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Abstract: The importance of lakes and reservoirs leads to the high need for monitoring lake water
quality both at local and global scales. The aim of the study was to test suitability of Sentinel-2
Multispectral Imager’s (MSI) data for mapping different lake water quality parameters. In situ
data of chlorophyll a (Chl a), water color, colored dissolved organic matter (CDOM) and dissolved
organic carbon (DOC) from nine small and two large lakes were compared with band ratio algorithms
derived from Sentinel-2 Level-1C and atmospherically corrected (Sen2cor) Level-2A images. The
height of the 705 nm peak was used for estimating Chl a. The suitability of the commonly used
green to red band ratio was tested for estimating the CDOM, DOC and water color. Concurrent
reflectance measurements were not available. Therefore, we were not able to validate the performance
of Sen2cor atmospheric correction available in the Sentinel-2 Toolbox. The shape and magnitude of
water reflectance were consistent with our field measurements from previous years. However, the
atmospheric correction reduced the correlation between the band ratio algorithms and water quality
parameters indicating the need in better atmospheric correction. We were able to show that there is
good correlation between band ratio algorithms calculated from Sentinel-2 MSI data and lake water
parameters like Chl a (R2 = 0.83), CDOM (R2 = 0.72) and DOC (R2 = 0.92) concentrations as well as
water color (R2 = 0.52). The in situ dataset was limited in number, but covered a reasonably wide
range of optical water properties. These preliminary results allow us to assume that Sentinel-2 will be
a valuable tool for lake monitoring and research, especially taking into account that the data will be
available routinely for many years, the imagery will be frequent, and free of charge.

Keywords: Sentinel-2; lakes; remote sensing; Sen2cor; chlorophyll a; CDOM; dissolved organic
carbon; water color; water monitoring

1. Introduction

Lakes and reservoirs act as regulators of carbon cycling and climate [1]. They provide water for
multiple human uses from drinking water to recreation and support high levels of biodiversity [2].
There is a high need for monitoring lake water quality at local to global scales. There are about
117 million lakes in the world [3], but only a small fraction of them is included in in situ monitoring
networks and the frequency of in situ monitoring is often limited. Increasing amount of lakes has
been equipped with automated monitoring systems [4,5] that provided data with sufficient frequency.
However, the number of lakes with such systems is still rather small. Satellite remote sensing is the only
feasible way to monitor lakes when we have global questions (like carbon cycle) under investigation,
or when water quality over large regions has to be monitored with reasonable frequency.
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Water quality indicators like chlorophyll a (Chl a), total suspended matter, turbidity, Secchi depth
and colored dissolved organic matter (CDOM) can be measured using remote sensing techniques [6–13].
In our study, we concentrated on the Chl a, CDOM and its related parameters like dissolved organic
carbon (DOC) and water color. The photosynthetic pigment Chl a is a key indicator of phytoplankton
biomass. Thus, the estimation of Chl a concentration is essential for monitoring of water quality [14].
CDOM and DOC are also of great interest playing a significant role in the carbon and energy cycle of
lakes and affecting treatability of drinking water [15,16].

Satellite monitoring of lakes has been hampered by lack of appropriate satellite sensors [17]. Ocean
color sensors, like the Moderate Resolution Imaging Spectroradiometer (MODIS) and the MEdium
Resolution Imagining Spectrometer, (MERIS), had frequent revisit time (1–3 days) and sufficient
radiometric resolution (12-bit) needed for dark objects like waterbodies. However, spatial resolution of
these sensors (300–1000 m) was suitable only for very large lakes while majority of the lakes on Earth
are small [3]. Previous Landsat series (Landsat 1–7) satellites had good spatial resolution (30–79 m) but
limited radiometric resolution (6–8 bits) being usable to certain extent for mapping lake water quality
parameters [8,13,18–20]. Landsat 8 radiometric resolution is 12-bit and it is suitable for remote sensing
of even dark (CDOM-rich) lakes [21]. Still, the revisit time of Landsat 8 is rather long (16 days) limiting
its use in routine monitoring of lake water quality.

