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Abstract: Water bodies are a fundamental element of urban ecosystems, and water mapping is critical
for urban and landscape planning and management. Remote sensing has increasingly been used
for water mapping in rural areas; however, when applied to urban areas, this spatially- explicit
approach is a challenging task due to the fact that the water bodies are often of a small size and
spectral confusion is common between water and the complex features in the urban environment.
Water indexes are the most common method of water extraction at the pixel level. More recently,
spectral mixture analysis (SMA) has been widely employed in analyzing the urban environment at
the subpixel level. The objective of this study is to develop an automatic subpixel water mapping
method (ASWM) which can achieve a high accuracy in urban areas. Specifically, we first apply
a water index for the automatic extraction of mixed land-water pixels, and the pure water pixels
that are generated in this process are exported as the final result. Secondly, the SMA technique is
applied to the mixed land-water pixels for water abundance estimation. As for obtaining the most
representative endmembers, we propose an adaptive iterative endmember selection method based
on the spatial similarity of adjacent ground surfaces. One classical water index method (the modified
normalized difference water index (MNDWI)), a pixel-level target detection method (constrained
energy minimization (CEM)), and two widely used SMA methods (fully constrained least squares
(FCLS) and multiple endmember spectral mixture analysis (MESMA)) were chosen for the water
mapping comparison in the experiments. The results indicate that the proposed ASWM was able to
detect water pixels more efficiency than other unsupervised water extraction methods, and the water
fractions estimated by the proposed ASWM method correspond closely to the reference fractions with
the slopes of 0.97, 1.02, 1.04, and 0.98 and the R-squared values of 0.9454, 0.9486, 0.9665, and 0.9607 in
regression analysis corresponding to different test regions. In the quantitative accuracy assessment,
the ASWM method shows the best performance in water mapping with the mean kappa coefficient
of 0.862, mean producer’s accuracy of 82.8%, and mean user’s accuracy of 91.8% for test regions.
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1. Introduction

Remote sensing has played an important role in various water studies, including flood
monitoring [1], water resource estimation [2,3], water quality assessment [4,5], and shoreline/coastline
extraction [6,7]. All of these applications are closely related to surface water mapping from remote
sensing images.

Optical remote sensing of water bodies is based on the difference in the spectral reflectance of land
and water. Water absorbs most of the energy in the near-infrared and middle-infrared wavelengths,
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whereas other surface materials have a higher reflectance in these wavelengths. To date, various water
body extraction algorithms for optical imagery have been developed, and they can be categorized into
four basic types: (1) hard classification [8,9]; (2) single-band thresholding [10,11]; (3) spectral water
indexes [12–16]; and (4) spectral unmixing [17–19]. The hard classification method can achieve high
precision in the water extraction, however, its algorithm is always complicated and time-consuming.
Single-band thresholding is the simplest water extraction method, it mainly depends on the reflectivity
difference of water and others in the infrared wave bands, and it can achieve high precision in most
cases. The two-band spectral water index method has the dual advantages of simplicity and high
precision; it is the most frequently used method for water extraction. Among these methods, the first
three groups of methods can only obtain water maps at the pixel level, which may not meet the precise
requirements of the practical applications in urban areas.

The spectral mixture analysis (SMA) can be used as a pre-processing step for water mapping at
sub-pixel resolution. Reliable SMA is critical for the post-sub-pixel mapping process [20,21]. However,
the typical processes of SMA consist of two steps—endmember determination and abundance
estimation [22]—and for each step, prior knowledge or manual intervention is usually required [23–25].
As all of the land-cover types are usually involved in a SMA analysis, this is too complicated when
surface water is the only land-cover type of concern. Several previous studies have simplified the SMA
process for subpixel water mapping, e.g., Sun et al. [26], and Ma et al. [27] proposed subpixel water
mapping methods based on MODIS 250-m data using a linear mixture model, and Pardo-Pascual et al. [7]
used the single-band intensity gradient to determine the shoreline position at a subpixel precision.
Sethre et al. [28] applied the IMAGINE Subpixel Classifier [29] to detect subpixel-scale ponds.

