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Abstract: The use of high resolution ground-based light detection and ranging (LiDAR) datasets
provides spatial density and vertical precision for obtaining highly accurate Digital Surface Models
(DSMs). As a result, the reliability of flood damage analysis has improved significantly, owing
to the increased accuracy of hydrodynamic models. In addition, considerable error reduction has
been achieved in the estimation of first floor elevation, which is a critical parameter for determining
structural and content damages in buildings. However, as with any discrete measurement technique,
LiDAR data contain object space ambiguities, especially in urban areas where the presence of
buildings and the floodplain gives rise to a highly complex landscape that is largely corrected by
using ancillary information based on the addition of breaklines to a triangulated irregular network
(TIN). The present study provides a methodological approach for assessing uncertainty regarding
first floor elevation. This is based on: (i) generation an urban TIN from LiDAR data with a density
of 0.5 points¨ m´2, complemented with the river bathymetry obtained from a field survey with a
density of 0.3 points¨ m´2. The TIN was subsequently improved by adding breaklines and was finally
transformed to a raster with a spatial resolution of 2 m; (ii) implementation of a two-dimensional
(2D) hydrodynamic model based on the 500-year flood return period. The high resolution DSM
obtained in the previous step, facilitated addressing the modelling, since it represented suitable
urban features influencing hydraulics (e.g., streets and buildings); and (iii) determination of first floor
elevation uncertainty within the 500-year flood zone by performing Monte Carlo simulations based
on geostatistics and 1997 control elevation points in order to assess error. Deviations in first floor
elevation (average: 0.56 m and standard deviation: 0.33 m) show that this parameter has to be neatly
characterized in order to obtain reliable assessments of flood damage assessments and implement
realistic risk management.

Keywords: digital surface models (DSMs); urban features; breaklines; 2D hydraulic modelling;
flood risk; Monte Carlo simulation; geostatistics
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1. Introduction

The European Directive on the assessment and management of flood risk (Directive 2007/60/EC)
recognized for the first time at the European level that floods have the capacity to severely compromise
economic development and undermine the economic activities of the community [1]. From an economic
point of view, the main purpose of flood risk management (FRM) is to reduce flood damage and this
requires as much accurate elevation data as possible in order to obtain reliable digital surface models
(DSMs), i.e., information on the height of the earth surface, including the objects on it, such as
buildings, trees, bridges, etc. This is a critical issue in urban areas due to the presence of man-made
structures (e.g., buildings, levees, roads, bridges, culverts) that make the land surface irregular, which
may significantly modify spatio-temporal flood configuration and induce variable flow resistance
characteristics. Another critical variable concerning FRM and related to topography is the first floor
elevation of structures (i.e., the elevation at which floodwater enters the building) [2]. It is essential for
estimating flood damage based on depth-damage curves, which can be established either from field
surveys or by referring to LiDAR.

Airborne light detection and ranging or laser induced direction and ranging (LiDAR), also referred
to as airborne laser scanning (ALS), provides high resolution topographic datasets. This has enabled
LiDAR-derived DSMs to be used for carrying out flood hazard analysis for both coastal and fluvial
urban areas [3–5]. Currently, LiDAR is the most accurate approach for obtaining reliable topographic
data on a large-scale [6,7]. Though the first laser instruments were built in the 1960s [8,9], it was
not until 1993 that the first prototype of ALS was commercialized and applied for both technical
and scientific purposes [6]. Since then, LiDAR has been extensively used in the environmental
sciences [10–15].

LiDAR has been used on a basin scale to characterize spatial and temporal changes regarding
erosion and deposition [16], or to extract fluvial landforms [17]. As far as flood mapping is concerned,
high-resolution DSMs derived from LiDAR have increasingly been used to improve the performance
of one-dimensional (1D) [18] and two-dimensional (2D) hydraulic models, which are suitable for use in
urban areas where buildings and other man-made structures condition flood wave behaviour, with the
result that for practical purposes, flow cannot be assumed to be 1D [5,19]. In addition, LiDAR provides
very valuable data for running 2D hydrodynamic models. Specifically, high resolution digital terrain
models (DTMs) derived from LiDAR enable grain-scale surface roughness, an essential parameter
in flood modelling, to be estimated [20]. They also provide a very accurate topographic dataset of
both the ground and the urban environment (e.g., buildings, roads, bridges). In the last stage of the
hydrodynamic 2D approach, heights linked to the DSM are assigned to the elements of the mesh in
which the Saint Venant equations are solved [21,22].

