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Abstract: A method was developed for crop area mapping inspired by spectral matching techniques
(SMTs) and based on phenological characteristics of different crop types applied using 100-m Proba-V
NDVI data for the season 2014–2015. Ten-daily maximum value NDVI composites were created and
smoothed in SPIRITS (spirits.jrc.ec.europa.eu). The study sites were globally spread agricultural
areas located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine) and Sao Paulo (Brazil). For each
pure pixel within the field, the NDVI profile of the crop type for its growing season was matched
with the reference NDVI profile based on the training set extracted from the study site where the
crop type originated. Three temporal windows were tested within the growing season: green-up to
senescence, green-up to dormancy and minimum NDVI at the beginning of the growing season to
minimum NDVI at the end of the growing season. Post classification rules were applied to the results
to aggregate the crop type at the plot level. The overall accuracy (%) ranged between 65 and 86, and
the kappa coefficient changed from 0.43–0.84 according to the site and the temporal window. In order
of importance, the crop phenological development period, parcel size, shorter time window, number
of ground-truth parcels and crop calendar similarity were the main reasons behind the differences
between the results. The methodology described in this study demonstrated that 100-m Proba-V has
the potential to be used in crop area mapping across different regions in the world.

Keywords: 100-m Proba-V; crop area mapping; spectral matching techniques (SMTs); phenology;
time series

1. Introduction

Accurate and timely information on the cropping area and crop type obtained from remote
sensing data either or not in combination with ground surveys is key for estimating crop production.
This information has significant environmental, policy, agricultural and economic implications for
most national governments, since crop production figures are used for determining the amount
of food to import or export at the end of the growing season [1,2]. The error introduced to crop
production estimation from general agricultural land cover maps is minimized with accurate crop
extent maps [1,3–5]. For remote sensing-based crop production estimates, the ideal approach would be
to combine biomass proxies and crop maps. Biomass proxies have been available for decades and from
different sensors at different spatial resolutions. However, creating crop-specific maps has remained a
challenge. In general, cropland maps, regardless of crop type, have proved to improve crop production
forecasting [4].

Discriminating croplands from non-croplands and identifying different crop types can be achieved
with remote sensing-based crop growth monitoring and in particular with indices that quantify the
distinct green-up and senescence of the crop cycle [5]. Since different crops show different spectral
responses depending on their maturity stage, the temporal dimension of remote sensing data is most
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useful for identifying major crop types and their phenology [1,6,7]. However, using remote sensing
data in an operational context for crop area assessment requires a wide geographic coverage and high
spatio-temporal resolution at a minimal cost [6].

Each vegetated land cover class represents a distinctive phenology (i.e., green-up, maturity,
senescence and dormancy). Different datasets have been used to monitor the crop signature in remote
sensing. The temporal resolution of high spatial resolution data is too low to derive crop phenology
directly, whereas medium/low resolution data do not have sufficient spatial resolution to capture
the crop-specific signature [8,9]. Despite these limitations, several studies successfully used low to
high spatial resolution data or a combination of different resolutions for arable crop identification
in the Great Plains by using 1-km NOAA-AVHRR and 500-m MODIS time series [6,10], for paddy
rice identification in Japan by using 500-m MODIS time series [11] and in northeast China by using a
Landsat-based phenology algorithm [12]. The work in [1] developed a method for combining high
spatial resolution data (Landsat, 30 m) with high temporal resolution data (MODIS, 500 m) to achieve
a superior classification of crops in the Mississippi River Basin. In the near future, crop mapping will
be possible with Sentinel 2, which has a high spatial resolution (10 m) and a five-day revisiting time.
Since our final goal is to use the outcome map for crop production estimates, we hypothesize that
100-m Proba-V data can fulfil the requirements of both revisiting time and spatial resolution for crop
production mapping at the regional scale.

Different methods for discriminating cropland and mapping different crop types based on
vegetation phenology exist. The work in [6] investigated the class separability between specific
crop types in time series vegetation index data using the Jeffries–Matusita distance. In another
study, [13] applied a cluster analysis and used the Euclidean distance to compute the temporal distance
of enhanced vegetation index values among samples. Support vector machines were used to map
abandoned agriculture at large scales with coarse-resolution MODIS imagery and phenology metrics
calculated with TIMESAT [14] (For the details of TIMESAT, please refer to [15]). The work in [16] used
agro-meteorological data containing information on times of crop growth stages, which were utilized
to obtain the average phenological pattern for each individual crop type.

Several studies were done on crop mapping using different remote sensing techniques and
analyzing time series data at different resolutions. Machine learning algorithms, such as random forest,
artificial neural network and support vector machine, perform significantly better compared to the
traditional supervised classification methods [17,18]. Dynamic time warping (DTW) has emerged as a
promising new technique for time series data mining applications that include land cover mapping [19].
The major disadvantage of these methods is their computational complexity [20]. Spectral matching
techniques (SMTs, [21]) are an innovative method of identifying and labelling information classes
in historical time series data. Originally, SMTs were used in hyperspectral analysis of minerals [21].
Time series data, however, can be treated in a similar manner as hyperspectral data where hundreds
of bands stack a single instance of a hyperspectral image [22]. According to the method, two time
series are matched with the target ‘spectra’, which are acquired from ideal end-member classes known
through census data, ground truth or maps of the study area. The work in [21] tested the method using
monthly AVHRR data in the Krishna River Basin in India and demonstrated that spectral similarity
was the best method.