Even though several subpixel-level water body extraction methods have been proposed in the
literature, the research for urban regions is still few and the existing methods seem ineffective for
urban regions. In the highly heterogeneous urban environments, the water bodies, like narrow rivers
and small ponds, are distributed sparsely in a subpixel-scale size, and water extraction methods often
fail to distinguish the narrow rivers in urban areas because the mixed land-water pixels are defined by
the neighborhoods of the pure water pixels. The large amount of low albedo surfaces and building
shadows, which are easily confused with water bodies in urban areas, also bring a big challenge to
urban subpixel water mapping.

In this paper, an automatic subpixel water mapping method (ASWM) was introduced for use in urban
areas using Landsat 8 OLI data. The objectives of this research are: (1) to develop an automatic mixed
land-water pixel extraction technique utilizing a water index; (2) to derive the most representative
endmembers of both water and land by utilizing neighboring water pixels and the optimal
neighboring land pixels, respectively; and (3) to apply a linear unmixing model for subpixel water
fraction estimation.

The organization of this paper is structured as follows: Section 2 introduces the study areas and
datasets. Section 3 describes the proposed ASWM method in detail, including automated mixed
land-water pixel extraction, representative endmember selection, and water abundance estimation
by a linear unmixing method. In Section 4, the Landsat OLI data used in the experiments were
described, and the surface water mapping results and quantitative accuracy assessment are given.
Finally, a discussion and the conclusions are presented in Sections 5 and 6, respectively.

2. Study Areas and Data Sources

Four different cities in China were selected as study areas in order to include diverse water body
types and complex ground surface features. The selected cities were Beijing, Shanghai, Hangzhou,
and Guangzhou (see Figure 1). Beijing is the capital of China and has the second-largest population
of any city in China, just behind Shanghai. The selected scene is located in the center of Beijing. The
surface water bodies in this area are mostly clear water present as artificial lakes, ponds, and small
rivers. The Shanghai scene is located at Lujiazui, the city center of Shanghai, where the Huangpu
River and its small tributaries surround the area. In this area, it is difficult to distinguish the water
bodies because of the shadows caused by the high-rise buildings. The selected Hangzhou scene is
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located in the suburbs of the city, where there are abundant water bodies, including the Qiantang River
(which varies from clear to turbid) and its tributaries, and many small ponds. The Guangzhou scene is
surrounded by the Pearl River and its tributaries, and this area can be roughly divided into half urban
and half suburban areas. The water bodies in this area are of great diversity. The details of the study
areas and the corresponding Landsat 8 OLI images are summarized and listed in Table 1.

�����
N

Beijing

Shanghai

Hangzhou

Guangzhou

Nanhai lake

Zhonghai lake
Beihai	lake
Qianhai lakeHouhai lake

Yutan	lake

Wusong river

Huangpu	river

Qiantang	river

Zhujiang river

Figure 1. Study areas: Beijing, Shanghai, Hangzhou, and Guangzhou, China, illustrated in false-color
composite (RGB: bands 6, 5, 2) Landsat OLI images overlaid by the main water bodies of these areas.

Table 1. Details of the study areas.

Study Area Main Water Bodies (km2) Water Characteristics Acquisition Date
of OLI Image

Acquisition Date
of Reference Data

Beijing

Nanhai Lake (0.20)

Small and clear lakes 16 April 2015 13 April 2015

Zhonghai Lake (0.25)
Beihai Lake (0.35)

Qianhai Lake (0.08) Small and clear rivers
Houhai Lake (0.16)
Yutan Lake (0.40)

Shanghai Huangpu River (7.61) Moderately turbid river 10 April 2014 25 November 2014
Wusong River (0.38) Small and clear lake 22 November 2014

Hangzhou Qiantang River (28.75)
Clear lake

13 Decemebr 2014
24 December 2014

Moderately turbid and
turbid river 3 May 2014

Guangzhou Pearl River (7.47) Clear and moderately
turbid river 15 October 2014 5 October 2014

