.
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Figure 10. RMS of velocity offsets from PPP mode (top), the PPP/INS tightly coupled integration
mode without (middle) and with the HVCE adaptive scheme (bottom) using GPS, G + R, G + B, and
G + R + B GNSS data.Remote Sens. 2016, 8, 553 14 of 19 
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Figure 11. RMS of attitude offsets from the PPP/INS tightly coupled integration mode without (top)
and with the HVCE based adaptive scheme (bottom) using GPS, G + R, G + B, and G + R + B GNSS data.

4.4. Multi-GNSS Observation Quality and Residuals

Generally, in the multi-GNSS data processing phase, the a priori variances of pseudo-range and
carrier-phase for each GNSS system are treated as the same (for example, 0.3 m for pseudo-range and
0.003 m for carrier-phase). Then, the elevation angle dependent formulation is applied to distinguish
the impacts of each satellite on the GNSS solutions. However, it will not be true because of the different
special signal structures adopted by different GNSS systems. By selecting the variance component of
GPS as an arbitrary constant in Equation (26), we obtained the weight of GPS, BeiDou, and GLONASS
by making quotients operation between the variance components of BeDou plus GLONASS and
these of GPS. Such variance values are estimated by the Helmert variance component estimation in
the PPP/INS tightly coupled integration mode by using G + R + B, G + R, and G + B observations.
According to the results as depicted in Figure 12, the influences of the three-type-satellite-system
or two-type-satellite-system on positioning change with time. These changings perform similar
trend along with the time-varying of the available GPS satellite numbers and PDOP (Figure 5).
Besides, it seems BeiDou system is allotted bigger weight than GLONASS in the data processing.
It may be one of the facts that the solutions calculated using GPS + BeiDou data is a little better than
that of using GPS+GLONASS data. In addition, the weight of BeiDou (or GLONASS) computed
by three type-satellite-system (G + R + B) is not completely consistent with these obtained from
two type-satellite-system (G + R or G + B, the red (green) line and the pink (deep green) line shown in
Figure 12). Meanwhile, bigger weight means the GNSS system provides better quality observations,
and theoretically, it is reflected by the observation residuals. Shown in Figure 13 are the observation
residuals of each available GPS, BeiDou, and GLONASS satellites of this experiment. Visibly, the
average values of pseudo-range and carrier-phase of BeiDou are 87 cm and 0.7 cm, which are smaller
than those of GPS (96 cm, 1.0 cm) or GLONASS (148 cm and 1.1 cm). In addition, the qualities of BeiDou
GEO satellites (PRN = 36~39, in Figure 13) are worse than those of IGSO satellites (PRN = 42~45).
It may be due to the lower accuracy of the BeiDou GEO orbit and clock products.
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Figure 12. Weight of GPS, BeiDou, and GLONASS calculated by the PPP/INS tightly coupled
integration using G + R + B, G + R, G + B data by the HVCE based adaptive Kalman filter; here, “GNSS
(X)” means the weight of “GNSS” calculated in the “X” PPP/INS integration mode.Remote Sens. 2016, 8, 553 15 of 19 
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Figure 13. RMS of attitude offsets from the PPP/INS tightly coupled integration mode without
(top) and with the HVCE based adaptive scheme (bottom) using GPS, G + R, G + B, and G + R + B
GNSS data: GPS (PRN < 35), BeiDou (35 < PRN < 70), and GLONASS (70 < PRN < 105).

4.5. Impacts of HVCE Based Adaptive Algorithm on The Convergence Performance of Multi-GNSS PPP/INS
Tightly Coupled Integration

As is well known, the limitation of the GPS PPP application in dynamic domains is that it needs
a long time for carrier-phase ambiguities to converge to their real values, which controls the high
accuracy position of PPP. In addition, such convergence time of PPP can be accessed in term of position
accuracy. According to a previous study [36], the convergence time of GPS PPP can be shortened
visibly with the help of INS. Based on this work, we will further evaluate the impacts of the HVCE
based adaptive scheme on the convergence of the multi-GNSS PPP/INS tightly coupled integration.

The whole data were simulated into nine GNSS outage periods every 15 min with the outage
time setting to 10 s. The simulation data were re-processed in the PPP/INS tightly coupled integration
mode with and without the HVCE based adaptive Kalman filter. The corresponding position offsets
compared to the references values are depicted in Figures 14 and 15. The position spikes as shown
in these two figures are caused mainly by the position drift character of INS and the bad initial
position accuracy of the PPP/INS tightly coupled integration. Firstly, only IMU data can be adopted to
update the position during the GNSS outage periods, and the IMU sensor errors will make the INS
updated positions drift along with the GNSS outage time. After each GNSS outage, uncertain time
is obligatory for either the PPP mode or the PPP/INS tightly coupled integration mode to converge
the GNSS ambiguities gradually. Usually, the INS position drifts during the GNSS outage periods
are random and cannot be improved but using the higher grade IMU sensors. However, the bad
initial position accuracy of PPP can be ameliorated by using the multi-GNSS data, INS, adaptive
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algorithm, etc. Significantly, the initialization performance of the PPP/INS tightly coupled integration
is improved visibly in terms of initial position accuracy and convergence time by applying the HVCE
based adaptive scheme. It may be due to the fact that the HVCE algorithm can provide more reasonable
weights for both good quality observations and low quality observations so that the good quality data
will play more important roles in PPP/INS computation and the effect of the low quality values will be
constrained. Meanwhile, according to the study in reference [21], there is strong relationship between
the observation quality and the PPP convergence time. Therefore, it will accelerate the convergence
and re-convergence time of the PPP/INS tightly coupled integration by distinguishing the good
quality observations from the whole observations. According to the statistics as shown by Figures 14
and 15, the HVCE adaptive based PPP/INS tightly coupled integration can provide the best initial
position accuracy with the values of 11.6 cm, 14.3 cm, and 14.0 cm in North, East, and Up components,
respectively. In general, the improvements in north and vertical components are more obvious than
that in east direction, and the maximum improvements in all of the three directions are about 40.0%,
7.6%, and 27.0%.Remote Sens. 2016, 8, 553 16 of 19 
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Figure 14. Position offsets time series of the Kalman filter based PPP/INS tightly coupled integration
using the multi-GNSS (G + R, G + B, and G + R + B) data in the GNSS outage simulation test.
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Figure 15. Position offsets time series of GNSS outage simulation test of the PPP/INS tightly coupled
integration using the HVCE based adaptive Kalman filter with the multi-GNSS (G + R, G + B, and
G + R + B) data.