The launch of Multispectral Imager’s (MSI) onboard Sentinel-2 in 2015 opened a great new
potential in lake remote sensing. The imagery is with 10 m, 20 m and 60 m spatial resolution, meaning
that even small lakes can be studied. Data are acquired in 13 spectral bands and radiometric resolution
of the sensor is 12-bit [22]. Revisit time of Sentinel-2 will be five days when the second satellite is in
orbit in the beginning of 2017. However, at higher latitudes, like in Estonia, the revisit time will be
almost every second day because of the overlapping orbits.

The MSI was not designed for aquatic remote sensing. Up to now the usefulness of the MSI for
water applications has been demonstrated only for separating water bodies from land [23]. Mapping
water bodies from space using MSI data should allow improving the global inland water map from
current 14.25 m resolution [3] to 10 m. Frequent high spatial resolution imagery will allow also to
move from static inland water maps to dynamic ones, i.e., separate “permanent” inland waters from
temporarily inundated areas. Hedley et al. [24] demonstrated with synthetic dataset that the MSI data
are potentially useful for coral reef mapping and detecting bleaching events. However, coral reefs are
relatively bright objects while lakes in boreal zone are relatively dark making retrieval of water quality
parameters a more demanding task. We have shown earlier [21] that the Sentinel-2 spectral band at
783 nm can detect part of the signal of the 810 nm peak [21]. In the extreme CDOM-rich lakes, this
peak is the only piece of information not affected by CDOM absorption and can be used for estimating
concentration of Chl a. However, this study was mainly performed using hyperspectral field data and
the performance of MSI was demonstrated only at qualitative bases. Therefore, there is currently no
demonstration that the MSI imagery can be used for mapping inland water quality.

Atmospheric correction of inland water imagery is a complicated issue. Some authors [19,20]
have even shown for Landsat imagery that the top of atmosphere imagery provided better result than
atmospherically corrected imagery. The Sentinel-2 toolbox contains Sen2cor atmospheric correction
procedure. It was not designed for waterbodies. However, it will probably be the first choice for many
users due to its availability in the toolbox. We do not have in situ measured reflectance data collected
simultaneously with Sentinel-2 overpass. Therefore, it was not possible to validate the performance of
Sen2cor directly.

The main aim of our study was to test suitability of Sentinel-2 MSI data for mapping different
lake water quality parameters (Chl a, water color, CDOM and DOC) by means of band ratio type
algorithms, which have demonstrated good performance in previous lake remote sensing studies
using other multispectral sensors. We assume that this will be a demonstration of the suitability of the
Sentinel-2 MSI sensor for quantitative lake remote sensing if the algorithms that performed well in the
case of other sensors perform well also in the case of MSI.
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2. Materials and Methods

2.1. Study Sites and in Situ Data

Nine small and two large lakes (Lake Peipsi and Lake Võrtsjärv) were sampled in the frame of the
state monitoring program in Estonia, August 2015. All lakes were sampled once. The locations of the
studied lakes are shown in Figure 1. There were 8 sampling points in Lake Võrtsjärv, 6 in Lake Peipsi
and one in each small lake (altogether 23 sampling points). More detailed information about sampled
lakes is displayed in Table 1.
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Table 1. Study sites and their main characteristics. Avg, average, Max, maximum.

Lake Name x-coordinate y-coordinate Area
(ha)

Avg Depth
(m)

Max
Depth (m)

Catchment
Area (km2)

Secchi Depth
2015 (m)

Trophic
State

Nohipalo Valgõjärv 698140 6427130 7 6.2 12.5 - 4.5 Oligotrophic
Pühajärv 645054 6433972 298.3 4.3 8.5 44 3.0 Eutrophic

Rõuge Suurjärv 674071 6402220 15 11.9 38 25.8 3.1 Eutrophic
Viitna Pikkjärv 614054 6591301 16.4 3 6.2 1.1 3.4 Oligotrophic

Ähijärv 649104 6399416 181.4 3.8 5.5 14.7 2.1 Eutrophic
Karijärv 641931 6464450 82.1 5.7 14.5 11.1 2.3 Eutrophic