All of the OLI images used in this study were free of clouds, and atmospheric correction using
the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module was applied
to all of the selected scenes. The coastal/aerosol band (band 1 of OLI) and the cirrus band (band 9 of
OLI), which include little information under cloudless conditions, were removed and the remaining
six bands were used in the experiments. To obtain the reference data (true water fraction of each
pixel), fine spatial resolution images (<1 m) were acquired from Google EarthTM. The acquisition dates
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between the Google EarthTM images and the test images could be considered to be closely matched,
since the water bodies in urban areas are usually stable over a short time period, so the slight bias of
the surface water boundaries between the reference data and test images could be ignored. The “true”
boundaries of all the water bodies in the study areas were digitized manually on-screen and used for
the accuracy assessment of the water body subpixel mapping. The OLI images were registered to the
reference images using a first order polynomial with at least 20 ground control points in each scene,
with root-mean-square errors (RMSEs) of 0.23, 0.3, 0.22, and 0.29 pixels, corresponding to the test sites
of Beijing, Shanghai, Hangzhou, and Guangzhou, respectively.

3. Methodology

The ASWM approach can be divided into three major steps: (1) automated mixed land-water pixel
extraction; (2) determination of endmember spectra from neighboring pixels; and (3) linear SMA with
the endmember spectra, and the detailed process is shown in the flowchart of the ASWM approach
(see Figure 2).
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3.1. Automatic Mixed Land-Water Pixel Extraction

3.1.1. Normalized Difference Water Index (NDWI) Calculation

The NDWI is a quantitative spectral indicator designed for characterizing water bodies [12,13].
It has been widely used for water body extraction through enhancing the water information while
suppressing the land information in remote sensing imagery [30]. In this study, the NDWI is used for
obtaining the mixed land-water pixels through identifying those pixels which are neither enhanced nor
suppressed. A previous study showed that, for Landsat 8 OLI images, the green band and short-wave
infrared band 2 (SWIR-2) are the best option to calculate the NDWI [31].

NDWI “
ρGreen ´ ρSWIR2

ρGreen ` ρSWIR2
, (1)

where ρGreen and ρSWIR2 are the reflectance of the respective bands.

3.1.2. Initial Extraction of Water Pixels and Land Pixels

The Otsu algorithm [32] is utilized for the initial extraction of water pixels and land pixels.
The Otsu algorithm is used to select an optimal threshold for the separation by calculating the
maximum inter-class variance. The fundamental theorem of the Otsu algorithm can be described as
follows: the water index image value is assumed to be within the range [a, . . . , b], and the water index
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image can be divided into two parts by a threshold t. The inter-class variance σ2 can be calculated
as follows:

σ2 “ w0 pµ0 ´ µq2 `w1 pµ1 ´ µq2 , (2)

w0 ¨ µ0 `w1 ¨ µ1 “ µ (3)

where µ0, µ1, and µ are the mean values of the two parts and the whole of the image. w0 and w1 are
the percentage of each part of the image. From Equations (2) and (3), the variance σ2 and threshold
t can be simply expressed as follows. When σ2 reaches the maximum value, the corresponding t is
regarded as the optimal threshold.

t “ argmax
”

w0 ¨w1 ¨ pµ1 ´ µ0q
2
ı

(4)

The Ostu method was applied to the histogram of the NDWI image, thereby obtaining the initial
water and land pixels.

3.1.3. Automated Mixed Land-Water Pixel Extraction

To automatically extract mixed land-water pixels, the Ostu threshold is used as the start value to
search for mixed land-water pixels in the NDWI image histogram between the land threshold and the
water threshold (see Figure 3). Locally weighted scatter plot smoothing is first applied to the original
histogram curve [33]. The slopes of the histogram curve were then used as the discriminant criteria (see
Equation (6)). Considering that mixed pixels are much more easily confused with complex land-cover
types than pure water pixels, the slopes of the pure land threshold and pure water threshold are set
to 60˝ and 30˝, respectively. The corresponding tangential curvatures for pure land and pure water
selection can be calculated as follows:

|tanα|land,left ě 1.732, |tanα|water,right ě 0.5 (5)

When the curve points of each side first meet the criteria, the corresponding abscissa values are
selected as the land and water thresholds.
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3.1.4. Misclassification Removal by Simple Post-Processing

Therefore, in this step, two rules are built for misclassification removal as follows:

ρblue ´ ρgreen ď 0, ρSWIR1 ď 0.2 (6)
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where ρ represents the reflectance of the respective bands. The extracted mixed land-water pixels
obtained in the previous steps are eliminated if they do not satisfy the above rules. A map of the mixed
land-water pixels is then produced (Figure 4).