The spatial resolution of DSMs plays an important role in terms of accurateness of flood mapping
in urban areas. DSMs derived from data sources other than LiDAR (e.g., national topographic maps)
usually have coarser spatial resolution and lower vertical accuracy. As a result, flooded areas tend
to be greater when compared with the results obtained through the use of DSMs, which has finer
spatial resolution [23]. This explains why LiDAR data predominate in flood assessment, as the higher
the spatial resolution of the topographic data, the higher the reliability of flood mapping. The main
limitation of LiDAR technology is related to its inability to characterize bathymetry in channels for
practical purposes, due to the limited capacity of the signal for penetrating the water column, especially
if the river flow has a suspended sediment load [6]. Therefore, bathymetry data incorporated into
DSMs are usually derived from topographic data sources other than LiDAR (e.g., echo soundings and
electronic theodolite surveys) [24].

Less attention has been paid to the use of LiDAR data during the flood risk assessment process.
This data source has been used to map the risk of flooding from storm surges and in sea level rise
in coastal areas based on the characterization of socio-economic and ecosystem impacts [25]. In the
fluvial environment, LiDAR has been used to improve risk management strategies by considering
flood scenarios [26] or assessing socio-economic impacts [27]. However, uncertainty analysis is not



Remote Sens. 2016, 8, 604 3 of 17

addressed in the approaches cited above, even though risk involves exposure to the chance of loss [28].
In this regard, estimation of flood damage using depth-damage relationships requires specification
of the first floor elevation of the structure [29]. This elevation may be obtained from LiDAR, which
basically has two sources of error. The first is related to the accuracy of the method [30,31]. The second
is a consequence of transformations in the original raw LiDAR point cloud (e.g., classification, thinning,
interpolation and breakline enforcement) in order to obtain a hydraulically consistent DSM [5]. To this
end, the LiDAR data should preserve all geometric elements as precisely as possible, especially if these
have a man-made origin.

The aim of this paper is to characterize uncertainty in the first floor elevation of buildings prone
to being affected by floods and located in communities where lowest floor elevations are at ground
level. To this end, a 2D hydrodynamic model was used to obtain the 500-year flood zone in an urban
environment. Next, a geostatistical approach was put into practice to determine the spatial distribution
of errors between the DSM derived from LiDAR and first floor control points in buildings. The Monte
Carlo method was then used to describe errors with a probability density function (PDF).

2. Materials and Methods

2.1. Study Area

The municipality of Navaluenga is located in Central Spain on the banks of the Alberche River,
between the Sierra del Valle (eastern range of Gredos, Spanish Central System) and the Sierra de la
Paramera (40˝24’30”N; 4˝42’17”W; 761 m a.s.l.; Figure 1).
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Figure 1. Location of the study area. Coordinate system: ETRS89, UTM Zone 30 N. There are several
points of conflict in the reaches studied: (i) B1 and B2 correspond to bridges on the Alberche River;
(ii) W is a weir also on the Alberche River; and (iii) C1 to C7 represent culverts on the Alberche River
and the Chorreron Stream.

According to the National Statistics Institute of Spain, Navaluenga has a population of
2027 inhabitants (data corresponding to 2014), though there is a significant increase in population
during the summer months, when the number of inhabitants rises to roughly 20,000. The total housing
in the municipality is estimated to be 4311 dwellings, of which 3392 are considered to be second homes
(the vast majority of them have the lowest floors located at the ground level). The Alberche River
rises at approximately 1800 m a.s.l. and flows for 70 km before reaching Navaluenga. Its time of
concentration (Tc) is around 8.5 h and it drains an area of 717 km2. In this reach the flow regime is totally
natural. The Alberche has several weirs, i.e., natural pools that are used by local people as recreation
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areas in summer. In this area, several torrents flow into the Alberche River. Especially noteworthy is
the Chorrerón Stream (Tc « 3 h), which crosses the urban area perpendicularly from north to south to
flow into the Alberche (Figure 1).