5. Discussion

Based on the previous researches of the multi-GNSS PPP [24–26], the GPS PPP/INS tightly
coupled integration [17–19,36], and the Helmert variance component estimation based adaptive
Kalman filter [31,33], we did the research on the fusion of these algorithms together. According to
our results, it is clear that the position accuracy can be improved visibly by using the multi-GNSS
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data in both PPP only mode and the PPP/INS tightly coupled integration mode with and without
the HVCE based adaptive aiding compared to the GPS-only based solutions. Generally, the average
improvements in PPP mode are statistically about 48.5%, 54.3%, and 42.4% in North, East, and
Up directions (Table 2), respectively. Similar conclusions can also be obtained in the research of
Li et al. (2015) [26]. Compared to GPS based results, there are about 43.8%, 43.0%, and 61.7%
improvements in the multi-GNSS PPP/INS integration mode and about 51.8%, 55.9%, and 69.7%
improvements in the HVCE based adaptive aid the multi-GNSS PPP/INS integration mode (Table 2).

According the researches from Roesler and Martell (2009), Du (2010), Gao et al. (2015), INS can
enhance the performance of GPS PPP [18,19,36]. From our results shown in Table 3, the average
position improvements of the single-and the multi-GNSS PPP obtained by the INS augmentation are
about 21.2%, 27.7%, and 16.5% in three components. Furthermore, such average improvements will
increase to about 28.9%, 36.9%, and 33.3% while adopting the HVCE based adaptive Kalman filter.
Besides, about 9.8%, 12.9%, and 21.8% position enhancements in North, East, and vertical directions
can be achieved by comparing the solutions of the PPP/INS tightly coupled integration mode without
and with the HVCE based adaptive algorithm. Finally, we can obtain about 74.7%, 75.1%, and 70.8%
position improvements in North, East, and vertical components by applying the multi-GNSS, the INS,
and the Helmert variance component estimation based adaptive Kalman filter to GPS PPP together.
Meanwhile, according to the GNSS outage simulations results, the convergence performance can
also be improved by using the HVCE based adaptive Kalman filter in the PPP/INS tightly coupled
integration. However, these methods have little impacts on the accuracy enhancing of velocimetry and
attitude determination of the GPS PPP/INS tightly coupled integration.

6. Conclusions

In this paper, we applied the Helmert variance component estimation based adaptive Kalman
filter to the multi-GNSS PPP/INS tightly coupled integration system. By using such Kalman filter,
the problems that the a priori variances of different GNSS systems are not the same and the a priori
state model mismatches the real motion can be solved theoretically. The corresponding mathematic
algorithms of the multi-GNSS PPP/INS tightly coupled integration and the HVCE based adaptive
Kalman filter were introduced in detail in ”Methods” part. In order to evaluate its effectiveness, a
group of vehicle-borne GPS + BeiDou + GLONASS/INS data were collected, processed, and analyzed.

According to the results obtained in this paper, some conclusions are achieved. Firstly, the
accuracy, continuity, and reliability of the PPP position can be improved significantly by using the
multi-GNSS data, because the multi-GNSS can provide more available GNSS satellites and better
spatial geometry structure. The INS can also enhance the single- and the multi-GNSS PPP solutions
clearly by making strong constraint in the short-term period (especially for the two adjacent IMU
epochs). However, such enhancements seem to go decreasing along with the increasing GNSS
systems. Meanwhile, the position accuracy of the PPP/INS tightly coupled integration can be further
enhanced by applying the Helmert variance component estimation based adaptive Kalman filter in
both single- (GPS) and multi-GNSS (GPS/BeiDou/GLONASS) modes. Applying such method can
not only refine the experiential a priori variance of the GNSS observations, but also compensate the
accuracy of the statistical dynamic model for the state parameters and make the a priori variance
and state model keep consistent with real situation as close as possible. It will impact directly on the
estimation accuracy of the Kalman filter by altering the weight for different GNSS systems and by
adjusting the contribution of the previous state information.

Besides, the convergence performance of the PPP/INS tightly coupled integration can also be
improved visibly by applying the Helmert variance component estimation based adaptive filter.
Such character makes it possible that PPP can be used for high accuracy positioning in dynamic
domains with the help of the INS, the multi-GNSS, and the adaptive Kalman filter etc.
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