N

Figure 4. Maps showing the processing of the mixed land-water pixel extraction. (a) Landsat OLI
true-color composite (RGB: bands 4, 3, 2) image of the Shanghai test site; (b) true water boundaries
acquired from the high spatial resolution Google EarthTM images; and (c) mixed land-water pixels
derived from the water index.

3.2. Endmember Determination by Local Spatial Information

Under the assumption that the endmember signature of a target pixel should be similar to the
spatially-adjacent pixels, based on spatial dependence theory, the endmembers of land and water
are determined by the neighboring pure land or pure water pixels within a certain distance (see
Figure 5). Through experimental comparison, the optimal window size is set to 9 ˆ 9. Based on the
previous process described in Section 3.1, the image is divided into three parts: water pixels, land
pixels, and mixed land-water pixels. The local window traverses the test image centered at each mixed
pixel. The spectrum of the land endmember is then determined by selecting the most representative
land pixel by adaptive iteration in the local window, and the spectrum of the water endmember is
determined by calculating an average of the water pixels in the local window.

3.3. Linear Unmixing Method

In the linear spectral mixture analysis (LSMA) model, the spectrum of a mixed pixel is assumed to
be a linear combination of the endmembers’ spectra weighted by the area coverage of each endmember
within the pixel. In this study, the relationship between the reflectivity of a mixed pixel and its
endmembers is also considered to be linear. The constraints were imposed that the sum of the
endmembers’ abundances should be equal to one and the range of the endmember abundance should
be limited to between 0 and 1. The unmixing equations can then be defined as follows:

ρm “ ρl ˆ fl ` ρw ˆ fw ` σ, (7)

fl ` fw “ 1, 0 ď fl , fw ď 1 (8)

where ρl , ρw, and ρm are the reflectance values of pure land, pure water, and mixed pixels, respectively.
fl and fw are the respective abundances of the land and water endmembers, and σ is the residual error.
According to Equations (7) and (8), the water abundance can be derived as follows:

fw “
ρm ´ ρl ´ σ

ρw ´ ρl
, (9)
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subject to: ∥∥∥σ
∥∥∥

1
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1
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c

D
´
∥∥∥σ

∥∥∥
1

¯

, (10)

In Equation (9), ρm is the known spectrum of the mixed land-water pixel; ρw is the average spectrum
of the water pixels in the local window; and ρl is determined by selecting the optimal candidate land
pixel in the local window, with the constraint of the minimal L1 norm

∥∥∥σ
∥∥∥

1
. Meanwhile, the minimal L1

norm
∥∥∥σ

∥∥∥
1

should meet the requirement of being less than a threshold, which means that the selected
optimal endmembers are representative of the true fractions in the mixed pixel. In this study, the threshold

is automatically set according to the statistics of the
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∥∥∥
1

sets, and E
´
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1

¯

and
c

D
´
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1

¯

in Equation

(10) represent the average value and mean-square error of the
∥∥∥σ

∥∥∥
1

sets, respectively.

N

Figure 5. Endmember determination based on adjacent pixels (Landsat OLI true-color composite
(RGB: bands 4, 3, 2)).

3.4. Accuracy Assessment

A quantitative accuracy evaluation is often difficult to implement for the subpixel mapping of
surface features because of the difficulty of obtaining a reference map and the lack of quantitative
accuracy evaluation indexes. In this study, the water boundaries were extracted from high-precision
Google EarthTM images and applied for the reference water fraction map generation, using a
10 ˆ 10 grids for each pixel for the test images (see Figure 5). As for reducing the impact of the
geometric error between the Landsat OLI images and the reference images, a 90 ˆ 90 m2 sampling size
(3 ˆ 3 pixels size for the OLI image) was adopted for both the reference water maps and the estimated
water maps [34–37].