The village of Navaluenga has suffered flood events linked to the Alberche River and the
Chorrerón Stream since at least the Early Middle Ages, as attested by documentary records that
existed in the late fifteenth century. The most recent events in the 1990s and the early 2000s caused
important economic losses and put part of the local population at risk [32].

2.2. DSM Construction

The LiDAR data used were provided by the Spanish National Geographic Institute (IGN) [33].
Raw LiDAR data points were derived from airborne LiDAR systems with a density of 0.5 points¨ m´2.
The altimetric precision (Z) obtained was therefore greater than 20 cm, taking the root mean square
error (RMSE) as a statistic. The resulting point clouds were subsequently automatically classified by
the IGN. The reference system for this topographic dataset is the ETRS89/UTM zone 30N (compatible
with WGS 84).

One of the critical steps for generating DSM from LiDAR data is to separate the LiDAR points
into ground (terrain) and non-ground (man-made structures). The point cloud was therefore filtered
into two main categories: ground and buildings. This was done using LAStools [34] within the ArcGIS
10.1 environment. Regarding bathymetry, a field survey was carried out using a differential GPS
(Trimble 5700). Bathymetry was performed with an average density of ~0.3 points¨ m´2.

With respect to the production of DSM for use in flood modelling, mass points derived from
LiDAR alone do not adequately capture changes in topographic breaks (e.g., riverbanks, roads, streets
buildings). Significant topographic changes in terrain slope can be represented as breaklines [35]. These
complement the mass points and have the role of enforcing the topographic breaks of a DSM within
triangulated irregular networks (TINs). From the number of possible approaches for treating breaklines
in LiDAR datasets, we chose local knowledge, GIS, orthophotos and cadastral mapping as the most
appropriate for identifying the location of critical linear features. We then took the average z-values
from LAS data to obtain 3D breakline strings [36]. With respect to 2D modelling, the breaklines enabled
the floodplain (i.e., river banks) and urban areas (i.e., roads and streets) to be defined. Because of the
critical hydraulic importance of these features, they should be specifically included in the DSM.

Breaklines were manually digitized to suitably represent the banks of both the Alberche River
and the Chorrerón Stream. In urban areas, the streets obtained from cadastral mapping were used as
breaklines. The original 2D features were converted to 3D by adding the 2D features and LAS files to
the Arcmap’s 3D analyst extension, taking the medium height of the LiDAR points intersected by the
2D features as reference. To minimize errors, streets were segmented, using the sections delimited by
slope breaks as criteria. The TIN was edited with the point features (i.e., ground and buildings derived
from LiDAR) as mass points. The line features were integrated as breaklines in the case of streets and
river banks, while isobaths were added as softlines. In the final step, the TIN was transformed to a
raster by applying the linear method as interpolation choice. The resulting digital elevation model
(DEM) was defined with a spatial resolution of 2 m in order to be consistent with the point spacing of
the LiDAR data. This DEM enabled both accomplishing 2D hydrodynamic modelling and estimating
uncertainty in first floor elevation.

2.3. 2D Hydrodynamic Modelling

Hydrodynamic simulation was carried out by applying Iber two-dimensional hydrodynamic
software [37]. Iber is a numerical tool for 2D simulation of unsteady turbulent free surface flow and
sediment transport in water-courses. To solve the hydrodynamics, Iber uses the finite volume method.
This method is suitable for flows in mountainous rivers [38], where shocks and discontinuities may
occur, giving very sharp hydrographs.
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The hydrodynamic model was based on a rectangular triangulated irregular network (RTIN)
obtained from the DSM of the study site. The maximum and minimum lengths of the sides of the
triangles were 4 and 2 m, respectively. Tolerance (maximum vertical distance between the DSM and
the geometry created) was considered to be 0.2 m, which coincides with the altimetric accuracy of the
LiDAR data. With respect to boundary conditions, discharges corresponding to the return period of
500 year for the Alberche River (i.e., 2,006 m3¨ s´1) and the Chorrerón Stream (i.e., 167 m3¨ s´1) were
considered. The roughness coefficient was obtained from official land cover mapping on a scale of
1:25,000 [39] and then the corresponding value of Manning’s n was assigned to every land cover unit.