A number of factors affect the accuracy of crop classification. Differences in crop phenology [23],
agricultural field size [24,25] and the observation period length are all known to have a significant
effect on accuracies. In addition, each crop has unique phenological features, which are affected by
regional variations in climate and management practices [6,11,26]. Furthermore, varying spectral
responses from the soil can change the ability to discriminate the crop type throughout the growing
season [27]. Accordingly, image acquisition during those periods when crop separability is the highest
is crucial to increase crop classification accuracy [27–29].

The objective of this study is to develop a crop mapping approach applicable at a global level
inspired by the SMT method [21] on a seasonal basis using 100-m Proba-V NDVI data. Proba-V data at
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a 100-m spatial and five-day temporal resolution likely improve land monitoring studies compared
to the 250-m spatial and eight-day temporal resolution of MODIS data, or the 300-m spatial and
one-day temporal resolution of Proba-V, or the 10-km spatial and one-day temporal resolution of
NOAA-AVHRR [25]. Although the 100-m Proba-V data tend to be more advantageous, the time series
data are currently limited, as they became available in May 2013. SMTs were used for seasonal crop
area mapping with time series data by using different temporal windows throughout the growing
season: from green-up to senescence, from green-up to dormancy and from minimum NDVI at the
beginning of the growing season to minimum NDVI at the end of the growing season. The method
aims to facilitate crop production estimates by developing crop-specific maps.

2. Materials

2.1. Study Areas and Ground Data

The study sites are globally-spread agricultural areas, which include Flanders (Belgium), Sria
(Russia), Kyiv (Ukraine) and Sao Paulo (Brazil) (Figure 1). The areas are characterized by different
climatic conditions, agricultural management, soil types and topography (Table 1).
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Figure 1. Study sites overlaid with field boundaries. The background images were extracted from
the100-m Proba-V red band.

The extent and characteristics varied between the study areas (Table 2). The number of fields of
Flanders (Belgium) is relatively high compared to the other study sites, since the database covers the
entire Flanders region. Sria (Russia) has the largest field sizes followed by Kyiv (Ukraine), Sao Paulo
(Brazil) and Flanders (Belgium).
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Table 1. Site characteristics.

Characteristics Flanders
(Belgium)

Sria
(Russia)

Kyiv
(Ukraine)

Sao Paulo
(Brazil)

Surface Area 20,000 km2 3700 km2 11,000 km2 9000 km2

Climatic
conditions

Moderate maritime
climate [30]

Temperate-continental climate
with cold winters and hot dry

summers [31]
Humid continental [32] Humid tropical [33]

Soil types
Albeluvisols,

Luvisols, Podzols
and Fluvisols [34]

Chestnut soils and
chernozems [31] Chernozems [35] Ferralsols, 20% clay [33]

Topography The topography is
flat to hilly [36]

The topography is mostly flat
with slopes ranging from

0%–2%; and nearly 15% of the
territory is hilly with slopes

from more than 2% [31]

The topography is mostly flat
with slopes ranging from
0%–2%. Near 10% of the

territory is hilly with slopes
about 2%–5% [32]

The local topography is hilly,
with elevations ranging

from 500 m–650 m

Crop calendar

Maize:
April–November

[37]
Flax: April–July [31] Winter barley:

September–July [32] Maize: September–April [37]

Potato: March–July
[37] Maize: May–November [31] Winter wheat:

September–August [32] Soybean: October–May [37]

Sugar beet:
April–October [37] Peas: April–August [31] Spring wheat:

May–September [32]
Sugarcane:

September–March [37]

Winter barley:
September–July [37]

Soybean:
April–November [31] Maize: May–October [32]

Winter wheat:
October–August [37]

Spring barley:
April–August [31] Rape: September–August [32]

Sugar beet: April–October [31] Spring barley:
April–August [32]

Sunflower: May–October [32] Soybean:
April–September [32]

Winter barley:
October–July [31] Sugar beet: April–October [32]

Winter rape:
September–August [31] Sunflower: May–October [32]

Table 2. Crop cover characteristics of the study areas.

Study Area Crop Type Number of
Fields

Acreage
(ha)

Field Size
Range (ha)

Mean Area of
Fields (ha)

Ratio of Pure to
Non-Pure Pixels

Flanders
(Belgium)

Grain maize 42,517 36,000 1–26 1 0.01
Potato 16,941 35,000 1–45 2 0.03

Sugar beet 7697 19,000 1–43 2 0.04
Winter barley 6818 11,000 1–24 2 0.02
Winter wheat 29,910 54,000 1–37 2 0.03

Sria (Russia)

Flax 29 2098 23–298 83 1.34
Maize 18 1755 65–167 76 1.58
Peas 6 663 49–217 72 1.94

Soybean 8 370 27–78 27 1.33
Spring barley 3 165 25–82 25 1.26

Sugar beet 1 110 110 110 1.59
Sunflower 11 1259 49–409 73 2.15

Winter barley 29 2276 36–172 64 1.49
Winter rape 17 1561 53–305 91 1.72

Kyiv
(Ukraine)