Spectral unmixing is considered to be a soft classification method, and its output result is the
percentage of ground features in each pixel. According to previous research, three types of error
measurements are widely used in subpixel classification [34,35,38,39], i.e., RMSE, mean absolute error
(MAE), and systematic error (SE). The RMSE and MAE are both used to quantify the relative error of
the estimated surface abundance at the pixel level, and the SE indicates the overall trend of the over-
or under-estimation. However, all these accuracy evaluation indexes have their limits and cannot
comprehensively reflect subpixel classification accuracy. Therefore, the producer’s accuracy, user’s
accuracy, and Kappa coefficient expressions were modified to fit with subpixel classification evaluation.
The five accuracy measurements can be calculated as follows:
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Pro.acc “
N
ÿ

i“1

Min t fi pre f q , fi pestiqu
L

N
ÿ
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ÿ
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’

’
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Kappa “ pPo´ Pcq
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p1´ Pcq

Pc “
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ř

i“1
fi pestiqˆ
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ř

i“1
fi pre f q`

nm
ř

i“1
p1´ fi pestiqqˆ

nm
ř

i“1
p1´ fi pre f qq

L

pnmˆ nmq

Po “
nm
ř

i“1
pMin t fi pre f q , fi pestiqu ` 1´Max t fi pre f q , fi pestiquq

L
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, (13)

RMSE “

g

f

f

e

1
nm

nm
ÿ

i“1

p fi pestiq´ fi pre f qq2 (14)

SE “
1

nm

nm
ÿ

i“1

p fi pestiq´ fi pre f qq (15)

where Pro.acc and Ues.acc represent the producer’s accuracy and user’s accuracy, respectively. fi(ref) and
fi(esti) are the water abundance of the pixels of the reference image and estimated image, respectively,
and i is the location of each pixel. N and M are the number of mixed land-water pixels in the reference
image and estimated image, respectively, and nm is the number of pixels in the whole image.

4. Results

4.1. Water Maps from the Different Methods

To compare the accuracy of ASWM with other methods, both the MNDWI water index method
(selecting the optimal water thresholds manually according to the reference image) and a target
detection method of constrained energy minimization (CEM) were applied for water extraction at
the pixel level [13]. Furthermore, two SMA methods were also adopted for water extraction at the
subpixel level in comparison with the proposed method. The first SMA method was the traditional
fully-constrained least squares (FCLS) unmixing method [40]. When implementing this method, a pixel
purity index (PPI) was first applied to the test images for pure ground feature spectra collection by
referencing the high-resolution Google EarthTM images. The endmember spectra (including vegetation,
impervious, soil, and water) were then acquired by averaging the spectra of each ground feature,
and finally applied to FCLS for water fraction estimation. The second subpixel method was multiple
endmember spectral mixture analysis (MESMA) [41,42]. In this study, with the PPI image computation
and Google EarthTM reference images, four endmember libraries of vegetation, impervious, soil, and
water were built. Specifically, as the area of soil in urban areas is not usually large, and the spectral
characteristics of soil and impervious surfaces are similar in some cases [34], the spectral libraries of
soil and impervious were combined into one endmember library, and the corresponding endmember
was called the impervious (soil) endmember. Meanwhile, considering that a considerable amount of
shade exists in urban areas, a photometric shade endmember with a uniform reflectance of zero in all
bands was introduced to account for the variation in illumination [43]. Then, with the endmember
libraries of water, vegetation, impervious (soil), and photometric shade, hundreds of four-endmember
models for each test image were built for the MESMA application.

In the first column of Figure 6, the reference maps (Figure 6a,d,g,j) were shown. In the second
column of Figure 6, the water maps by the best-performing contrast method are displayed, i.e., the
water mapping results of MNDWI for study area 1—Beijing (Figure 6b), MESMA for study area
2—Shanghai (Figure 6e), FCLS for study area 3—Hangzhou (Figure 6h), and CEM for study area
4—Guangzhou (Figure 6k). In the last column of Figure 6, the water mapping results of the ASWM
method for the different study areas (Figure 6c,f,i,l) were shown. From a visual inspection, it can be
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seen that MNDWI and CEM (Figure 6b,k) omit the small water bodies in most cases, while FCLS and
MESMA (Figure 6e,h) often misclassify land surface as water. The visual inspection of the surface
water maps derived from ASWM suggests that ASWM is able to extract urban water maps with a
higher degree of accuracy.