Respecting hydraulic infrastructures (see Figure 1), there are 7 culverts along the reaches studied.
To calculate flow transfer through them, Iber uses the Manning’s equation [40]. Likewise, there are
two bridges and a weir in the reach of the Alberche that crosses Navaluenga. Iber simulates bridges
as internal conditions by changing the equations with which flow is calculated on the edges of the
elements affected. The internal condition was defined in the upstream cross sections of the bridges.
The discharge coefficients used were 0.6 for free flow pressure under deck and 0.8 for flooded flow
pressure under deck. The discharge coefficient chosen in the case of over-deck flow was 1.7. Finally, the
weir discharge coefficient was also taken as 1.7.

As additional general information on the model, a second-order numerical scheme was used,
which was more accurate than that of the first order [41]. In addition, 0.45 was considered as the
Courant-Friedichs-Lewy (CFL) condition and 0.01 m as the wet-dry limit. As regards the drying
method, the default option provided by Iber was used. This is a robust method that preserves the
water mass throughout the domain and has the advantage that the calculation time virtually does not
depend on the dry-wet process.

2.4. Geostatistical Uncertainty Analysis

First floor errors in the urban area of the LiDAR-derived DSM were assessed from 603 elevation
control points with an error lower than ˘15 cm, provided by the Spanish cadastre [42]. The remaining
1294 points (with the same vertical accuracy as the one mentioned above) were located away from the
streets. To assess the errors, the control points were subtracted from the DSM. The spatial distribution
of the first floor errors in the urban area was explored by performing Monte Carlo simulations based
on geostatistics. Each simulation resulted in a first floor error map in which the error at control points
never changed in the simulation process (conditioning the simulations by known errors). The stochastic
simulations provided a series of random plausible maps that could be used to represent uncertainty
about true first floor elevation error [43].

Sequential Gaussian Simulation (SGS) was chosen as this is the most common technique for
generating conditional stochastic simulations for spatially continuous variables. SGS uses the Kriging
geostatistical interpolator to simulate values [44]. Kriging is the generic name for a family of
generalized least-squares regression algorithms based on regionalized variable theory that assume that
spatial variation of the variable is statistically homogeneous throughout the region [45]. In contrast to
deterministic interpolators, Kriging uses a model of the spatial correlation or structure of processes.
The spatial structures are characterized by a variogram, which is estimated from the sampled data.
The variogram is then used to estimate the Kriging weights used for data interpolation. The spatial
structure of the first floor error in the urban area was modelled using a spherical variogram. SGS is
conditional in the sense that it will honour the variogram model as well as the existing observations.

SGS starts by defining a random path for visiting each node of the grid (i.e., 2 m of spatial
resolution) once. At each node of the dataset, a specified number of original observations and
previously simulated nodes are selected for conditioning purposes, and Kriging is used to determine
the locations-specific mean and variance of the conditional cumulative distribution function (CCDF).
Finally, a random value is drawn from the CCDF; the value is added to the dataset and the procedure
is repeated until all nodes have been visited [44].
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Variogram modelling and the simulation process were performed entirely with the Stanford
Geostatistical Modelling Software (SGeMS) package [46]. A total of 1000 realizations of first floor
elevation errors in the urban area were generated to guarantee a stable result [47]. Uncertainty was
computed by evaluating the statistics associated with the range of simulated errors. These calculations
allowed mapping of the first floor error mean and standard deviation and the probability of exceeding
an error threshold value of ˘0.5 m.

3. Results

3.1. 500-Year Flood Zone

The river Alberche has a steeper lateral slope along its right bank than on its left bank. This causes
a tendency for the river to overflow mostly on its left bank. This overflow merges with flooding from
the Chorrerón Stream. Moreover, most of the population is located on the left bank of the river, which
puts it at significant risk of being affected. Given the low capacity of the channel for the return period
studied (500 years), water overflows even before it enters the village. The overflow situation is made
worse by the obstruction caused by the first medieval bridge located at the entrance to the village
(B1, see Figure 1). This creates a hydraulic depth of 9.31 meters on the left bank in the village and an
additional flow parallel to the channel. The situation is exacerbated by a more recently built second
bridge a hundred meters downstream (B2, see Figure 1), which contributes to these high depths being
maintained (Figure 2).
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Figure 2. Some of the Iber two-dimensional hydrodynamic software outputs. (A–C) show depths,
velocities and Froude numbers in the study area, with the existence of hydraulic structures (see
Figure 1) considered as a hypothetical scenario; (D–F) show mapping of the same parameters but
without hydraulic structures in the model.