Winter barley 2 628 22–30 26 0.53
Winter wheat 186 12,498 1–193 67 1.31
Spring wheat 23 791 3–101 34 1.14

Maize 83 4385 2–162 53 1.20
Winter rape 49 2389 2–161 49 0.99

Spring barley 21 628 1–143 30 0.89
Soybean 110 3000 1–123 27 0.72

Sugar beet 18 1623 3–270 90 1.98
Sunflower 34 1503 3–160 44 1.20

Sao Paulo
(Brazil)

Maize 30 478 2–81 16 0.39
Soybean 91 2211 1–101 24 0.42

Sugarcane 154 3481 1–122 23 0.41
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2.2. Ground Data

Ground data, containing crop type and parcel information, were obtained from the FP7 SIGMA
(Stimulating Innovation for Global Monitoring of Agriculture) project and the digital map parcels
dataset ‘GDI (Geo-Data Infrastructure)-Flanders’ [38]. The crop information in the parcels dataset was
declared by farmers in Flanders-Belgium. The dataset provided a good approximation of the actual
agricultural land use [39], though it cannot be regarded as 100% correct because deviations can occur
due to differences in planting and declaration [40]. For Flanders (Belgium), five main crops from the
parcel information database were selected: grain maize, potato, sugar beet, winter barley and winter
wheat. For other study sites, the parcel size and crop type information for the 2014–2015 growing
season were obtained from the SIGMA project (geoglam-sigma.info).

2.3. NDVI Data Description

Proba-V was launched in May 2013 to fill the gap between SPOT-VEGETATION and Sentinel-3
satellites. Proba-V has 4 spectral bands: blue (centered at 0.463 µm), red (0.655 µm), NIR
(0.845 µm) and SWIR (1.600 µm). The central camera of the Proba-V satellite provides a 100-m
data product with a 5–8 days revisiting time and daily images at 300-m and 1-km resolution.
Non-composited atmospherically-corrected NDVI images from 100-m Proba-V were obtained from
http://www.vito-eodata.be. Ten-daily maximum value NDVI composites were created and smoothed
in SPIRITS (Software for the Processing and Interpretation of Remotely sensed Image Time Series) [41]
with the algorithm of Swets et al. [42] for the growing season 2014–2015. SPIRITS is a free software
used to analyze satellite-derived image time series in crop and vegetation monitoring that can be
downloaded from http://spirits.jrc.ec.europa.eu/. The smoothing algorithm was used to remove
higher frequency noise [43].

3. Methods

The methodology applied consisted of 5 different steps: (i) collecting training/validation
samples; (ii) deriving reference NDVI profiles and phenological stages; (iii) classification using SMTs;
(iv) post-classification; and (v) accuracy assessment. More details on each step is listed below, and a
flowchart is presented in Figure 2:
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3.1. Collecting Training/Validation Samples

For each study area, the Proba-V 100-m NDVI images were overlaid with the crop field boundaries,
and both pure (i.e., homogenous pixels with a 100-m resolution) and mixed pixels were derived. In this
study, only pure pixels were used. They were randomly divided into two equal groups for each crop
type, one for training and one for validation. A random sampling scheme was preferred, as this is
likely to prevent bias to the accuracy assessment [44].

The first Proba-V 100-m image was available during the second dekade of March 2014. The
analysis was done from the first available image onwards, thereby leaving out the planting period of
winter crops.

3.2. Deriving Reference NDVI Profiles and Phenological Stages

For each study area and all of the different crop types, a reference or ‘ideal’ NDVI profile was
calculated by taking the average NDVI using all of the pure pixels from the training set. For Sao Paulo
where double cropping occurs, the time of the year ground data were collected was taken into account
to decide on the growing season. The crop calendars, which were obtained from [37,45], were used to
compare with the reference NDVI profiles and establish similarity.

We used piecewise logistic functions (similar to [46]) to define the four transition dates in the
reference NDVI profiles: green-up (onset of photosynthetic activity, (a) in Figure 3), maturity (maximum
plant green leaf area, (b) in Figure 3), senescence (rapid decrease of photosynthetic activity and green
leaf area, (c) in Figure 3) and dormancy (zero physiological activity, (d) inFigure 3) [46]. For a more
detailed description of the algorithm, we refer to [46]. The four transition points defined the boundaries
of different time intervals that corresponded to distinctly different crop stages. Subsequently, we
compared the classification results for three time windows: from green-up to senescence ((a–c) in
Figure 3), from green-up to dormancy ((a–d) in Figure 3) and from minimum NDVI at the beginning of
the growing season to minimum NDVI at the end of the growing season. The different time windows
were chosen to explore possibilities for early crop detection, which in turn enables crop mapping as
early as possible during the growing season.
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Figure 3. A schematic presentation of the annual cycle of crop phenology characterized by four key
transition dates ((a) green-up; (b) maturity; (c) senescence and (d) dormancy) calculated using values
in the rate of change in the curvature (adapted from [46]).