 

Test site    Reference water maps Contrast methods  Proposed ASWM 

Beijing 

 
         (a)        (b) (c) 

Shanghai 

 
         (d)         (e) (f) 

Hangzhou 

 
         (g)         (h) (i) 

Guangzhou 

 
         (j) 

Water fraction: 
         (k)

 

(l) 
 

 

N

N

N

N

Figure 6. Comparison of the water mapping results. First row: reference map, water map from the
contrast method of MNDWI, and result of the proposed method of Beijing corresponding to (a–c);
Second row, reference map, water map from the contrast method of MESMA, and result of the proposed
method of Shanghai corresponding to (d–f); Third row, reference map, water map from the contrast
method of FCLS, and result of the proposed method of Hangzhou corresponding to (g–i); Fourth row,
reference map, water map from the contrast method of CEM, and result of the proposed method of
Guangzhou corresponding to (j–l).
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4.2. Accuracy Assessment Results

A scatterplot was first used to examine the correlation between the reference water fractions and
the estimated water fractions obtained by the proposed ASWM. As shown in Figure 7, the regression
models all have a near 1:1 relationship, supported by their slopes of 0.97, 1.02, 1.04, and 0.98, R-squared
values of 0.9454, 0.9486, 0.9665, and 0.9607, and intercepts of´0.01,´0.06,´0.07, and´0.01, for Beijing,
Shanghai, Hangzhou, and Guangzhou, respectively.
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Five different accuracy assessment approaches (see Section 3.4) are used to compare the
water mapping accuracies: user’s accuracy, producer’s accuracy, kappa coefficient, RMSE, and SE.
The quantitative subpixel accuracy assessment results are summarized in Table 2, where it is clear that
the proposed ASWM method significantly outperforms the other four related methods. A close look
at the conditional kappa coefficient for each test site reveals that the water maps derived from the
proposed method have the highest consistency with the reference water map. The water maps of the
four methods are the least accurate in the Beijing test site. For the other test sites, only ASWM has the
ability to achieve producer’s accuracy and user’s accuracy values of higher than 84%. The accuracy
assessment indicates that ASWM is able to provide an adequate estimation of the surface water fraction,
with an average RMSE of 0.055 and an average SE of ´0.007. Negative SE values are observed for all
the study areas, suggesting that the overall water abundance is under-estimated.
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Table 2. Summary of the classification accuracy of the four classifiers by study area.

Study Area
Kappa Producer’s Accuracy

ASWM MNDWI FCLS MESMA CEM ASWM MNDWI FCLS MESMA CEM

Beijing 0.739 0.610 0.279 0.088 0.211 70.2% 45.8% 87.3% 88.2% 45.22%
Shanghai 0.899 0.842 0.548 0.837 0.442 84.8% 74.3% 88.3% 77.4% 788.0%

Hangzhou 0.900 0.890 0.754 0.855 0.881 88.7% 82.7% 89.1% 49.8% 84.3%
Guangzhou 0.910 0.817 0.729 0.739 0.797 87.5% 71.4% 91.4% 85.9% 79.0%

User’s accuracy RMSE

ASWM MNDWI FCLS MESMA CEM ASWM MNDWI FCLS MESMA CEM

Beijing 79.2% 93.7% 18.4% 0.7% 16.0% 0.046 0.059 0.110 0.209 0.157
Shanghai 97.2% 99.6% 54.8% 93.6% 36.1% 0.045 0.067 0.085 0.058 0.078

Hangzhou 93.3% 99.5% 71.2% 97.5% 94.4% 0.050 0.098 0.110 0.189 0.065
Guangzhou 97.3% 99.2% 64.6% 69.0% 85.9% 0.080 0.085 0.093 0.084 0.151