After the second bridge, water overflows before the entry of the Chorrerón, due to the low
capacity of the river channel and its urban culverts. Therefore, both overflow situations combine
at the confluence. Upstream from the mouth of the Chorrerón, the minimum outfall cross-section
for its expected flow (167 m3¨ s´1 for the 500-year flood period) is 4 ˆ 0.5 m2. The confluence of
the Chorrerón and the Alberche also plays an important role, especially if both are simultaneously
provoking a flood as in the scenario described here. Downstream of the Chorrerón, the existing weir
partially maintains this level and also accelerates the flow downstream. This situation does not cause
a reduction of water depths due to the fact that the section of the river channel is reduced on its last
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stretch. The flow generated on the left margin generates a by-pass in the populated area that avoids
the weir. Flow subsequently merges into the river Alberche downstream.

As a result of this, the highest depth in the channel is 10.39 m, while in the flooded area it is
9.31 m. Outside the area of influence of the points of conflict described above, maximum depths are
8.15 m in the channel and 7.78 m in the flooded area. In the urban area, depths are between 0.01 m
and 2.6 m. Fluctuations in flow velocities occur where there are changes in the flow regime (i.e.,
from subcritical to supercritical). These are mainly due to narrowing of the channel cross-sections
caused by the bridges on the urban reach of the Alberche. In the river channel, maximum flow
velocities of 9.81 m¨ s´1 are given, while the minimum velocities (i.e., 1.10 m¨ s´1) are found close to
the river banks (mean = 3.1 m¨ s´1; standard deviation = 1.71 m¨ s´1). Flow velocities within the urban
area are between 0.02 m¨ s´1 and 1.99 m¨ s´1 (mean = 0.43 m¨ s´1; standard deviation = 0.44 m¨ s´1).
With regard to Froude numbers, values are high (i.e., above 2.5) for both the Alberche River and the
Chorrerón Stream. Froude numbers in the flooded areas present lower values, though these are slightly
higher on the left bank of the Alberche because of the preferential flow in that area (Figure 2).

3.2. First Floor Elevation Uncertainty

The distribution of first floor elevation errors was slightly biased towards positive values when
analysed for the whole study site. When it was defined by the 500-year flood zone only, errors were
biased towards negative values. Average first floor elevation values were similar in both analyses
(i.e., 0.54 ˘ 0.32 m in the municipality as a whole and 0.56 ˘ 0.33 m in the 500-year flood zone).
With respect to ranges, errors varied from ´2.2 m to 3.6 m in the first case, and from ´2.2 m to 1.4 m
when the analysis was focused on the area prone to flooding (Figure 3). In the non-urban area, mean
elevation errors were slightly lower compared to measurements of first floor elevation errors (i.e.,
mean value = 0.48; standard deviation = 0.45 m), with a range between ´2.89 m and 2.22 m and a
standard deviation of 0.45 m. If the data are analysed jointly, it appears that errors vary depending on
the type of land cover (Figure 4). Therefore, the highest errors occur in urbanized areas (mean = 0.56m;
standard deviation = 0.38) while the lowest ones appear in forests and woodlands (mean = 0.19 m;
standard deviation = 0.56 m).
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We have characterized the spatial structure of first floor elevation errors with the variogram shown
in Figure 5. The variogram illustrates the variance between pairs of values (y-axis) at different spacing
(x-axis), and, most importantly, increasing variance with the spacing of data pairs. Regarding the
above, no anisotropy was detected in the errors, and the variogram revealed that errors appear to
become spatially unstructured at lag distances >122 m. It was possible to fit a theoretical variogram
to the experimental variogram. Visual interface was used for variogram curve fitting and the best fit
model variogram found is shown in Figure 5.

As regards uncertainty, the magnitude and spatial distribution of error in the DSM elevations
values were evaluated in relation to the elevation control points in order to assess the potential effect of
DSM error on first floor elevation. The uncertainty error analysis was carried out using the Monte Carlo
method, simulating 1000 urban DSM error images with the variogram modelled to the experimental
errors. This method offered flexibility at the cost of heavy computational load (almost 24 h were
required to generate the 1000 simulations). The set of 1000 simulations established the bounds within
which it can be affirmed that the true map lies (Figure 6).