Keeri 643615 6467624 127.3 3 4.5 408 1.3 Eutrophic
Käsmu 606437 6606460 48.5 2.2 3.3 16.5 1.4 Mixotrophic
Lohja 595682 6602433 56 2.2 3.7 12.3 0.7 Mixotrophic

Võrtsjärv 620167 6465743 27,000 2.8 6.0 3104 0.8 Eutrophic
Peipsi 69683 6501577 355,500 7.1 15.3 47,800 1.8 Eutrophic

In situ data were collected from 3 August 2015 to 18 August 2015. The mean time difference
between Sentinel-2 and in situ data were approximately 5 days. DOC, CDOM, water color and Chl a
were measured from surface (small lakes) or from integrated water samples (large lakes). No in situ
reflectance measurements were carried out during this field campaign.

For the determination of DOC concentrations (mg¨L´1) in small lakes, water samples were filtered
through Whatman GF/F glass microfiber filters previously washed with 500 mL of ultrapure water
(Milli-Q) and the organic carbon content of the filtrates were measured by a TOC-VCPH analyzer
(Shimadzu, Kyoto, Japan). This method conforms to the European standard method [25]. DOC
concentrations were determined directly as inorganic carbon was eliminated by acidifying samples to
pH 2 or less with 2 M HCl and subsequently purging samples with purified gas to remove the CO2.
The samples were combusted at 680 ˝C to convert DOC components to CO2 which was detected with
a non-dispersed infrared gas analyzer. For determination of DOC concentrations in Lakes Peipsi and
Võrtsjärv, the carbon content of the filtrate was measured according to [26].
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The amount of CDOM was characterized by its concentration (mg¨L´1) calculated from following
equation [27,28]:

CCDOM “
c* f pλq

expp´Spλ´ λ0qqa*CDOMpλ0q
(1)

where a*CDOM(λ0) is the specific absorption coefficient of DOM, which numerical value at λ0 = 380 nm
was 0.565 L¨m´1¨mg´1 [27]; S is the slope parameter equal to 0.017 nm´1 [28]; and c*f(λ) was taken
from spectrometric reading at λ = 380 nm.

Water color is usually routinely analyzed water quality parameter in limnological studies, but
also in water treatment plants, since it can be measured easily and at minimal cost. Water color is
measured from filtered water and it gives us similar information about water quality as DOC and
CDOM, but it is much more robust. Water color (mg¨Pt¨L´1) was determined by spectrophotometric
measurements of absorbance at 410 nm in Lake Peipsi and Võrtsjärv and at 420 nm in small lakes in
our study. Both methods conform to the ISO standard method [29].

For Chl a (µg¨L´1), 0.1–1 L of water was passed through Whatman GF/F glass microfiber filter and
concentrations were measured spectrophotometrically [30] at a wavelength of 665 nm from 96% ethanol
extracts of the filters.

2.2. Sentinel-2 Data

Sentinel-2 Level-1C (L1C) MSI data were downloaded from Sentinels Scientific Data Hub
(https://scihub.copernicus.eu/). Sentinel-2 images were available on 11, 14 and 17 August 2015.
The L1C product is composed of 100 km2 tiles (ortho-images in UTM/WGS84 projection) [22].
Per-pixel radiometric measurements are provided in Top of Atmosphere (TOA) reflectances with all
parameters to transform them into radiances. L1C products are resampled with a constant Ground
Sampling Distance (GSD) of 10, 20 and 60 m depending on the native resolution of the different spectral
bands (Table 2) [22]. The images from WGS84 UTM zone 35 with 20 m resolution were used.

Table 2. Spectral bands, central wavelengths (nm), bandwidths (nm) and corresponding spatial
resolutions (m) of Sentinel-2 MSI sensor. The first seven bands were used in this study.