3.3. Classification Using Spectral Matching Techniques

The crop type of each pure pixel in the validation set was identified by ‘matching’ the pixel profile
with different reference NDVI profiles during the specific time window within the growing periods of
the reference crop type. To determine the actual crop type, the spectral similarity value (SSV) [21] was
calculated between each pure pixel from the validation set and each candidate reference NDVI profile.
In order to calculate SSV, the following formula was used:
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SSV “
b

ED2
normal `

`

1´ ρ2
˘2 (1)

where ρ2 and ED2
normal are the correlation coefficient and the normalized Euclidean distance between

the different candidate reference NDVI profiles and the pure pixel profiles, respectively. These
parameters are calculated as follows:

ρ2 “
1
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«

řn
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`
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˘
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σrefσr

ff

(2)

and:
EDnormal “ pED´mq { pM´mq (3)

which is the normalized version of:

ED “

b

ÿ

n
i“1

`

refi ´ ri
˘2 (4)

where re fi is the reference NDVI profile at time i from 1 to n; µre f is the mean reference NDVI profile;
ri is the pure pixel NDVI profile from validation set at time i from 1 to n; µr is the mean pure pixel
NDVI profile from validation set; σre f is the standard deviation of the reference NDVI profile; and σr is
the standard deviation of the pure pixel NDVI profile from the validation set. ρ2 values vary between
0 and 1 and represent the shape of the temporal NDVI profile over time. The higher the ρ2, the higher
the similarity in the shape of the temporal NDVI profiles. The Euclidian distance (ED), normalized
by using the historical minimum (m) and historical maximum (M) NDVI of the reference profile for a
logical comparison, represents the closeness between the two profiles. EDnormal values vary between
0 and 1. The lower the EDnormal , the closer the profiles are.

Accordingly, SSV is a similarity measure, which combines both the shape (ρ2) and distance
(EDnormal) measures [47]. SSV values vary between 0 and a maximum of the square root of the two
measures [47]. The smaller the SSV, the more similar the profiles. We assigned the pure pixel from the
validation data with the label of the reference NDVI, which has the smallest SSV.

3.4. Post-Classification

In a final step, a post-classification rule was applied based on the mode value per crop type where
the maximum frequency in one parcel was used to remove outliers in the classified parcel. The parcel
was subsequently labelled with the crop type that had the majority of the pixels. Crop area maps were
created after applying the post-classification.

3.5. Accuracy Assessment

Confusion matrices at the parcel level were constructed to compare predicted and actual class
membership. Based on the confusion matrices, classification accuracy statistics included overall
accuracy, producer’s accuracy, user’s accuracy and kappa coefficients. Kappa analysis provided a
measure of the magnitude of agreement between the predicted and actual class membership. A kappa
value of 0 represents a total random classification, while a kappa value of 1 corresponds to a perfect
agreement between the reference and classification data.

4. Results

Figure 4 presents particular time windows for two selected crops in two test sites. Depending on
the crop type and region, the minimum and maximum NDVI differ from each other. For instance the
maximum NDVI value of soybean is close to 0.8 in Russia and 0.9 in Ukraine. Additionally, also the
length of the growing season is different in different regions for the same crop, e.g., the planting and
harvesting period for maize in Belgium is longer than in Brazil.
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Figure 4. (a–d) Crop time windows for maize in Flanders-Belgium (a) and Sao Paulo, Brazil (c); and
for soybean in Kyiv, Ukraine (b), and Sria, Russia (d). The four phenological transition dates were
calculated from piecewise logistic functions. The grey zone represents the minimum and maximum
NDVI values in the training dataset. The crop calendar for each study site is presented below each
graph, where green represents the planting time and orange the harvesting time. Light green and
orange colors represent periods with low activity for maize in Brazil.

Accuracy Assessment

Overall, the proposed method using 100-m Proba V data was effective in crop type classification
with relatively high accuracies. The accuracy ranged from 75%–80% in Flanders-Belgium, from
72%–86% in Sria, Russia, from 71%–86% in Kyiv, Ukraine, and from 65%–77% in Sao Paulo, Brazil
(Table 3). The kappa coefficient ranged from 0.67–0.74 in Flanders-Belgium, from 0.67–0.84 in Sria,
Russia, from 0.63–0.82 in Kyiv, Ukraine, and from 0.43–0.61 in Sao Paulo, Brazil (Table 3).

In all four study sites, accuracies and kappa coefficient values increased when a longer time
window was considered. The results were considerably better when the time window covered the
entire growing season compared to the window from green-up to senescence. Crops with similar
phenological profiles were sometimes incorrectly classified particularly when only part of the growing
season was considered, e.g., for summer and winter crops. When the crop growth profile had a
distinctive feature compared to other crops, it was easier to differentiate it from the other crops.
For instance, sugar beet in Ukraine has a longer period between maturity and senescence compared to
the other summer crops. Another important outcome of the results is that post-classification improved
the accuracy and kappa results for all sites, except for Belgium (see Tables 3 and A1). The overall
poorest result was obtained for producer accuracy in Brazil, due to the mixing of soybean with maize
and sugarcane pixels.
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Table 3. Confusion matrix of the post-classification analysis for green-up to senescence, green-up to dormancy and growing season of Flanders-Belgium (a), Sria,
Russia (b), Kyiv, Ukraine (c), and Sao Paulo, Brazil (d). The number of correctly-classified crops, the producer accuracy, the user accuracy, the overall accuracy and the
kappa coefficient are presented.
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: Grain maize 1329 292 189 1 2 1813 73% 1384 260 156 3 5 1808 77% 1376 205 135 4 5 1725 80%