All the realizations show patterns of elevation error that are similar on a gross scale but differ
in details from map to map. The large-scale similarities reflect the spatial distribution of measured
errors, which persists from simulation to simulation, whereas the small-scale differences reflect the
randomness added by Gaussian Simulation of values between the points at which elevation error
was measured.
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Figure 6. Two of the 1000 elevation error realizations generated using Sequential Gaussian Simulation.
Each realization is equally probable and has the same statistical properties as the measured errors.
The area and location of the simulations is outlined in red on the orthophoto. A corresponds to
simulation 114 and B to simulation 772.
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The average probability of first floor elevation errors within the ˘0.5 m range was 0.57, and 0.52
when the analysis took the 500-year flood zone into account (Figure 7). This probability increased
to 0.75 when both first floor elevation and elevation errors measured in the floodplain and other
non-urbanized areas were included in the 500-year flood zone. In terms of spatial representativeness,
68% of the street surfaces within the 500-year flood zone had a 0.4 probability of first floor elevation
being between ˘0.5 m. This percentage increased to 77% when the whole street area was considered
(Table 1).
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Table 1. Area occupied by deciles of probability considering that first floor elevation error is between
´0.5 m and 0.5 m.

Probability
Streets (Non-Prone to Be Flooded) Streets (500-Year Flood Zone)

Pixels Area (m2) Area (%) Pixels Area (m2) Area (%)

(0–0.10) 1433 5732 1.42 450 1800 1.77
(0.11–0.20) 2660 10,640 2.64 690 2760 2.71
(0.21–0.30) 7027 28,108 6.96 2098 8392 8.25
(0.31–0.40) 12,067 48,268 11.96 4906 19,624 19.29
(0.41–0.50) 15,239 60,956 15.10 4640 18,560 18.25
(0.51–0.60) 14,917 59,668 14.78 4393 17,572 17.28
(0.61–0.70) 16,611 66,444 16.46 3135 12,540 12.33
(0.71–0.80) 14,111 56,444 13.98 1948 7792 7.66
(0.81–0.90) 12,224 48,896 12.11 1914 7656 7.53

(0.91–1) 4627 18,508 4.59 1253 5012 4.93

Total 100,916 403,664 100 25,427 101,708 100

4. Discussion

4.1. 2D Hydrodynamic Modelling

One-dimensional (1D) hydraulic models are unable to represent and correctly simulate physical
and hydrodynamic conditions, which are critical for understanding systems as complex as urban
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areas. Instead, 2D hydraulic modelling is a much more consistent approach because of its ability to
represent overbank flow [48] and high topography complexity, even in urban areas where flow can be
represented on the scale of individual buildings [49].

2D models require the geometric characterization of bathymetry and its surrounding area as a
continuous surface in order to obtain reliable flood inundation extents [50]. The precision of digital
topography, expressed both in terms of spatial resolution and vertical accuracy, is a key factor for
flood mapping. Specifically, in urban areas, high-resolution topographic data enable flood modelling
based on a 2D approach to be addressed. This is because the topography of man-made structures is
adequately represented, thanks to advances in airborne LiDAR systems, among other topographic
data sources, which make it possible to acquire high quality terrain data. However, this source of
topographic data by itself is not able to properly represent fluvial systems that are partially occupied
by urban areas, where continuous and linear topographic features associated with significant changes
in gradient are quite common. The LiDAR data used here have a relatively high horizontal density of
points (i.e., 0.5 points¨ m´2). However, continuous linear features such as river banks, and especially
streets, would only be resolved if the data had been sampled to a higher spatial resolution, which, had
this been possible, would have resulted in large and unwieldy files.