Band Number Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8a 842 115 10
8b 865 20 20
9 945 20 60
10 1375 30 60
11 1610 90 20
12 2190 180 20

Sentinel-2 Toolbox (S2TBX) version 2.0.4 in Sentinel Application Platform (SNAP) version 2.0.2 on
Windows 7 (64 bit) was used to process the images. Then, 3 ˆ 3 cloud free pixels were extracted from
each sampling point situated in the middle of the lake and the mean values of the pixels were used for
analyses. To get the Level-2A (L2A) Bottom of Atmosphere (BOA) reflectance images (derived from
the associated L1C products) Sen2cor atmospheric correction module was applied.

2.3. Remote Sensing Algorithms

As was mentioned above, our aim was not developing new remote sensing algorithm but to test
the performance of MSI with well-established band ratio algorithms that have performed well in the
case of other sensors. The height of the reflectance peak between 700 and 720 nm has been used for
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estimating the Chl a concentration in lake waters for more than two decades [6,31–34]. Sentinel-2
has band 5 (705 nm) in this spectral region. Therefore, we calculated the height of the peak against
the band 4 (665 nm) and band 6 (740 nm) baselines and tested whether it is in correlation with the
chlorophyll a in the studied lakes.

CDOM absorption is the strongest in the blue part of spectrum and decreases exponentially with
increasing wavelength. Therefore, it would be logical to use blue to red ratios for estimating lake
CDOM content. However, water leaving signal in blue bands is often negligible in the case of lake
waters due to CDOM and relatively high amount of phytoplankton that both absorb light in blue part
of spectrum. In extreme CDOM-rich lakes the water leaving signal may be close to zero even in green
and red parts of spectrum (up to 650 nm) [21]. However, if to exclude the extreme lakes then the green
to red band ratios have demonstrated the best performance in retrieving lake CDOM from remote
sensing [18,35–37]. It must be noted that the study by Zhu et al. [37] tested many algorithms with lake
data from around the world and showed good performance of the green to red ratio globally. Therefore,
we used the band 3 to band 4 ratio for estimating CDOM concentration from Sentinel-2 imagery. DOC
concentration is in good correlation with its colored component CDOM in many lakes [38,39]. Thus,
the same band ratio is used for retrieving lake DOC. In addition, we used the same band ratio for
water color that is very similar parameter to CDOM.

3. Results

3.1. In Situ Data

The concentration of DOC varied from 6.04 to 20.9 mg¨L´1, Chl a from 3.6 to 72.9 µg¨L´1, CDOM
from 1.77 to 15.8 mg¨L´1 and water color from 3 to 30 mg¨Pt¨L´1 in studied lakes (Table 3). The highest
values of Chl a, DOC, CDOM and water color were measured from Lake Lohja and Lake Võrtsjärv and
the lowest from Lake Nohipalo Valgõjärv, Lake Rõuge Suurjärv and Lake Viitna Pikkjärv. DOC were
measured only in one sampling point in Lake Võrtsjärv and in two sampling points in Lake Peipsi.
Data collected on previous years have shown that the concentration of the DOC varies approximately
1–2 mg¨L´1 between sampling points in those lakes [17]. There were no data about CDOM in Lake
Peipsi in August 2015. The values of CDOM in Lake Peipsi have been similar to the values of CDOM
measured from Lake Võrtsjärv in previous years [40].

Table 3. Sampling date and in situ data of dissolved organic carbon (DOC), chlorophyll a (Chl a),
colored dissolved organic matter (CDOM) and water color (Color) in studied lakes.

Lake Date DOC (mg¨L´1) Chl a (µg¨L´1) CDOM (mg¨L´1) Color (mg¨Pt¨L´1)

Nohipalo Valgõjärv 3 August 2015 6.65 3.70 1.77 3.00
Pühajärv 3 August 2015 10.0 11.0 3.54 5.00

Rõuge Suurjärv 4 August 2015 6.04 3.60 2.30 3.50
Viitna Pikkjärv 10 August 2015 6.25 5.60 3.01 5.00

Ähijärv 4 August 2015 9.84 10.0 2.65 3.50
Karijärv 18 August 2015 10.3 4.00 4.07 6.00