Potato 69 1345 93 3 16 1526 88% 59 1738 162 1 33 1993 87% 59 1720 142 1 31 1953 88%

Sugar beet 91 227 843 0 6 1167 72% 84 132 831 0 13 1060 78% 81 72 880 0 17 1050 84%

Winter barley 8 23 2 340 304 677 50% 3 0 0 473 421 897 53% 3 0 1 470 260 734 64%

Winter wheat 17 82 12 130 2870 3111 92% 6 10 7 39 2748 2810 98% 1 13 5 38 3023 3080 98%

Not classified 69 285 72 44 255 725 47 114 55 2 233 451 63 244 48 5 117 477

Total 1583 2254 1211 518 3453 9019 1583 2254 1211 518 3453 9019 1583 2254 1211 518 3453 9019

Producer accuracy 84% 60% 70% 66% 83% 87% 77% 69% 91% 80% 87% 76% 73% 91% 88%

Overall classification accuracy 75% 80% 83%
Kappa coefficient 0.67 0.73 0.77
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Table 3. Cont.
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: Flax 593 0 140 0 0 0 0 0 0 733 81% 461 0 0 38 10 0 0 0 0 509 91% 684 0 0 38 0 0 0 0 0 722 95%

Maize 0 321 0 0 0 0 115 0 0 436 74% 0 321 0 0 0 0 115 0 0 436 74% 0 350 0 0 0 0 102 0 0 452 77%
Peas 58 0 155 38 0 0 0 0 0 251 62% 338 0 316 0 0 0 0 0 0 654 48% 132 0 316 0 0 0 0 0 0 448 71%
Soybean 175 0 0 121 0 0 65 0 0 361 34% 74 0 0 121 0 0 65 0 0 260 47% 74 0 0 121 0 0 41 0 0 236 51%
Spring barley 0 0 21 0 71 0 0 0 98 190 37% 0 0 0 0 61 0 0 0 30 91 67% 10 0 0 0 71 0 0 0 0 81 88%
Sugar beet 35 0 0 0 0 49 77 0 0 161 30% 0 0 0 0 0 49 48 0 0 97 51% 0 0 0 0 0 49 48 0 0 97 51%
Sunflower 34 63 0 0 0 0 352 0 0 449 78% 24 63 0 0 0 0 381 0 0 468 81% 0 34 0 0 0 0 381 0 0 415 92%
Winter barley 0 0 0 0 0 0 0 846 76 922 92% 0 0 0 0 0 0 0 883 0 883 100% 0 0 0 0 0 0 0 943 0 943 100%
Winter rape 0 0 0 0 0 0 0 161 541 702 77% 0 0 0 0 0 0 0 124 685 809 85% 0 0 0 0 0 0 0 64 715 779 92%
Not classified 12 0 0 0 0 0 0 0 0 12 10 0 0 0 0 0 0 0 0 10 7 0 0 0 0 0 37 0 0 44
Total 907 384 316 159 71 49 609 1007 715 4217 907 384 316 159 71 49 609 1007 715 4217 907 384 316 159 71 49 609 1007 715 4217
Producer accuracy 65% 84% 49% 76% 100% 100% 58% 84% 76% 51% 84% 100% 76% 86% 100% 63% 88% 96% 75% 91% 100% 76% 100% 100% 63% 94% 100%

Overall classification accuracy 72% 78% 86%
Kappa coefficient 0.67 0.74 0.84
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Table 3. Cont.
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: Winter barley 12 607 0 0 405 0 27 0 0 1051 1% 18 494 0 0 72 0 0 0 0 584 3% 12 73 0 0 26 0 0 0 0 111 11%

Winter wheat 6 2871 49 0 84 0 0 0 0 3010 95% 0 2684 15 0 2 0 0 0 0 2701 99% 0 3342 14 0 27 0 0 0 0 3383 99%
Spring wheat 0 0 91 1 1 15 0 0 0 108 84% 0 0 221 0 1 15 0 0 0 237 93% 0 0 221 0 43 0 0 0 0 264 84%
Maize 0 0 1 1282 0 0 284 0 9 1576 81% 0 0 1 1305 0 0 338 0 9 1653 79% 0 0 1 1339 0 0 364 0 9 1713 78%
Winter rape 0 0 0 0 195 0 0 0 0 195 100% 0 242 0 0 602 0 0 0 0 844 71% 0 170 78 0 635 0 0 0 0 883 72%
Spring barley 0 107 181 0 0 242 0 0 0 530 46% 0 159 70 0 0 242 0 0 0 471 51% 0 0 0 0 0 242 0 0 0 242 100%
Soybean 0 0 0 72 0 0 332 0 49 453 73% 0 0 0 216 0 0 542 0 35 793 68% 0 0 0 182 0 0 529 0 35 746 71%
Sugar beet 0 0 0 34 0 0 0 603 0 637 95% 0 0 0 0 0 0 0 603 0 603 100% 0 0 0 0 0 0 0 603 0 603 100%
Sunflower 0 0 0 108 42 0 252 0 554 956 58% 0 0 4 33 42 0 126 0 598 803 74% 0 0 0 33 0 12 123 0 598 766 78%
Not classified 0 2 0 61 14 0 127 0 30 234 0 8 11 4 22 0 16 0 0 61 6 2 8 4 10 3 6 0 0 39
Total 18 3587 322 1558 741 257 1022 603 642 8750 18 3587 322 1558 741 257 1022 603 642 8750 18 3587 322 1558 741 257 1022 603 642 8750
Producer accuracy 67% 80% 28% 82% 26% 94% 32% 100% 86% 100% 75% 69% 84% 81% 94% 53% 100% 93% 67% 93% 69% 86% 86% 94% 52% 100% 93%