As a result, a DSM obtained from LiDAR data only was not sufficiently reliable for use in a 2D
hydrodynamic model. The addition of breaklines (also defined as structure lines or skeleton lines) was
therefore required (Figure 8). These constitute linear features that describe surface changes [51].
Their integration in the DSM of the study site contributed significantly to obtaining a reliable,
morphologically correct and enhanced DSM [52].
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In general, the accuracy or current errors of LIDAR data are not relevant for many applications
(e.g., cadastral work, hydrological studies, agronomy and urban planning). However, in hydraulic
modeling, small differences in geometry can generate significant changes in levels and flow rates,
due to the basic equations of fluid mechanics. These changes are not localized but will spread to other
areas of the territory and will affect the results of the hydraulic model. Traditionally, cross-sections
for studies on flooding were done with traditional topographical instruments such as the theodolite.
These cross-sections were obtained “in situ” from traditional surveying, with expert criteria applied
directly to the territory. This way of working required visiting the study area and looking for culverts,
walls or local constrictions that could affect hydraulic simulation. This involved several days’ work,
sometimes with accessibility problems near the river.

Theoretically, LiDAR data provide good accuracy and questions are not usually raised about their
reliability, or whether they accurately represent reality. However, LiDAR may not contain important
details from a hydraulic point of view because of its systematic sampling procedure. There is much
room for improvement in the representation of many elements of LiDAR-derived DSMs, despite the
high density of points represented. For example, LiDAR-derived DSMs are unable to reflect thin
structures, like levees or continuous walls, which are an obstacle to water. Also, they do not allow
small structures such as irrigation ditches to be represented, possibly because such information has
not been captured correctly.

These structures can provoke overflows and varying hydraulic variables, such as water depth
or velocity. It is therefore necessary to include them in the model so that hydraulic outputs can be
an accurate representation of reality. The importance of making corrections to LiDAR-derived DSMs
is justified to ensure they correctly represent both the natural and man-made physical geometries
that influence hydraulic modelling. The case study presented here is a clear example of this effect.
The confluence of the Alberche River and the Chorrerón Stream is located within the urban area.
Moreover, the existence of hydraulic structures as bridges and culverts directly contributes to flooding.
Small differences in the topography of these conflictive points will affect results by changing water
surface elevation or velocity. As a final state, it is recommended to take advantage of LiDAR data,
but in combination with classic topography at conflictive points, enabling the suitable representation
of elements that may be essential to flow behaviour in the final DSM and thereby reducing errors in
flood assessment.

4.2. Geostatistical Analysis

Flood risk implies exposure to the possibility of injury or loss. As a result, there is a need for
uncertainty to be both described and dealt with, a situation that is highly complex, since numerous
sources of uncertainty have to be characterized, specifically: (i) uncertainty of return periods in flood
frequency analysis; (ii) uncertainty in flood mapping as a result of using simplified hydraulic models,
as well as errors in DSM and in the parameterizing of roughness; and (iii) uncertainty in flood damage
analysis, due to the paucity of information on the relationship between depth and inundation damage
and the lack of accuracy in estimating structure and contents values [53].

Therefore, estimating first floor elevation constitutes an additional source of uncertainty to be
considered within this complex scheme. This factor plays a critical role in flood damage analysis, as it
determines the depth-damage relationship and, as a consequence, economic losses in buildings [54].
Basically, uncertainty related to characterization of first floor elevation is tied to survey errors, errors
in the interpolation of the LiDAR point cloud, and simplifications inherent in adding breaklines to
urban areas and the floodplain in order to obtain a consistent DSM from a hydraulic point of view.