Keeri järv 18 August 2015 8.14 29.0 5.13 7.50
Käsmu 12 August 2015 12.8 30.0 6.73 10.0
Lohja 12 August 2015 20.9 50.0 15.8 22.0

Peipsi 92 18 August 2015 - 18.8 - 20.0
Peipsi 2 18 August 2015 - 21.3 - 20.0

Peipsi 79 18 August 2015 - 18.9 - 20.0
Peipsi 11 18 August 2015 11.4 24.6 - 20.0
Peipsi 12 18 August 2015 - 29.9 - 25.0
Peipsi 38 18 August 2015 11.8 27.0 - 25.0

Võrtsjärv 10 18 August 2015 14.0 47.2 4.74 25.0
Võrtsjärv Sula Kuru 18 August 2015 - 62.3 5.13 30.0

Võrtsjärv Ohne 18 August 2015 - 52.8 4.53 25.0
Võrtsjärv Tamme 18 August 2015 - 44.3 4.35 25.0

Võrtsjärv Tarvastu 18 August 2015 - 72.9 4.42 25.0
Võrtsjärv Karikolga 18 August 2015 - 34.3 4.18 25.0

Võrtsjärv Joesuu 18 August 2015 - 30.9 4.21 25.0
Võrtsjärv Tanassilma 18 August 2015 - 37.1 4.21 25.0
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3.2. Atmospheric Correction and Reflectance Spectra

Sen2cor atmospheric correction procedure was used to remove atmospheric contribution from the
MSI imagery. This procedure is not designed for aquatic environments. However, due to its availability
in the Sentinel-2 Toolbox it will most probably be the first choice atmospheric correction procedure
many people will use.

We do not have in situ reflectance measurements from the lakes under investigation carried
out simultaneously with the Sentinel-2 overpass. Therefore, we cannot validate the performance of
atmospheric correction directly. However, we have field reflectance data from Lakes Võrtsjärv and
Peipsi collected in 2011–2013. These reflectance spectra were recalculated into Sentinel-2 bandwidths
and compared with the Sen2cor corrected reflectances. This comparison is a good preliminary test
of any atmospheric correction procedure as quite often the atmospheric correction procedures that
perform well in the case of clear oceanic waters overcorrect the data in coastal and inland waters
producing negative reflectances in blue part of spectrum. Sometimes the reflectance values are also
negative at higher wavelengths. This did not happen in the case of Sen2cor and Sentinel-2 data, as seen
in Figure 2. The atmospheric correction worked better in the case of Võrtsjärv where the Sentinel-2
reflectances resemble the in situ results well (Figure 2a). There are larger differences between Sentinel-2
and in situ measured reflectances in the case of Lake Peipsi data (Figure 2b).
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Figure 2. Field reflectance spectra collected 2011–2013 and recalculated into Sentinel-2 bands
(grey lines) and Sentinel-2 reflectance spectra (black lines) obtained with Sen2cor atmospheric
correction procedure for: Lake Võrtsjarv (a); and Lake Peipsi (b).

Top of atmosphere (TOA) and bottom of atmosphere (BOA) reflectance spectra for selected lakes
are shown in Figures 3 and 4. The difference in optical properties of the studied lakes is clearly seen
also in the reflectance spectra. For example, Viitna Pikkjärv has relatively clear water with low Chl a
concentration. Its reflectance is the lowest and there is no peak at 705 nm typical to phytoplankton-rich
waters. Lake Peipsi has relatively dark (CDOM-rich) waters while Lake Võrtsjärv is known by high
amount of resuspended sediments due to its shallow water depth. The differences are clearly seen
in Figure 4 where Lake Peipsi reflectance is much lower due to the higher absorption and smaller
backscattering coefficient of its waters.
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Figure 3. Reflectance spectra of three small lakes: (a) top of atmosphere (TOA) reflectance; and (b)
bottom of atmosphere (BOA) reflectance after correction with Sen2cor.
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Figure 4. Reflectance spectra of large Lakes Peipsi and Võrtsjärv: (a) top of atmosphere reflectance
(TOA); and (b) bottom of atmosphere (BOA) reflectance after correction with Sen2cor.