Overall classification accuracy 71% 78% 86%
Kappa coefficient 0.63 0.73 0.82
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Table 3. Cont.

(d)

Ground Truth

Green-Up to Senescence Green-Up to Harvest Minimum NDVI to Minimum NDVI
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: Maize 69 153 36 258 27% 75 72 8 155 48% 88 50 7 145 61%

Soybean 24 145 42 211 69% 21 200 13 234 85% 4 200 7 211 95%

Sugarcane 8 74 525 607 86% 8 92 625 725 86% 5 91 594 690 86%

Not classified 4 13 47 64 1 21 4 26 8 44 42 94

Total 105 385 650 1140 105 385 650 1140 105 385 650 1140

Producer accuracy 66% 38% 81% 71% 52% 96% 84% 52% 91%

Overall classification accuracy 65% 79% 77%
Kappa coefficient 0.43 0.62 0.61
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Figure 5 illustrates the potential of Proba-V 100-m data for crop mapping in the study areas for
selected sites. The results are shown for the pure pixels from the beginning to the end of the growing
season. In general, the fields have been classified correctly for both sites. However, in Flanders
(Belgium), 1 in Figure 5, some sugar beet fields have been classified as potato fields and winter wheat
fields as winter barley. In Sria (Russia), 2 in Figure 5, some maize fields have been classified as
sunflower and vice versa. Likewise, sunflower fields have been classified as sugar beet and winter
barley as winter rape.
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Figure 5. Comparison of the classification results based on pure pixels during the entire growing
season for a selected area in Flanders-Belgium (a) and Sria, Russia (b). (Left) The overlay of Proba-V
and ground/field data; (right) the overlay with the post-classification results.

5. Discussion

This study demonstrated the suitability of spectral matching techniques (SMTs) for mapping crop
types using 100-m Proba-V data for the 2014–2015 season. The methodology integrated multi-temporal
satellite imagery and parcel boundaries retrieved from both the SIGMA project and ‘GDI-Flanders’
databases. The SMTs were ideal for analyzing remote sensing time series data during the crop growth
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period. We calculated spectral similarity values (SSV), which are measures of the shape and magnitude
similarities of the time series spectra and found the most useful SMTs, similar to [21]. Subsequently,
SMTs were applied to match the ideal spectra, i.e., the reference NDVI profiles, to the class spectra, i.e.,
the individual pure pixel NDVI profiles.

The methodology demonstrated that 100-m Proba-V has the potential to be used in crop area
mapping across different regions in the world. Proba-V is a relatively new satellite, and therefore,
there are limited studies available for crop mapping. The work in [48] reported crop identification
accuracies in the range of 72.4%–86.2% for 100-m Proba-V data for mapping summer and winter crops
in Bulgaria. In another study, [49] achieved an overall accuracy of 84% using the 100-m Proba-V sensor
for cropland mapping of Sahelian and Sudanian agro-ecosystems. These reported ranges are in line
with our results. When using post-classification, the overall accuracy (%) ranged between 65 and 86,
and the kappa coefficient changed from 0.43–0.84. In general, post-classification improved the overall
accuracy results around an additional 6%–7% for Ukraine and Brazil and 11% for Russia compared
to the initial classification results. For Belgium, the post-classification technique did not improve
the classification results (see Tables 3 and A1). Our results are best in Sria, Russia, followed by Kyiv,
Ukraine, Flanders-Belgium and Sao Paulo, Brazil. A couple of reasons could explain the differences
between accuracies across the different study areas. Firstly, better results were observed in the areas
where the crop phenological development was not spread over a long time period. For instance, the
planting time for maize in Brazil stretched from August–December with a period of highest activity in
October and November. This prevented extracting the distinctive characteristic of the reference NDVI
profiles. Secondly, the parcel sizes played an important role. When parcels covered a small number of
satellite pixels, the results were less accurate, as was the case for Belgium. Thirdly, classification errors
of crop types increased when the time window covered only part of the cropping period. Another
reason behind the classification errors is related to the number of ground-truth parcels available from
the study site, as is the case for the winter barley fields in Kyiv, Ukraine, compared to other crop
types in the same site. Finally, crops with similar growing periods might cause classification errors,
such as sunflower and maize in Sria, Russia. In addition, the extent of the study area played a role.
Accuracies potentially improved when region specific NDVI reference profiles were included from
different agro-ecological regions. Based on these results, crop area mapping was challenging, but the
use of 100_m Proba-V proved a valid option even when mapping at the field level.