SE

ASWM MNDWI FCLS MESMA CEM

Beijing ´0.002 ´0.011 0.079 0.186 0.039
Shanghai ´0.009 ´0.017 0.041 ´0.012 0.078

Hangzhou ´0.004 ´0.023 0.034 ´0.100 ´0.010
Guangzhou ´0.014 ´0.025 0.037 0.022 ´0.011
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5. Discussion

5.1. Mixed Land-Water Pixel Extraction

This study has explored the extraction of mixed land-water pixels by the use of a water index.
Compared to the traditional FCLS and MESMA approaches, the proposed ASWM unmixing algorithm
applied only to mixed pixels achieved an improvement both in accuracy and efficiency in the
abundance estimation in the experiments.

According to the histogram of the water index image, the mixed land-water pixels always locate
between the pure land and pure water thresholds. Therefore, the histogram slopes were used to find
these mixed pixels. In order to ensure that the mixed pixels are correctly extracted from the remote
sensing images, the pure land and pure water thresholds should locate at the furthest left and right
of the bottom of the water index histogram. Accounting for the fact that mixed pixels are mainly
confused with land pixels, in the experiments, the thresholds of the slopes of pure water and pure land
were set to 30˝ and 60˝, respectively (Figure 3), and the corresponding thresholds of the absolute value
of the tangential curvature were 0.5 and 1.732. The following unmixing process also has the effect of
removing the wrongly extracted pixels by estimating the water abundances which approach 0 for the
wrongly-extracted land pixels, and 100% for the wrongly-extracted water pixels. Several experiments
were implemented using images from urban areas of China, and the corresponding kappa coefficient
range from 0.8825–0.8994 showed that the final water abundance map result only varied a little when
the slope thresholds were set to 30˝ and 60˝ for both pure water and pure land extraction, respectively.

In the mixed land-water pixel extraction process, some post-processing is implemented to improve
the accuracy of the extraction. In this study, the difference between the green and blue bands was used
to eliminate dark building pixels (Equation (6)). This approach works for two main reasons: (1) as
a result of eutrophication and human disturbance in urban areas, surface water always contains higher
amounts of chlorophyll and suspended sediment. In addition, with the strong spatial dependence
between water and vegetation, the vegetation may be the key component of the land-water pixels.
Taken together, these factors mean that the green band reflectance of mixed land-water pixels is higher
than the blue band [44–46]; and (2) most of the land covers that show higher reflectance in the green
band than the blue band possess similar characteristics to water bodies; however, dark buildings
present opposite characteristics. Above all, the green band and the blue band can be used for separation
of mixed land-water pixels and dark buildings. However, it is noticeable that this approach ignores
the situation of the mixed land-water pixels being made up of water and dark buildings. Therefore,
to retain all of the mixed land-water pixels in the elimination of dark building pixels, although the
threshold of Equation (6) was set to zero in this study, the threshold can also be set a little higher than
zero to prevent the mixed land-water pixels being removed. In summary, the post-processing aims to
remove those land pixels that are clearly distinct from the mixed land-water pixels.

5.2. Endmember Selection

The key to successful SMA is appropriate endmember selection [24,47]. Accounting for spectral
variability when selecting endmembers has been pointed out to be an important factor that can severely
affect the accuracy of subpixel land-cover fractions [22,35,36,48]. Traditional SMA uses an invariant set
of endmembers and it is quite limited when mapping heterogeneous urban surfaces [49–51]. MESMA
takes the spectral heterogeneity in urban environments into account, and this method divides the
image into several classes, where the classes are subdivided into sub-classes as much as possible.
The experimental results showed that MESMA achieved better results than the traditional SMA, but
consumed more time.