3.3. Results of the Remote Sensing Algorithms vs. in Situ Data

An algorithm describing the height of the 705 nm peak against the baseline of two neighboring
spectral bands was used for chlorophyll retrieval (Figure 5).

There are several band ratio algorithms developed for estimating lake CDOM concentrations and
closely related water color and DOC concentrations [18,35–37]. Most of them are based on the green to
red ratio as water leaving signal is often very low in blue part of spectrum and atmospheric correction
issues are usually the largest in the blue bands as well. Zhu et al. [37] have analyzed the performance
of different CDOM-retrieval algorithms and found the green to red band ratio working well over wide
variety of lakes in different part of the world. Therefore, we used also the MSI band 3 to band 4 ratio
to retrieve CDOM, color and DOC concentrations (Figures 6–8). Surprisingly, the correlation was the
strongest with the DOC rather than the CDOM and water color that have direct effect on the water
reflectance spectra. One of the possible explanations may be slightly different sets of lakes that were
used in the analysis (see Table 3) as for some lakes from where we have DOC results CDOM was not
measured and vice versa.
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Figure 5. Correlation between the height of the 705 nm peak calculated from the Sentinel-2 data and
chlorophyll a (Chl a) measured from water samples: (a) band ratio calculated from the top of atmosphere
reflectance (L1C); and (b) band ratio calculated from the bottom of atmosphere reflectance (L2A).
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Figure 6. Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and
colored dissolved organic matter (CDOM) concentrations measured from water samples: (a) band ratio
calculated from the top of atmosphere reflectance (L1C); and (b) band ratio calculated from the bottom
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Figure 7. Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and water
color (Color) estimated from water samples: (a) band ratio calculated from the top of atmosphere
reflectance (L1C); and (b) band ratio calculated from the bottom of atmosphere reflectance (L2A).
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Figure 8. Correlation between the ratio of bands 3 and 4 calculated from the Sentinel-2 data and
concentration of dissolved organic carbon (DOC) measured from water samples: (a) band ratio
calculated from the top of atmosphere reflectance (L1C); and (b) band ratio calculated from the
bottom of atmosphere reflectance (L2A).
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4. Discussion

The small (10 m) pixel size of the Sentinel-2 MSI sensor is a great advantage in lake remote sensing
as even very small lakes can be observed. However, several critical for lake remote sensing bands (5–7)
are available with 20 m resolution. To make use of the full spectral resolution between 443 and 783 nm,
we resampled MSI spectral bands 1–7 to a common 20 m pixel size. In order to reduce the random
noise we used an average of 3 ˆ 3 pixels around the in-situ sampling points instead of the single pixel
value. We studied lakes as small as 7 ha, but much smaller lakes can be studied with 20 m pixel size.
This opens great potential for monitoring of water quality on regional to national scale or determining
the role of lakes in the global carbon cycle where the small lakes are of greater importance due to their
large number [3] and higher carbon sequestration [1].

The Sentinel-2 data used were collected on 11, 14, and 17 August 2015 while the in situ sampling
was carried out during the period between August 3 and August 18. Studies in boreal lakes [20,41]
have shown that a few days difference between the image acquisition and in situ data collection does
not affect retrieval accuracy of water parameters significantly, especially in the case of relatively stable
parameters like CDOM, DOC and water color. Kutser [20] found that ˘3 days was as good as exact
match-up, a week time difference reduced the correlation, but a month time difference was too much
even for estimating a relatively stable parameter like CDOM. On the other hand Cardille et al. [41]
found that even much longer time differences are still acceptable.

Water parameters can change over a short period mainly in two cases: heavy rain bringing
dissolved and particulate material into the lakes or during phytoplankton blooms. Especially
cyanobacterial blooms may be spatially very heterogeneous and biomass may vary two to three orders
of magnitude within a few hundred meters. It has even been shown that 30 m pixel is not sufficient
to describe the spatial variability of biomass in cyanobacterial blooms [42]. Weather conditions were
stable between the image acquisition and in situ sampling and no cyanobacterial blooms were reported.
One may assume that the time difference between the in situ sampling and image acquisition reduces
the correlation between satellite products and the actual in situ values. This may have been the case
also in our study, but the correlation coefficients were still very high indicating that the time difference
was not a major problem.