In the approach presented here, we hypothesize that errors in the non-urban area are lower than
in the urban area, since there is no forced transformation of the DSM by adding breaklines. In addition,
errors also show differences that depend on the land cover (Figure 9). Therefore, measurements
of average errors in non-urban areas are similar to those obtained by other authors, e.g., [55].
Positive outliers detected in the sampling area may result from suspended objects being hit by laser
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beams. As regards negative outliers, their presence could be due to laser beams being reflected
among buildings several times before they are detected. These specular reflections result in the laser
beam having a longer travel time, and a lower elevation is therefore calculated during post-flight
processing [56]. In the urban area, with particular reference to the first floor elevation of buildings,
estimates of average errors, standard deviations and range are slightly higher than those measured in
the non-urban area. This is because LiDAR derived-DSM presents as additional source of error derived
from adding breaklines. Incorporating breaklines into the TIN is based on assuming that breaklines
adopt as the z-value the average height of the LiDAR point cloud intersected by a given breakline.
In order to reduce the resulting uncertainty, streets were divided into segments. The existence of breaks
in the slope were taken as criteria, which enabled the error to be kept to a minimum but not overridden.
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The advantage of using a geostatistical method is that it allows errors associated with the DSM
values to be studied and the spatial structure to be taken into account by using the variogram.
Also of benefit is the use of geostatistical simulations of equiprobable spatial distribution to determine
uncertainty in the distribution of error values. It is possible to assess DSM error with global statistics
on its accuracy (such as the commonly used root mean square error), but this does not include the
spatial variation observed in the variogram. Measured ground or bare-earth LiDAR elevations can
be considerably less accurate depending on the land cover type or terrain variables, such as slope,
convexity and roughness [55]. In addition, elevation errors are also spatially correlated, meaning that
error values tend to be similar at nearby locations, and this can also have a considerable impact on
the output of spatial analyses that use DSM as input. Monte Carlo simulations have been frequently
criticized because of their high computing demand as the number of simulations has to be 500 at
the very minimum [57]. However, increased computing capacity in the last decade has facilitated its
practical application in small- to medium-sized studies such as this one, in which 1000 simulations
were performed.

To perform the geostatistical survey it is necessary to have a sufficient number of points
(i.e., considerably more than 30) to be able to compute a robust experimental variogram [58]. This can
be a great drawback in undeveloped areas where the small-scale spatial structure of the errors may
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remain hidden due to sparse reference data. Obviously, the data quality of these control points also
affects the error study. It is therefore essential to have well-surveyed data points with higher precision
and a clear definition of data sources. Communicating uncertainty in terms of probability distributions
to a diverse audience is always challenging, but it is becoming more popular and effective with the use
of mapping techniques. In our case, analysis of the map of probabilities resulting from geostatistical
research could lead to a series of decisions being taken. These might include carrying out general
checks in those areas with high probability errors or doing additional sampling where the estimated
error is greater than the threshold considered here (i.e., ˘0.5 m).

In the method applied here, analyses of other variables that can also be related to DSM errors are
lacking. If spatial variation of the errors could be linked to terrain complexity, distance to streams, or
vegetation cover, the origins of DSM errors could be better explained. If this were the case, estimation
of the first floor elevation of buildings could be optimized, thereby generating more realistic values.
Hence, one the challenges for further refinement of the technique would be proper use of auxiliary data.

A practical implementation of Monte Carlo simulation is the addition of a repeated number
of realizations of the error model to the original data. The new set of modified DSM values can be
used for further research, such as analysing the effects on derived topographic parameters, or as
input in a hydrological model. Another future application of the present study could be to input the
1000 modified DSM values in the hydraulic model and analyze their influence on the accuracy of
inundation mapping.

5. Conclusions

Determining first floor elevation is critical for characterizing flood risk. To our knowledge, this
is the first time that the errors and uncertainty associated with this parameter have been estimated
using LiDAR-derived DSMs as source data and Monte Carlo simulations based on geostatistics.
The implementation of a probabilistic scheme for characterizing first floor elevation errors is very
suitable, as it conveys the uncertainty inherent in the errors, which are spatially distributed. First floor
elevation uncertainty is not only due to the global vertical accuracy of LiDAR data or errors of
interpolation. A considerable role is also played by breaklines which, when integrated into TINs,
represent complex terrain, such as urban areas, much better than TINs created with mass points only.
As a counterpart, breaklines may to some extent reduce vertical accuracy of the original LiDAR as a
result of the inherent simplifications to be assumed during the process of converting 2D breaklines
data into a new feature class that contains z-values. Errors derived from the approach used here were
similar to those described in other papers already published (i.e., in terms of measures of central
tendency and spread), both in the urban area, where streets were integrated in the TIN as breaklines,
and in the non-urban area where breaklines were not added, except on river banks. These errors
and the associated uncertainty could be significantly improved by increasing LiDAR’s point data.
The denser the data, the greater the accuracy that can be achieved for determining first floor elevation.
The approach deployed here is of paramount importance, particularly with regard to decision-making
during the flood risk assessment and management process. This is because it not only enables flood
damage to be assessed more reliably but also identifies the parts of the area prone to flooding that
require improved topography, aspects that both contribute to a better characterization of hydrodynamic
and economic losses.
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