Our results were in close agreement with other studies that used different classification methods
and/or other higher resolution satellite images. We used a multi-temporal sequence of 100-m Proba-V
images covering one to two growing seasons. The work in [8] reported an overall accuracy of 63%
for vegetation mapping in southern Norway using 25-m resolution Landsat images. Another similar
study reported an overall accuracy of 62.7% using the NDVI temporal profiles approach and 72.8%
using a maximum likelihood classifier in the northeast of Germany with phenological information
and spectral-temporal profiles from Landsat TM/ETM [16]. The use of multiple sensors seemed to
increase the accuracy. For instance, [40] updated the crop classification in the land cover database
of The Netherlands by combining Landsat TM, IRS-LISS3 (Indian Remote Sensing Satellite—Linear
Imaging Self Scanner) and ERS2-SAR (European remote sensing satellite 2—synthetic aperture radar)
and reported an overall accuracy value of 90%. Almost one million pixels were used at the national
level covering not only the different types of cereals, but also grassland and flower bulbs. The use of
homogeneous pixels improved the classification accuracy. The overall accuracy ranged from 73% for
very heterogeneous pixels to 89% for homogeneous pixels in North Carolina and Virginia with 250-m
MODIS NDVI [50]. The number of homogenous pixels used in their study was 1014, which included
475 pixels for agriculture. We presented specific crop mapping results per-field. In another study, both
per-field and per-area results were presented. The work in [51] reported a maximum overall accuracy
of 66% and a kappa coefficient of 0.60 per field and a maximum overall accuracy of 70% and a kappa
coefficient of 0.64 per area for mapping specific crop types in Central Valley of California based on the
time series of Landsat TM/ETM+.
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Although our method showed promising results in crop area mapping, we identified a number of
limitations. The reference NDVI profiles for the growing season of each crop type had to be defined in
advance, either based on ground data, on user knowledge of the field or on a literature review. Another
limiting factor occurred when the parcel size was smaller than the pixel size. Having larger parcel
sizes than pixel sizes was an advantage, particularly because pure pixels tremendously improved the
classification results.

The maps based on our methodology could be extended to regional or national-level crop
production estimations and all crop types of interest. We showed that the within-field spectral
variability could be reduced with accurate field boundaries. These boundaries eliminated classification
errors due to mixed pixels [40]. Object-based image analysis could enable the detection of field
boundaries in regions without parcel information. To this extent, [51] used image segmentation to
delineate the field borders prior to classification.

6. Conclusions

This study demonstrated the potential of phenology-based crop type area mapping at the global
level using adapted spectral matching techniques (SMTs) applied to multi-temporal 100-m Proba-V
images for the 2014–2015 season. Phenological metrics were extracted from NDVI time series using
piecewise logistic functions. These metrics represented the crop growing seasons and identified
the unique calendar of each crop type. A distinct advantage of the SMTs was their simplicity and
ease of application. In addition, the method can be extended to other areas based on the reference
NDVI profiles, which are predefined either by ground data, field knowledge or literature review.
The crop classification accuracies obtained could be compared favorably to the results derived from
classifications with higher resolution data. The overall accuracy ranged between 65% and 86%, and the
kappa coefficient varied between 0.43 and 0.84 depending on the site and the temporal window used.
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Appendix A

Table A1. Confusion matrix of classification analysis for green-up to senescence, green-up to dormancy and minimum NDVI at the beginning of the growing season
to minimum NDVI at the end of the growing season assessment of Flanders-Belgium (a), Sria-Russia (b), Kyiv-Ukraine (c) and Sao Paulo-Brazil (d). The number of
correctly-classified crops, the producer accuracy, the user accuracy, the overall accuracy and the kappa coefficient are presented.
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: Grain maize 1342 310 207 1 3 1863 72% 1391 289 171 3 7 1861 75% 1382 292 150 4 6 1834 75%

Potato 85 1285 107 5 15 1497 86% 69 1745 168 1 31 2014 87% 69 1733 146 1 34 1983 87%

Sugar beet 107 239 846 0 4 1196 71% 97 144 848 1 13 1103 77% 92 108 882 0 20 1102 80%

Winter barley 9 22 4 333 296 664 50% 3 0 0 470 485 958 49% 3 0 1 467 297 768 61%

Winter wheat 22 86 13 143 2743 3007 91% 6 11 7 41 2738 2803 98% 2 19 5 41 3034 3101 98%

Not classified 18 312 34 36 392 792 17 65 17 2 179 280 35 102 27 5 62 231

Total 1583 2254 1211 518 3453 9019 1583 2254 1211 518 3453 9019 1583 2254 1211 518 3453 9019

Producer accuracy 85% 57% 70% 64% 79% 88% 77% 70% 91% 79% 87% 77% 73% 90% 88%

Overall classification accuracy 73% 80% 83%
Kappa coefficient 0.65 0.74 0.78
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Table A1. Cont.
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: Flax 454 8 124 0 1 0 19 0 0 606 75% 379 1 6 13 8 0 5 0 0 412 92% 539 1 1 22 3 0 6 0 0 572 94%