Atmospheric correction of coastal and inland water imagery is a challenge. There are advancements
also in atmospheric correction methods for optically complex waters [43,44]. Some of these procedures
will become freely available and/or will be included in SNAP in the not so distant future. However,
Sen2cor, freely available in the SNAP software, will probably be the first choice for many users to
test. We were not able to validate the performance of Sen2cor in lake remote sensing directly as
we did not have field reflectance data measured simultaneously with Sentinel-2 image acquisition.
Consequently, we were able to assess the performance of the Sen2cor in two indirect ways—by
comparing the reflectance spectra with our field data from the same lakes collected in previous years
and by comparing the water parameter retrievals from corrected and uncorrected data. Based on the
comparison of reflectance spectra we can see that the atmospheric correction worked better in the case
of more turbid (higher signal) Lake Võrtsjärv. Lake Peipsi is more CDOM-rich with low reflectance in
general and nearly negligible reflectance in blue part of spectrum. Sen2cor produced too high values
in blue part of spectrum. This may be due to glint or atmospheric correction errors that are more
pronounced in the case of low water leaving signal. The errors in blue part of spectrum are typical to
all atmospheric correction procedures.

Reflectance spectra obtained for small lakes were also realistic. Therefore, we expected to see
good performance of the remote sensing algorithms when atmospherically corrected data was used.
Nevertheless, the results obtained with TOA reflectance were better than with BOA reflectance in the
case of all studied parameters. In the case of chlorophyll a the difference was minor, but for other
parameters it was relatively large. This indicates poor performance of Sen2cor in correcting lake pixels.
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The location of the reflectance peak in the 700–720 nm region shifts towards longer wavelength
with increasing concentration of phytoplankton. The Sentinel-2 MSI 705 nm band is almost perfectly
located to capture this peak. Our results showed that the amplitude of the 705 nm peak against
the 665–740 nm baseline was in very good correlation with Chl a concentration in the studied lakes
(R2 = 0.83). In the case of Chl a estimation the atmospherically corrected data produced similar results
with the TOA reflectance. This can be explained by the wavelengths used in the chlorophyll retrieval
algorithm (longer wavelengths are less affected by atmospheric correction errors) and the type of
algorithm that calculates the height of the 705 nm peak against a baseline. The performance of this
kind of algorithms depends more on spectral shape rather than absolute values.

The commonly used [18,35–37] green to red band ratio was in good correlation with lake CDOM
(R2 = 0.72) and water color (R2 = 0.52). Consequently, these lake parameters can be mapped from
space using Sentinel-2 data. Surprisingly, the correlation with DOC was even higher (R2 = 0.92)
than with CDOM. If in many lakes the correlation between DOC and its colored component is very
strong [38,45,46] then in Estonian lakes the relationship is varying seasonally [47,48]. Moreover, it has
been shown [49] that iron bound to carbon molecules absorbs light in a similar way like CDOM and
variable carbon to iron ratio makes remote sensing mapping of lake DOC more complicated. One of
the possible reasons of this result is slightly different set of lakes used as for some lakes from where we
have DOC data CDOM was unavailable and vice versa. Another possible explanation is that the ratio
of colored to uncolored DOC as well as carbon to iron ratio in the studied lakes somehow compensated
each other’s optical effects and the green to red band ratio allows to predict lake DOC with higher
confidence than CDOM.