Above all, two issues should be stressed here. Firstly, the endmember spectrum acquisition of the
two methods depends on the collection of pure pixels. However, especially for MESMA, it is impossible
to obtain all the sub-classes of endmembers through pure pixels in the image. Secondly, to solve the
endmember variability problem, researchers need to acquire all of the endmembers of materials in the
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whole image and consider the compositions by different endmembers of material as much as possible
for every pixel; this is hard work for most cases. Actually, in some cases, the “purest” endmembers
are not necessarily representative of the fractions within the pixel, and the representative spectra may
not necessarily be selected as “pure” endmembers [51]. Therefore, how to select the representative
endmembers becomes the most important issue. In ASWM, the whole image is divided into two classes
(water and land), and then the most representative endmembers are selected by adaptive iteration in
the neighboring pixels. The endmember spectra of water and land are then determined by the adjacent
pixels of each mixed pixel. Frankly speaking, this technique for the selection of the most representative
endmembers may not be precise enough, and error between the selected land endmember and the true
land endmember can exist and can seriously affect the final result. Even so, in this study, the proposed
ASWM method still achieved the highest subpixel water extraction accuracy with the lowest RMSE
and SE when compared with the other methods.

5.3. Error Analysis

ASWM achieved the highest water mapping accuracy when compared with the other methods;
however, errors did exist in the final water maps. In the experiments, the Beijing test area resulted in
the lowest water mapping accuracy, with a kappa coefficient of 0.7392, followed by the Shanghai test
area, with a kappa coefficient of 0.8994. Through a comprehensive analysis of the error statistics, we
believe that the error source comes from three aspects: (1) all four test images were acquired in urban
areas with complex ground surface conditions, especially for the Beijing and Shanghai test areas, which
include many dark buildings and building shadows, which are easily confused with water bodies
due to the high similarity in the spectral features [15]; (2) the technique of the selection of the most
representative endmembers, accounting for land surface similarity in an adjacent space, is proposed.
However, this may not agree with the spectra of the fractions in the mixed pixels, and could result
in large residuals in the unmixing process; and (3) the linear unmixing method was applied for the
water abundance estimation in the study; however, the measured signal of the sensor always results
from the interactions of electromagnetic radiation with the multiple constituents within each pixel [52].
The multiple scattering between at least two materials in the field of view can make the spectra of
a mixed pixel and its fractions not simply linear, so errors will inevitably occur with the application of
a linear method.

As stated above, to verify the generalization ability of the new proposed method, four urban areas
in the diverse complex urban environments were selected for testing. All of the experiments show the
best performance of the proposed method, however, as the proposed method utilized some empirical
knowledge for the mixed land-water pixel extraction, further tests are still necessary. Future studies
will need to improve the details based on the general processing framework proposed in this study,
and the detailed improvements should be able to achieve an even higher accuracy in water extraction.

6. Conclusions

For urban and environmental applications at regional/national scales, urban surface water
information should be extracted accurately and not be limited to the pixel level. In this paper,
a novel method was presented for urban water mapping with a subpixel precision. In the proposed
method, mixed land-water pixels was first exacted from the remote sensing images based on a water
index. A linear unmixing method is then applied to each mixed pixel, and the most representative
endmembers are selected using the adjacent spatial information. As all the fixed parameters in the
process are set in advance, the new ASWM method can also be regarded as a fully automatic approach.
Analysis of the results allows a number of conclusions to be made. Firstly, the mixed land-water pixel
extraction before unmixing can help to both improve the unmixing accuracy and the computational
efficiency. Secondly, with the adjacent spatial similarity, the endmember signatures derived from the
adjacent ground surfaces provide a new means of approximating the most representative endmember
signatures. Finally, the results of both the water maps and quantitative accuracy assessment indicate
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that the proposed ASWM method performs reasonably well in the mapping of surface water, with
a relatively high subpixel precision.

The future research directions will include reference water map acquisition and accurate
registration between reference and test image to better assess the accuracy of the estimated water
abundance. In addition, as the confusion between water and other urban materials is an unsolved
problem in water extraction, the distinction between surface water and other surface features requires
further study. Finally, the method developed in this study has extended the unmixing technique
into water mapping in a complex urban environment. Its core idea could also be extended to the
extraction of other land covers at the subpixel level. However, there is certainly room for improvement.
For instance, the selection of the most representative endmembers by integrating spectral and spatial
information, and the consideration of nonlinear factors that influence water abundance estimation
should be able to contribute to the achievement of an even higher precision.
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