Maize 2 298 0 1 0 0 105 0 0 406 73% 1 297 0 0 0 0 109 0 0 407 73% 3 332 0 0 0 0 125 0 0 460 72%
Peas 158 2 146 29 3 0 3 0 0 341 43% 329 0 296 0 1 0 1 0 0 627 47% 176 0 294 0 0 0 0 0 0 470 63%
Soybean 66 4 0 116 0 0 86 0 0 272 43% 111 5 0 121 0 0 74 0 0 311 39% 115 6 0 121 0 0 82 0 0 324 37%
Spring barley 26 4 43 3 67 0 5 7 111 266 25% 16 0 12 1 61 0 3 9 29 131 47% 18 0 21 1 65 0 0 12 8 125 52%
Sugar beet 46 0 0 8 0 49 165 0 0 268 18% 16 1 0 7 1 49 48 0 0 122 40% 21 1 0 10 1 49 48 0 0 130 38%
Sunflower 46 59 0 2 0 0 205 0 0 312 66% 16 76 0 3 0 0 335 0 0 430 78% 4 43 0 3 0 0 340 0 0 390 87%
Winter barley 0 2 0 0 0 0 0 840 86 928 91% 0 0 0 0 0 0 0 875 33 908 96% 0 0 0 0 0 0 0 909 18 927 98%
Winter rape 2 0 0 0 0 0 1 127 423 553 76% 0 0 0 0 0 0 0 118 640 758 84% 0 0 0 0 0 0 3 78 684 765 89%
Not classified 107 7 3 0 0 0 20 33 95 265 39 4 2 14 0 0 34 5 13 111 31 1 0 2 2 0 5 8 5 54
Total 907 384 316 159 71 49 609 1007 715 4217 907 384 316 159 71 49 609 1007 715 4217 907 384 316 159 71 49 609 1007 715 4217
Producer accuracy 50% 78% 46% 73% 94% 100% 34% 83% 59% 42% 77% 94% 76% 86% 100% 55% 87% 90% 59% 86% 93% 76% 92% 100% 56% 90% 96%

Overall classification accuracy 62% 72% 79%
Kappa coefficient 0.56 0.68 0.75
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Table A1. Cont.
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: Winter barley 14 606 0 2 264 0 10 0 0 896 2% 16 572 0 0 78 0 0 0 0 666 2% 15 190 0 0 66 0 0 0 0 271 6%

Winter wheat 4 2792 40 0 131 1 2 0 0 2970 94% 2 2495 24 0 53 1 0 0 0 2575 97% 3 3105 21 0 78 1 0 0 0 3208 97%
Spring wheat 0 12 120 17 20 8 1 2 12 192 63% 0 54 237 2 15 14 0 1 1 324 73% 0 55 232 2 23 4 0 0 1 317 73%
Maize 0 0 1 1163 0 0 221 0 10 1395 83% 0 0 1 1265 0 0 321 0 10 1597 79% 0 0 1 1283 0 0 310 0 11 1605 80%
Winter rape 0 8 0 0 195 0 0 1 0 204 96% 0 317 0 0 555 0 0 1 0 873 64% 0 94 0 0 548 0 0 1 0 643 85%
Spring barley 0 122 152 7 15 223 10 0 0 529 42% 0 118 41 0 1 239 0 1 0 400 60% 0 138 59 0 5 241 0 1 0 444 54%
Soybean 0 1 0 99 0 0 180 19 28 327 55% 0 1 0 255 0 0 567 0 44 867 65% 0 1 0 236 0 0 558 0 43 838 67%
Sugar beet 0 0 0 19 0 0 0 554 0 573 97% 0 0 0 4 0 0 0 600 0 604 99% 0 0 0 4 0 0 0 601 0 605 99%
Sunflower 0 0 0 65 38 0 203 26 531 863 62% 0 0 5 28 20 0 131 0 587 771 76% 0 0 5 25 20 5 127 0 587 769 76%
Not classified 0 46 9 186 78 25 395 1 61 801 0 30 14 4 19 3 3 0 0 73 0 4 4 8 1 6 27 0 0 50
Total 18 3587 322 1558 741 257 1022 603 642 8750 18 3587 322 1558 741 257 1022 603 642 8750 18 3587 322 1558 741 257 1022 603 642 8750
Producer accuracy 78% 78% 37% 75% 26% 87% 18% 92% 83% 89% 70% 74% 81% 75% 93% 55% 100% 91% 83% 87% 72% 82% 74% 94% 55% 100% 91%

Overall classification accuracy 66% 75% 82%
Kappa coefficient 0.58 0.69 0.77
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Table A1. Cont.

(d)

Ground Truth

Green-Up to Senescence Green-Up to Harvest Minimum NDVI to Minimum NDVI
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: Maize 64 145 38 247 26% 73 67 7 147 50% 82 59 12 153 54%

Soybean 17 137 74 228 60% 17 167 6 190 88% 7 174 10 191 91%

Sugarcane 8 52 510 570 89% 8 66 596 670 89% 5 57 584 646 90%

Not classified 16 51 28 95 7 85 41 133 11 95 44 150

Total 105 385 650 1140 105 385 650 1140 105 385 650 1140

Producer accuracy 61% 36% 78% 70% 43% 92% 78% 45% 90%

Overall classification accuracy 62% 73% 74%
Kappa coefficient 0.40 0.55 0.57
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