The Chl a retrieval algorithm performed similarly well in the case of TOA and BOA reflectance
spectra. However, the green to red ratio, used for retrieving CDOM, DOC and water color,
performed much better in the case of TOA reflectance rather than from atmospherically corrected data.
Atmospheric effects in the measured signal are the highest in blue end of spectrum and decrease nearly
exponentially with increasing wavelength. The red and NIR bands are relatively little affected by the
atmospheric effects. The green band, on the other hand, is affected by atmosphere much more. It is easy
to understand that a minor error in atmospheric correction may be as large as the whole water leaving
signal if more than 90% of the signal measured at the satellite altitude is atmospheric contribution.
Therefore, the over- or undercorrection of the data is larger in the green band than in red and NIR
bands and consequently minor errors in the atmospheric correction affect the CDOM/DOC retrieval
algorithms much more than the Chl a retrieval algorithm based on the peak of the 705 nm band.
This may be the reason why TOA reflectance gave better results than the BOA reflectance although
the qualitative inspection of BOA reflectances showed that the water reflectances were reasonable for
many lakes.

In the absence of better sensors for inland water remote sensing scientists have
used land remote sensing satellites like Landsat or EO-1 (Advanced Land Imager and
Hyperion) [8,9,13,18–20,35–37,41,47,50,51]. EO-1 was an experimental satellite and did not have
global coverage. Landsat series satellites revisit time is 16 days. Meaning that monitoring of inland
water quality was not possible as many processes (like algal blooms) may last shorter period than
the 16 days and remain undetected with Landsat even in the lucky case where consecutive images
are acquired in cloud free days. The situation will change dramatically when both Sentinel-2A and
Sentinel-2B will be in orbit. Five days revisit time on the Equator and more frequent sampling at higher
latitudes will make Sentinel-2 a real monitoring tool for inland and coastal waters where 300 m spatial
resolution of OLCI (launched on Sentinel-3) is not sufficient. Moreover, combining the two Sentinel-2
with Landsat 8 will allow increasing the frequency of measurements even further. This is especially
true for parameters like CDOM and DOC that can be estimated using green and red spectral bands
that are rather similar on both sensors. Most probably this will also apply for total suspended solids
(TSS). We did not have TSS data to test this with Sentinel-2, but usually TSS is the easiest parameter to
estimate from satellites and for Landsat it was demonstrated already a quarter of the century ago [8].
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Where significant advancement in lake and inland water remote sensing are foreseen after the launch
of Sentinel-2 is remote sensing of Chl a. Landsat series satellites do not have spectral bands in the
700–720 nm spectral range. It has been demonstrated in many studies [6,10,11,21,31–34,42] that this
peak is the best indicator of phytoplankton biomass and can be calculated from TOA data [33,34].
We found also that there is very good correlation between the peak height at 705 nm and chlorophyll
concentration in the lakes and the relationship is relatively insensitive to atmospheric correction issues
as the correlation was good both for TOA and BOA data.

The only problems in quantitative monitoring of phytoplankton biomass may occur when surface
scum is formed during cyanobacterial blooms. First of all the thickness of the scum is usually unknown
and its optical properties on the surface (seen by remote sensing sensors) may be quite different from
the interior due to photobleaching and/or degradation of biomass. Moreover, we have shown in
the case of cyanobacterial bloom in the Baltic Sea [52] that the 10 m spatial resolution of MSI is not
sufficient in many circumstances as the stripes of scum at the surface may be too narrow. In such cases
the reflectance of surface scum is identical to dense subsurface bloom and high NIR reflectance typical
to floating biomass is not formed.

5. Conclusions

We did not have simultaneous field radiometry data to validate the performance of Sen2cor
atmospheric correction directly. Comparison of the BOA reflectance with older field data showed
that results are realistic in the case of more turbid lakes and not so good in the case of darker lakes.
Comparing the results of water quality parameter retrieval from TOA and BOA imagery shows that
the Sen2cor atmospheric correction did not perform well as the results are better for uncorrected data.

The results show that Sentinel-2 MSI data has great potential for inland water remote sensing as
we were able to map Chl a, CDOM and DOC concentrations as well as water color in lakes by means
of commonly used band ratio type algorithms.

This study is the first attempt to test capabilities of Sentinel 2 MSI sensor in inland water remote
sensing. The results may be considered as preliminary because the in situ database was limited and no
reflectance data was collected to validate the performance of atmospheric correction. Nevertheless, the
results are very encouraging for inland water monitoring and research.
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